/** ****************************************************************************** * @file : functions.c * @brief : funcstions program body ****************************************************************************** */ //#include "globaldef.h" #include "functions.h" #include "string.h" #include "stm32f0xx_hal.h" #if (BOARD_TYPE == 14) #include "fpx.h" #endif extern __IO uint32_t uwTick; //#include "Myprotocol.h" int TickFreq=10000; int CoreClkMHz; //=SystemCoreClock/1000000; int TickPriodClk; //=SystemCoreClock/TickFreq; unsigned int TickPrioduS; // volatile unsigned int nCurTick=0; volatile unsigned int CurTickuS=0; //volatile unsigned int ThisRunTime=0; //开机时间 //volatile unsigned int TotalRunTime=0; //总开机时间 //volatile unsigned int PwrCount=0; //开机次数 unsigned short ClkuS; //每个Clk的nS数, unsigned char SPI1RecvBuf[64]; unsigned char SPI1SendBuf[64]; volatile unsigned char bSPI1Recving=0; volatile unsigned char bSPI1RecvDone =0; volatile unsigned char nSPI1RecvPos =0; volatile unsigned char nSPI1RecvLenInBuf=0; volatile unsigned char nSPI1ToSendLen=0; volatile unsigned char nSPI1SentLen=0; volatile unsigned char bSPI1Sending=0; volatile unsigned char bSPI1SendDone=0; int InituS(int TickFreq1) { TickPrioduS=1000000/TickFreq1; //每个SysTick的微秒数 CoreClkMHz=HAL_RCC_GetHCLKFreq()/1000000; //=SystemCoreClock/1000000;每uS的时钟数 TickPriodClk=SystemCoreClock/TickFreq1; //每个SysTick的时钟数 ClkuS=(1000000LL*65536)/SystemCoreClock; CurTickuS=TickPrioduS+100u; return 0; } inline unsigned int GetuS(void) { // unsigned short Clk1=SysTick->VAL; int CurTickuS1=CurTickuS; int Val1=SysTick->VAL; if (CurTickuS1 != CurTickuS ) { CurTickuS1=CurTickuS; Val1=SysTick->VAL; } uint32_t us1=CurTickuS1-(((Val1)*1365)>>16); return us1; } inline unsigned int GetTick(void) { // unsigned short Clk1=SysTick->VAL; return nCurTick; } void logData(unsigned char d) { KMem.WDB[128+KMem.WDT[7]] = d; KMem.WDT[7]++; if (KMem.WDT[7]>=100) {KMem.WDT[7]=81;} } /* const unsigned short crc16_table[256] = { 0x0000, 0x1189, 0x2312, 0x329b, 0x4624, 0x57ad, 0x6536, 0x74bf, 0x8c48, 0x9dc1, 0xaf5a, 0xbed3, 0xca6c, 0xdbe5, 0xe97e, 0xf8f7, 0x1081, 0x0108, 0x3393, 0x221a, 0x56a5, 0x472c, 0x75b7, 0x643e, 0x9cc9, 0x8d40, 0xbfdb, 0xae52, 0xdaed, 0xcb64, 0xf9ff, 0xe876, 0x2102, 0x308b, 0x0210, 0x1399, 0x6726, 0x76af, 0x4434, 0x55bd, 0xad4a, 0xbcc3, 0x8e58, 0x9fd1, 0xeb6e, 0xfae7, 0xc87c, 0xd9f5, 0x3183, 0x200a, 0x1291, 0x0318, 0x77a7, 0x662e, 0x54b5, 0x453c, 0xbdcb, 0xac42, 0x9ed9, 0x8f50, 0xfbef, 0xea66, 0xd8fd, 0xc974, 0x4204, 0x538d, 0x6116, 0x709f, 0x0420, 0x15a9, 0x2732, 0x36bb, 0xce4c, 0xdfc5, 0xed5e, 0xfcd7, 0x8868, 0x99e1, 0xab7a, 0xbaf3, 0x5285, 0x430c, 0x7197, 0x601e, 0x14a1, 0x0528, 