/* ---------------------------------------------------------------------- * Copyright (C) 2010-2014 ARM Limited. All rights reserved. * * $Date: 19. March 2015 * $Revision: V.1.4.5 * * Project: CMSIS DSP Library * Title: arm_cmplx_dot_prod_f32.c * * Description: Floating-point complex dot product * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ---------------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupCmplxMath */ /** * @defgroup cmplx_dot_prod Complex Dot Product * * Computes the dot product of two complex vectors. * The vectors are multiplied element-by-element and then summed. * * The pSrcA points to the first complex input vector and * pSrcB points to the second complex input vector. * numSamples specifies the number of complex samples * and the data in each array is stored in an interleaved fashion * (real, imag, real, imag, ...). * Each array has a total of 2*numSamples values. * * The underlying algorithm is used: *
    
 * realResult=0;    
 * imagResult=0;    
 * for(n=0; n    
 *    
 * There are separate functions for floating-point, Q15, and Q31 data types.    
 */

/**    
 * @addtogroup cmplx_dot_prod    
 * @{    
 */

/**    
 * @brief  Floating-point complex dot product    
 * @param  *pSrcA points to the first input vector    
 * @param  *pSrcB points to the second input vector    
 * @param  numSamples number of complex samples in each vector    
 * @param  *realResult real part of the result returned here    
 * @param  *imagResult imaginary part of the result returned here    
 * @return none.    
 */

void arm_cmplx_dot_prod_f32(
  float32_t * pSrcA,
  float32_t * pSrcB,
  uint32_t numSamples,
  float32_t * realResult,
  float32_t * imagResult)
{
  float32_t real_sum = 0.0f, imag_sum = 0.0f;    /* Temporary result storage */
  float32_t a0,b0,c0,d0;

#ifndef ARM_MATH_CM0_FAMILY

  /* Run the below code for Cortex-M4 and Cortex-M3 */
  uint32_t blkCnt;                               /* loop counter */

  /*loop Unrolling */
  blkCnt = numSamples >> 2u;

  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.    
   ** a second loop below computes the remaining 1 to 3 samples. */
  while(blkCnt > 0u)
  {
      a0 = *pSrcA++;
      b0 = *pSrcA++;
      c0 = *pSrcB++;
      d0 = *pSrcB++;  
  
      real_sum += a0 * c0;
      imag_sum += a0 * d0;
      real_sum -= b0 * d0;
      imag_sum += b0 * c0;
    
      a0 = *pSrcA++;
      b0 = *pSrcA++;
      c0 = *pSrcB++;
      d0 = *pSrcB++; 
  
      real_sum += a0 * c0;
      imag_sum += a0 * d0;
      real_sum -= b0 * d0;
      imag_sum += b0 * c0;
      
      a0 = *pSrcA++;
      b0 = *pSrcA++;
      c0 = *pSrcB++;
      d0 = *pSrcB++;  
  
      real_sum += a0 * c0;
      imag_sum += a0 * d0;
      real_sum -= b0 * d0;
      imag_sum += b0 * c0;
    
      a0 = *pSrcA++;
      b0 = *pSrcA++;
      c0 = *pSrcB++;
      d0 = *pSrcB++; 
  
      real_sum += a0 * c0;
      imag_sum += a0 * d0;
      real_sum -= b0 * d0;
      imag_sum += b0 * c0;

      /* Decrement the loop counter */
      blkCnt--;
  }

  /* If the numSamples is not a multiple of 4, compute any remaining output samples here.    
   ** No loop unrolling is used. */
  blkCnt = numSamples & 0x3u;

  while(blkCnt > 0u)
  {
      a0 = *pSrcA++;
      b0 = *pSrcA++;
      c0 = *pSrcB++;
      d0 = *pSrcB++;  
  
      real_sum += a0 * c0;
      imag_sum += a0 * d0;
      real_sum -= b0 * d0;
      imag_sum += b0 * c0;

      /* Decrement the loop counter */
      blkCnt--;
  }

#else

  /* Run the below code for Cortex-M0 */

  while(numSamples > 0u)
  {
      a0 = *pSrcA++;
      b0 = *pSrcA++;
      c0 = *pSrcB++;
      d0 = *pSrcB++;  
  
      real_sum += a0 * c0;
      imag_sum += a0 * d0;
      real_sum -= b0 * d0;
      imag_sum += b0 * c0;

      /* Decrement the loop counter */
      numSamples--;
  }

#endif /* #ifndef ARM_MATH_CM0_FAMILY */

  /* Store the real and imaginary results in the destination buffers */
  *realResult = real_sum;
  *imagResult = imag_sum;
}

/**    
 * @} end of cmplx_dot_prod group    
 */