/* ----------------------------------------------------------------------
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
*
* $Date: 19. March 2015
* $Revision: V.1.4.5
*
* Project: CMSIS DSP Library
* Title: arm_mat_cmplx_mult_f32.c
*
* Description: Floating-point matrix multiplication.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @defgroup CmplxMatrixMult Complex Matrix Multiplication
*
* Complex Matrix multiplication is only defined if the number of columns of the
* first matrix equals the number of rows of the second matrix.
* Multiplying an M x N
matrix with an N x P
matrix results
* in an M x P
matrix.
* When matrix size checking is enabled, the functions check: (1) that the inner dimensions of
* pSrcA
and pSrcB
are equal; and (2) that the size of the output
* matrix equals the outer dimensions of pSrcA
and pSrcB
.
*/
/**
* @addtogroup CmplxMatrixMult
* @{
*/
/**
* @brief Floating-point Complex matrix multiplication.
* @param[in] *pSrcA points to the first input complex matrix structure
* @param[in] *pSrcB points to the second input complex matrix structure
* @param[out] *pDst points to output complex matrix structure
* @return The function returns either
* ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
*/
arm_status arm_mat_cmplx_mult_f32(
const arm_matrix_instance_f32 * pSrcA,
const arm_matrix_instance_f32 * pSrcB,
arm_matrix_instance_f32 * pDst)
{
float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
float32_t *pOut = pDst->pData; /* output data matrix pointer */
float32_t *px; /* Temporary output data matrix pointer */
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
float32_t sumReal1, sumImag1; /* accumulator */
float32_t a0, b0, c0, d0;
float32_t a1, b1, c1, d1;
float32_t sumReal2, sumImag2; /* accumulator */
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint16_t col, i = 0u, j, row = numRowsA, colCnt; /* loop counters */
arm_status status; /* status of matrix multiplication */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrcA->numCols != pSrcB->numRows) ||
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
/* row loop */
do
{
/* Output pointer is set to starting address of the row being processed */
px = pOut + 2 * i;
/* For every row wise process, the column loop counter is to be initiated */
col = numColsB;
/* For every row wise process, the pIn2 pointer is set
** to the starting address of the pSrcB data */
pIn2 = pSrcB->pData;
j = 0u;
/* column loop */
do
{
/* Set the variable sum, that acts as accumulator, to zero */
sumReal1 = 0.0f;
sumImag1 = 0.0f;
sumReal2 = 0.0f;
sumImag2 = 0.0f;
/* Initiate the pointer pIn1 to point to the starting address of the column being processed */
pIn1 = pInA;
/* Apply loop unrolling and compute 4 MACs simultaneously. */
colCnt = numColsA >> 2;
/* matrix multiplication */
while(colCnt > 0u)
{
/* Reading real part of complex matrix A */
a0 = *pIn1;
/* Reading real part of complex matrix B */
c0 = *pIn2;
/* Reading imaginary part of complex matrix A */
b0 = *(pIn1 + 1u);
/* Reading imaginary part of complex matrix B */
d0 = *(pIn2 + 1u);
sumReal1 += a0 * c0;
sumImag1 += b0 * c0;
pIn1 += 2u;
pIn2 += 2 * numColsB;
sumReal2 -= b0 * d0;
sumImag2 += a0 * d0;
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
a1 = *pIn1;
c1 = *pIn2;
b1 = *(pIn1 + 1u);
d1 = *(pIn2 + 1u);
sumReal1 += a1 * c1;
sumImag1 += b1 * c1;
pIn1 += 2u;
pIn2 += 2 * numColsB;
sumReal2 -= b1 * d1;
sumImag2 += a1 * d1;
a0 = *pIn1;
c0 = *pIn2;
b0 = *(pIn1 + 1u);
d0 = *(pIn2 + 1u);
sumReal1 += a0 * c0;
sumImag1 += b0 * c0;
pIn1 += 2u;
pIn2 += 2 * numColsB;
sumReal2 -= b0 * d0;
sumImag2 += a0 * d0;
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
a1 = *pIn1;
c1 = *pIn2;
b1 = *(pIn1 + 1u);
d1 = *(pIn2 + 1u);
sumReal1 += a1 * c1;
sumImag1 += b1 * c1;
pIn1 += 2u;
pIn2 += 2 * numColsB;
sumReal2 -= b1 * d1;
sumImag2 += a1 * d1;
/* Decrement the loop count */
colCnt--;
}
/* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
colCnt = numColsA % 0x4u;
while(colCnt > 0u)
{
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
a1 = *pIn1;
c1 = *pIn2;
b1 = *(pIn1 + 1u);
d1 = *(pIn2 + 1u);
sumReal1 += a1 * c1;
sumImag1 += b1 * c1;
pIn1 += 2u;
pIn2 += 2 * numColsB;
sumReal2 -= b1 * d1;
sumImag2 += a1 * d1;
/* Decrement the loop counter */
colCnt--;
}
sumReal1 += sumReal2;
sumImag1 += sumImag2;
/* Store the result in the destination buffer */
*px++ = sumReal1;
*px++ = sumImag1;
/* Update the pointer pIn2 to point to the starting address of the next column */
j++;
pIn2 = pSrcB->pData + 2u * j;
/* Decrement the column loop counter */
col--;
} while(col > 0u);
/* Update the pointer pInA to point to the starting address of the next row */
i = i + numColsB;
pInA = pInA + 2 * numColsA;
/* Decrement the row loop counter */
row--;
} while(row > 0u);
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixMult group
*/