0x37b3, 0x263a, 0xdecd, 0xcf44, 0xfddf, 0xec56, 0x98e9, 0x8960, 0xbbfb, 0xaa72, 0x6306, 0x728f, 0x4014, 0x519d, 0x2522, 0x34ab, 0x0630, 0x17b9, 0xef4e, 0xfec7, 0xcc5c, 0xddd5, 0xa96a, 0xb8e3, 0x8a78, 0x9bf1, 0x7387, 0x620e, 0x5095, 0x411c, 0x35a3, 0x242a, 0x16b1, 0x0738, 0xffcf, 0xee46, 0xdcdd, 0xcd54, 0xb9eb, 0xa862, 0x9af9, 0x8b70, 0x8408, 0x9581, 0xa71a, 0xb693, 0xc22c, 0xd3a5, 0xe13e, 0xf0b7, 0x0840, 0x19c9, 0x2b52, 0x3adb, 0x4e64, 0x5fed, 0x6d76, 0x7cff, 0x9489, 0x8500, 0xb79b, 0xa612, 0xd2ad, 0xc324, 0xf1bf, 0xe036, 0x18c1, 0x0948, 0x3bd3, 0x2a5a, 0x5ee5, 0x4f6c, 0x7df7, 0x6c7e, 0xa50a, 0xb483, 0x8618, 0x9791, 0xe32e, 0xf2a7, 0xc03c, 0xd1b5, 0x2942, 0x38cb, 0x0a50, 0x1bd9, 0x6f66, 0x7eef, 0x4c74, 0x5dfd, 0xb58b, 0xa402, 0x9699, 0x8710, 0xf3af, 0xe226, 0xd0bd, 0xc134, 0x39c3, 0x284a, 0x1ad1, 0x0b58, 0x7fe7, 0x6e6e, 0x5cf5, 0x4d7c, 0xc60c, 0xd785, 0xe51e, 0xf497, 0x8028, 0x91a1, 0xa33a, 0xb2b3, 0x4a44, 0x5bcd, 0x6956, 0x78df, 0x0c60, 0x1de9, 0x2f72, 0x3efb, 0xd68d, 0xc704, 0xf59f, 0xe416, 0x90a9, 0x8120, 0xb3bb, 0xa232, 0x5ac5, 0x4b4c, 0x79d7, 0x685e, 0x1ce1, 0x0d68, 0x3ff3, 0x2e7a, 0xe70e, 0xf687, 0xc41c, 0xd595, 0xa12a, 0xb0a3, 0x8238, 0x93b1, 0x6b46, 0x7acf, 0x4854, 0x59dd, 0x2d62, 0x3ceb, 0x0e70, 0x1ff9, 0xf78f, 0xe606, 0xd49d, 0xc514, 0xb1ab, 0xa022, 0x92b9, 0x8330, 0x7bc7, 0x6a4e, 0x58d5, 0x495c, 0x3de3, 0x2c6a, 0x1ef1, 0x0f78 }; unsigned short crc_check(const unsigned char * data, unsigned int length) { unsigned short crc_reg = 0xFFFF; while (length--) { crc_reg = (crc_reg >> 8) ^ crc16_table[(crc_reg ^ *data++) & 0xff]; } return (~crc_reg) & 0xFFFF; } const uint16_t polynom = 0xA001; unsigned short crc16bitbybit(const unsigned char *ptr, unsigned int len) { uint8_t i; uint16_t crc = 0xffff; if (len == 0) { len = 1; } while (len--) { crc ^= *ptr; for (i = 0; i<8; i++) { if (crc & 1) { crc >>= 1; crc ^= polynom; } else { crc >>= 1; } } ptr++; } return(crc); } */ /* Table of CRC values for high-order byte */ const uint8_t crctablehi[] = { 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40 }; /* Table of CRC values for low-order byte */ const uint8_t crctablelo[] = { 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2, 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26, 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40 }; /* uint16_t crc16table(const uint8_t *ptr, uint16_t len) { uint8_t crchi = 0xff; uint8_t crclo = 0xff; uint16_t index; while (len--) { index = crclo ^ *ptr++; crclo = crchi ^ crctablehi[index]; crchi = crctablelo[index]; } return (crchi << 8 | crclo); } */ const uint16_t crctalbeabs[] = { 0x0000, 0xCC01, 0xD801, 0x1400, 0xF001, 0x3C00, 0x2800, 0xE401, 0xA001, 0x6C00, 0x7800, 0xB401, 0x5000, 0x9C01, 0x8801, 0x4400 }; uint16_t crc16tablefast(const uint8_t *ptr, uint16_t len) { uint16_t crc = 0xffff; uint16_t i; uint8_t ch; for (i = 0; i < len; i++) { ch = *ptr++; crc = crctalbeabs[(ch ^ crc) & 15] ^ (crc >> 4); crc = crctalbeabs[((ch >> 4) ^ crc) & 15] ^ (crc >> 4); } return crc; } /* void modbuscrc16test() { printf("\n"); printf(" Modbus CRC16 tester\n"); printf("-----------------------------------------------------------------------\n"); uint8_t crc16_data[] = { 0x01, 0x04, 0x04, 0x43, 0x6b, 0x58, 0x0e }; // expected crc value 0xD825. printf(" modbus crc16table test, expected value : 0xd825, calculate value : 0x%x\n", crc16table(crc16_data, sizeof(crc16_data))); // printf(" modbus crc16tablefast test, expected value : 0xd825, calculate value : 0x%x\n", crc16tablefast(crc16_data, sizeof(crc16_data))); printf(" modbus crc16bitbybit test, expected value : 0xd825, calculate value : 0x%x\n", crc16bitbybit(crc16_data, sizeof(crc16_data))); } */ int InitUartstat(stUartStat * pUartstat,void * pBufRx, int nSizeRx, void * pBufTx, int nSizeTx) { memset(pUartstat,sizeof(stUartStat),0); if (pBufRx) initQueue(&pUartstat->QRx,pBufRx,nSizeRx); if (pBufTx) initQueue(&pUartstat->QTx,pBufTx,nSizeTx); return 0; } int Uart1SendDMA(void * pData, int nSize) { LL_DMA_DisableChannel(DMA1,LL_DMA_CHANNEL_2); LL_DMA_ConfigAddresses(DMA1,LL_DMA_CHANNEL_2, (uint32_t)pData, (uint32_t)&USART1->TDR, LL_DMA_DIRECTION_MEMORY_TO_PERIPH); LL_DMA_SetDataLength(DMA1,LL_DMA_CHANNEL_2,nSize); LL_DMA_EnableChannel(DMA1,LL_DMA_CHANNEL_2); Uart1Stat.DMASendLen=nSize; Uart1Stat.bSending=1; LL_DMA_EnableIT_TC(DMA1,LL_DMA_CHANNEL_2); LL_USART_EnableDMAReq_TX(USART1); return nSize; } int Uart1TriggerSendDMA() { if (!Uart1Stat.bSending&&!IsEmpty(&Uart1Stat.QTx)) { int len1=GetContinueData(&Uart1Stat.QTx); Uart1SendDMA(GetReadBuffer(&Uart1Stat.QTx),len1); } return 0; } void Uart2SetDE(void) { LL_GPIO_ResetOutputPin(GPIOA,LL_GPIO_PIN_1); } void Uart2UnsetDE(void) { LL_GPIO_SetOutputPin(GPIOA,LL_GPIO_PIN_1); } void DelayUs(int nUs) { for (int i=0;iRDR, (uint32_t)pBuf, LL_DMA_DIRECTION_PERIPH_TO_MEMORY); LL_DMA_SetDataLength(DMA1,LL_DMA_CHANNEL_5,nSize); LL_DMA_EnableChannel(DMA1,LL_DMA_CHANNEL_5); Uart2Stat.DMARecvLen=nSize; Uart2Stat.bRecving=1; LL_DMA_EnableIT_TC(DMA1,LL_DMA_CHANNEL_5); LL_USART_EnableDMAReq_RX(USART2); return 0; } int Uart2SendDMA(void * pData, int nSize) { #if (USART2_USE_HARDWARE_DE == 1) #else Uart2SetDE(); DelayUs(USART2_DE_ASSERTION_TIME); #endif LL_DMA_DisableChannel(DMA1,LL_DMA_CHANNEL_4); LL_DMA_ConfigAddresses(DMA1,LL_DMA_CHANNEL_4, (uint32_t)pData, (uint32_t)&USART2->TDR, LL_DMA_DIRECTION_MEMORY_TO_PERIPH); LL_DMA_SetDataLength(DMA1,LL_DMA_CHANNEL_4,nSize); LL_DMA_EnableChannel(DMA1,LL_DMA_CHANNEL_4); Uart2Stat.DMASendLen=nSize; Uart2Stat.bSending=1; LL_DMA_EnableIT_TC(DMA1,LL_DMA_CHANNEL_4); LL_USART_EnableDMAReq_TX(USART2); return nSize; } int Uart2TriggerSendDMA() { if (!Uart2Stat.bSending&&!IsEmpty(&Uart2Stat.QTx)) { int len1=GetContinueData(&Uart2Stat.QTx); Uart2SendDMA(GetReadBuffer(&Uart2Stat.QTx),len1); } return 0; } void TriggerPendSV() { SCB->ICSR=SCB_ICSR_PENDSVSET_Msk; //1<= nSPI1ToSendLen) { SetACKPin_1(); bSPI1Sending=0; bSPI1SendDone=1; bSPI1Recving=1; nSPI1RecvPos=0; SetFPxDEPin_0(); } else { value = SPI1SendBuf[nSPI1SentLen]; LL_SPI_TransmitData8(SPI1,value); logData(value); } } #else UNUSED(value); #endif } } void Uart1SendDone() { Uart1Stat.TcCount++; return; } void Uart1RecvDone() { Uart1Stat.IdelCount++; // NVIC_SetPendingIRQ(PendSV_IRQn); // SCB->ICSR=SCB_ICSR_PENDSVSET_Msk; //1<0) { Uart1Stat.bPacketRecved=1; // SCB->ICSR=SCB_ICSR_PENDSVSET_Msk; //1<0) TriggerPendSV(); // ParsePacket((pKBPacket)Uart2RecvBuf1,Uart2RecvBuf1DataLen); } int PutStr(char * str1, int len1) { // Uart1SendDMA(str1,len1); PushIn(&Uart1Stat.QTx,str1,len1); // LL_USART_EnableIT_TXE(USART1); // LL_USART_EnableIT_TC(USART1); Uart1TriggerSendDMA(); return len1; } int PutStr1(char * str1, int len1) { // Uart1SendDMA(str1,len1); PushIn(&Uart1Stat.QTx,str1,len1); // LL_USART_EnableIT_TXE(USART1); // LL_USART_EnableIT_TC(USART1); Uart1TriggerSendDMA(); Uart1Stat.SentPacket++; return len1; } int PutStr2(char * str1, int len1) { Uart2SendDMA(str1,len1); // PushIn(&Uart2Stat.QTx,str1,len1); // LL_USART_EnableIT_TXE(USART1); // LL_USART_EnableIT_TC(USART1); // Uart2TriggerSendDMA(); Uart2Stat.SentPacket++; return len1; } int SendPacket(int nChn, void * pBuf,int len1) { if (nChn==1) { Uart1SendDMA(pBuf, len1); // PutStr1((char *)pBuf,len1); // PushIn(&Uart1Stat.QTx,p1,len1); // Uart1TriggerSendDMA(); }else if (nChn==2){ PutStr2((char *)pBuf,len1); // PushIn(&Uart2Stat.QTx,p1,len1); // Uart2TriggerSendDMA(); } return len1; } /* int SendPacket1(void * pBuf,int len1) { PutStr1((char *)pBuf,len1); // PushIn(&Uart1Stat.QTx,p1,len1); // Uart1TriggerSendDMA(); Uart1Stat.SentPacket++; return len1; } int SendPacket2(pKBPacket p1,int len1) { PutStr2((char *)p1,len1); // PushIn(&Uart2Stat.QTx,p1,len1); // Uart2TriggerSendDMA(); Uart2Stat.SentPacket++; return len1; } */ void ToggleRunLed() { LL_GPIO_TogglePin(GPIOC,LL_GPIO_PIN_13);} void ToggleErrLed() { LL_GPIO_TogglePin(GPIOC,LL_GPIO_PIN_14);} void ToggleErr2Led() { LL_GPIO_TogglePin(GPIOC,LL_GPIO_PIN_15);} #if (BOARD_TYPE == 14) void ToggleOutStat() { LL_GPIO_TogglePin(GPIOC,LL_GPIO_PIN_15);} void SetOutStat(uchar bOn) { if (bOn) {LL_GPIO_SetOutputPin(GPIOC,LL_GPIO_PIN_15);} else {LL_GPIO_ResetOutputPin(GPIOC,LL_GPIO_PIN_15);} } #else void ToggleOutStat() { } //LL_GPIO_TogglePin(GPIOA,LL_GPIO_PIN_11);} void SetOutStat(uchar bOn) { // if (bOn) {LL_GPIO_SetOutputPin(GPIOA,LL_GPIO_PIN_11);} // else {LL_GPIO_ResetOutputPin(GPIOA,LL_GPIO_PIN_11);} } #endif void SetRunLed(uchar bOn) { if (bOn) {LL_GPIO_ResetOutputPin(GPIOC,LL_GPIO_PIN_13);} else {LL_GPIO_SetOutputPin(GPIOC,LL_GPIO_PIN_13);} } void SetErrLed(uchar bOn) { if (bOn) {LL_GPIO_ResetOutputPin(GPIOC,LL_GPIO_PIN_14);} else {LL_GPIO_SetOutputPin(GPIOC,LL_GPIO_PIN_14);} } void SetErr2Led(uchar bOn) { if (bOn) {LL_GPIO_ResetOutputPin(GPIOC,LL_GPIO_PIN_15);} else {LL_GPIO_SetOutputPin(GPIOC,LL_GPIO_PIN_15);} } /* void SetLeds(uchar bRun, uchar bErr) { SetRunLed(bRun); SetErrLed (bErr); } */ #define set165SL_0() LL_GPIO_ResetOutputPin(GPIOA,LL_GPIO_PIN_4) #define set165SL_1() LL_GPIO_SetOutputPin(GPIOA,LL_GPIO_PIN_4) #define set165CLK_0() LL_GPIO_ResetOutputPin(GPIOA,LL_GPIO_PIN_5) #define set165CLK_1() LL_GPIO_SetOutputPin(GPIOA,LL_GPIO_PIN_5) #define Get165SER() LL_GPIO_IsInputPinSet(GPIOA,LL_GPIO_PIN_6) #define GetCfg165SER() LL_GPIO_IsInputPinSet(GPIOA,LL_GPIO_PIN_7) unsigned int Input165_8() { int x1=0; __disable_irq(); set165SL_0(); set165SL_1(); unsigned int mask1=0x0080; volatile uint32_t * p1=&GPIOA->IDR; for (uint32_t i=8;i;i--) { //if (Get165SER()) {} //else x1|=mask1; if (*p1&LL_GPIO_PIN_6) {} else x1|=mask1; //x1<<=1; //x1|=!Get165SER(); set165CLK_0(); mask1>>=1; set165CLK_1(); } __enable_irq(); return x1; } unsigned int Input165(int nBit) { int x1=0; __disable_irq(); set165SL_0(); set165SL_1(); unsigned int mask1=1<<(nBit-1); volatile uint32_t * p1=&GPIOA->IDR; for (uint32_t i=nBit;i;i--) { //if (Get165SER()) {} //else x1|=mask1; if (*p1&LL_GPIO_PIN_6) {} else x1|=mask1; //x1<<=1; //x1|=!Get165SER(); set165CLK_0(); mask1>>=1; set165CLK_1(); } __enable_irq(); return x1; } unsigned int Input165_R(int nBit) { __disable_irq(); set165SL_0(); set165SL_1(); int nBytes = nBit /8; volatile uint32_t * p1=&GPIOA->IDR; union stdata { int intvalue; unsigned char Bytes[4]; }rdata; rdata.intvalue=0; for (int i=0;i>=1; set165CLK_1(); } rdata.Bytes[i]=x1; } __enable_irq(); return rdata.intvalue; } unsigned int Input165Cfg(int nBit) { int x1=0; __disable_irq(); set165SL_0(); set165SL_1(); unsigned int mask1=1<<(nBit-1); volatile uint32_t * p1=&GPIOA->IDR; for (uint32_t i=nBit;i;i--) { //if (Get165SER()) {} //else x1|=mask1; if (*p1&LL_GPIO_PIN_7) {} else x1|=mask1; //x1<<=1; //x1|=!Get165SER(); set165CLK_0(); mask1>>=1; set165CLK_1(); } __enable_irq(); return x1; } unsigned int GetInput() { int BoradType=GetBoardType(); switch (BoradType) { case 1: return Input165(8); case 2: return Input165(8); case 3: return Input165(16); case 4: return Input165(8); case 5: case 7: return Input165(16); case 6: case 8: return Input165(8); case 9: return Input165_R(16); case 10: return Input165_R(8); case 11: return Input165_R(8); case 13: return Input165_R(16); case 14: return 0; //FPx case 15: return Input165_R(16); case 16: return Input165_R(8); default: break; } return 0; } int ReadConfig_0() { return 0; } int ReadConfig_1() { // uchar x = LL_GPIO_ReadInputPort(GPIOB); // uchar x1 = LL_GPIO_IsInputPinSet(GPIOB,LL_GPIO_PIN_10); // uchar x2=(x&0x7) | (x1 << 3 ) ; uchar x2=0; x2=(GPIOB->IDR&0x7) | ((GPIOB->IDR &0x400)>>7); x2= (~x2)&0xf; return x2; } int ReadConfig_2() { uchar x2=0; x2=(GPIOB->IDR&0x7) | ((GPIOB->IDR &0x400)>>7); x2= (~x2)&0xf; return x2; } int ReadConfig_3() { uchar x2=0; x2 = Input165(24)&0xff; return x2; } int ReadConfig_4() { uchar x2=0; x2 = Input165(16)&0xff; return x2; } int ReadConfig_5() { uchar x2=0; x2 = Input165Cfg(8)&0xff; return x2; } int ReadConfig_11() { uchar x2=0; x2=((GPIOB->IDR&0x2)<<2); x2= ((~x2)&0x8)|1; return x2; } int ReadJumperSW() { int BoradType=GetBoardType(); switch (BoradType) { case 0: return ReadConfig_0(); case 1: return ReadConfig_1(); //old board 4 in 4 o case 2: return ReadConfig_2(); //old board 8 in 8 o case 3: return ReadConfig_3(); //Master 16 in16 o case 4: return ReadConfig_4(); //Slave 8 in 8 o case 5: case 7: return ReadConfig_5(); // New Master 16 in16 o case 6: case 8: return ReadConfig_5(); //New Slave 8 in 8 o case 9: case 10: return ReadConfig_5(); //New Master Slave 8 in 8 o case 11: return ReadConfig_11(); //Mini Board case 13: return ReadConfig_5(); case 14: return (~(LL_GPIO_ReadInputPort(GPIOA)>>4))&0x0f; //FPx case 15: case 16: return ReadConfig_5(); //Wireless Master Slave 8 in 8 o default: return 0; } } #define SRCLK2_0() LL_GPIO_ResetOutputPin(GPIOB,LL_GPIO_PIN_13) #define SRCLK2_1() LL_GPIO_SetOutputPin(GPIOB,LL_GPIO_PIN_13) #define STRCLK2_0() LL_GPIO_ResetOutputPin(GPIOB,LL_GPIO_PIN_12) #define STRCLK2_1() LL_GPIO_SetOutputPin(GPIOB,LL_GPIO_PIN_12) #define SER2_0() LL_GPIO_ResetOutputPin(GPIOB,LL_GPIO_PIN_15) #define SER2_1() LL_GPIO_SetOutputPin(GPIOB,LL_GPIO_PIN_15) void Enable595(uchar bEnable) { if (bEnable) {LL_GPIO_ResetOutputPin(GPIOA,LL_GPIO_PIN_8);} else {LL_GPIO_SetOutputPin(GPIOA,LL_GPIO_PIN_8);} } void Output595_8(unsigned int cc) { //unsigned char i; ;// 74HC595输出程序,输出8位 // cc=~0x3f; __disable_irq(); STRCLK2_1(); unsigned int mask1=0x0080; //volatile uint32_t * p1 = &GPIOB->BRR; //volatile uint32_t * p2 = &GPIOB->BSRR; for (;mask1;) { SRCLK2_0(); //*p1=LL_GPIO_PIN_13; if (cc&mask1) {SER2_1();} else {SER2_0();} mask1>>=1; SRCLK2_1(); // __nop(); //*p2=LL_GPIO_PIN_13; } STRCLK2_0(); STRCLK2_1(); __enable_irq(); } void Output595_16(unsigned int cc) { //unsigned char i; ;// 74HC595输出程序,输出16位 // cc=~0x3f; __disable_irq(); STRCLK2_1(); unsigned int mask1=0x8000; //volatile uint32_t * p1 = &GPIOB->BRR; //volatile uint32_t * p2 = &GPIOB->BSRR; for (;mask1;) { SRCLK2_0(); //*p1=LL_GPIO_PIN_13; if (cc&mask1) {SER2_1();} else {SER2_0();} mask1>>=1; SRCLK2_1(); // __nop(); //*p2=LL_GPIO_PIN_13; } STRCLK2_0(); STRCLK2_1(); __enable_irq(); } /* #define STRCLK12_0() LL_GPIO_ResetOutputPin(GPIOB,LL_GPIO_PIN_7) #define STRCLK12_1() LL_GPIO_SetOutputPin(GPIOB,LL_GPIO_PIN_7) void PutOutputSPI1(unsigned int Y) { __disable_irq(); STRCLK12_1(); LL_SPI_TransmitData8(SPI1,Y>>8); int i=0; while (LL_SPI_IsActiveFlag_TXE(SPI1) == RESET) { } KMem.SDD[28]=i; i=0; while (LL_SPI_IsActiveFlag_BSY(SPI1) == SET) { i++; } LL_SPI_TransmitData8(SPI1,Y); while (LL_SPI_IsActiveFlag_TXE(SPI1) == RESET) { } KMem.SDD[28]=i; i=0; while (LL_SPI_IsActiveFlag_BSY(SPI1) == SET) { i++; } KMem.SDD[30]=i; STRCLK12_0(); __nop(); STRCLK12_1(); __enable_irq(); } */ void PutOutputSPI2(unsigned int Y) { __disable_irq(); STRCLK2_1(); LL_SPI_TransmitData8(SPI2,Y>>8); while (LL_SPI_IsActiveFlag_TXE(SPI2) == RESET) { } while (LL_SPI_IsActiveFlag_BSY(SPI2) == SET) { } LL_SPI_TransmitData8(SPI2,Y); while (LL_SPI_IsActiveFlag_TXE(SPI2) == RESET) { } while (LL_SPI_IsActiveFlag_BSY(SPI2) == SET) { } STRCLK2_0(); STRCLK2_1(); __enable_irq(); } void PutOutput(unsigned int Y) { #if (BOARD_TYPE == 14) return ; #else PutOutputSPI2(Y); //Output595_16(Y); #endif } #if (BOARD_TYPE == 9 || BOARD_TYPE == 10 || BOARD_TYPE == 15 || BOARD_TYPE == 16) //#pragma message("9,10") // V4.2 管脚排列向右移动了一位。 #define SRCLK1_0() LL_GPIO_ResetOutputPin(GPIOB,LL_GPIO_PIN_1) #define SRCLK1_1() LL_GPIO_SetOutputPin(GPIOB,LL_GPIO_PIN_1) #define STRCLK1_0() LL_GPIO_ResetOutputPin(GPIOB,LL_GPIO_PIN_2) #define STRCLK1_1() LL_GPIO_SetOutputPin(GPIOB,LL_GPIO_PIN_2) #define OE1_0() LL_GPIO_ResetOutputPin(GPIOB,LL_GPIO_PIN_10) #define OE1_1() LL_GPIO_SetOutputPin(GPIOB,LL_GPIO_PIN_10) #define SER1_0() LL_GPIO_ResetOutputPin(GPIOB,LL_GPIO_PIN_11) #define SER1_1() LL_GPIO_SetOutputPin(GPIOB,LL_GPIO_PIN_11) #else //按照原来的管脚排列 #define SRCLK1_0() LL_GPIO_ResetOutputPin(GPIOB,LL_GPIO_PIN_0) #define SRCLK1_1() LL_GPIO_SetOutputPin(GPIOB,LL_GPIO_PIN_0) #define STRCLK1_0() LL_GPIO_ResetOutputPin(GPIOB,LL_GPIO_PIN_1) #define STRCLK1_1() LL_GPIO_SetOutputPin(GPIOB,LL_GPIO_PIN_1) #define OE1_0() LL_GPIO_ResetOutputPin(GPIOB,LL_GPIO_PIN_2) #define OE1_1() LL_GPIO_SetOutputPin(GPIOB,LL_GPIO_PIN_2) #define SER1_0() LL_GPIO_ResetOutputPin(GPIOB,LL_GPIO_PIN_10) #define SER1_1() LL_GPIO_SetOutputPin(GPIOB,LL_GPIO_PIN_10) #endif void EnableDisIn(uchar bEnable) { if (bEnable) {OE1_0();} else {OE1_1();} } void displayInput(unsigned int cc) { //unsigned char i; ;// 74HC595输出程序,输出8位 // cc=~0x3f; __disable_irq(); STRCLK1_1(); unsigned int mask1=0x8000; //volatile uint32_t * p1 = &GPIOB->BRR; //volatile uint32_t * p2 = &GPIOB->BSRR;````` for (;mask1;) { SRCLK1_0(); //*p1=LL_GPIO_PIN_13; if (cc&mask1) {SER1_1();} else {SER1_0();} mask1>>=1; SRCLK1_1(); // __nop(); //*p2=LL_GPIO_PIN_13; } STRCLK1_0(); STRCLK1_1(); __enable_irq(); } #define W25X_WriteEnable 0x06 #define W25X_WriteDisable 0x04 #define W25X_ReadStatusReg 0x05 #define W25X_ReadStatusReg2 0x35 #define W25X_WriteStatusReg 0x01 #define W25X_ReadData 0x03 #define W25X_FastReadData 0x0B #define W25X_FastReadDual 0x3B #define W25X_PageProgram 0x02 #define W25X_BlockErase 0xD8 #define W25X_SectorErase 0x20 #define W25X_ChipErase 0xC7 #define W25X_PowerDown 0xB9 #define W25X_ReleasePowerDown 0xAB #define W25X_DeviceID 0xAB #define W25X_ManufactDeviceID 0x90 #define W25X_JedecDeviceID 0x9F #define W25X_ReadUniqueID 0x4B //W25X??/Q?????? //W25Q80 ID 0XEF13 //W25Q16 ID 0XEF14 //W25Q32 ID 0XEF15 //W25Q32 ID 0XEF16 #define W25Q80 0XEF13 #define W25Q16 0XEF14 #define W25Q32 0XEF15 #define W25Q64 0XEF16 #define W25Q128 0xEF17 //????? #define SPI1_FLASH_CS PAout[15] //??FLASH,???????PB12? #define SPI1_CS_EN LL_GPIO_ResetOutputPin(GPIOA,LL_GPIO_PIN_15) #define SPI1_CS_NA LL_GPIO_SetOutputPin(GPIOA,LL_GPIO_PIN_15) uint8_t SPI_Tranceive8(SPI_TypeDef * SPIx, uint8_t Y) { int i=0; while (LL_SPI_IsActiveFlag_TXE(SPIx) == RESET){ DelayUs(1);i++; if (i>3200) break; } LL_SPI_TransmitData8(SPIx,Y); i=0; while (LL_SPI_IsActiveFlag_BSY(SPIx) == SET) { DelayUs(1);i++; if (i>3200) break;} i=0; while (LL_SPI_IsActiveFlag_RXNE(SPIx) == RESET) { DelayUs(1);i++; if (i>3200) break;} Y = LL_SPI_ReceiveData8(SPIx); return Y; } uint8_t SPI_Transmit(SPI_TypeDef * SPIx, uint8_t * tData, uint8_t nLen, uint8_t timeout) { int nToSend=nLen; while(nLen > 0) { if (LL_SPI_IsActiveFlag_TXE(SPI1) && nToSend>0) { LL_SPI_TransmitData8(SPI1,*tData++); nToSend--; } if (LL_SPI_IsActiveFlag_RXNE(SPI1)) { LL_SPI_ReceiveData8(SPI1); nLen--; } } return 0; for (int i=0;iSR); int j=0; while ((* pSR & SPI_SR_TXE) == RESET){ } LL_SPI_TransmitData8(SPIx,tData[i]); j=0; // while (LL_SPI_IsActiveFlag_BSY(SPIx) == SET) { DelayUs(1);j++; if (j>3200) break;} // i=0; while (LL_SPI_IsActiveFlag_RXNE(SPIx) == RESET) { } rData[i] = LL_SPI_ReceiveData8(SPIx); } return 0; } uint8_t SPI1_Tranceive(uint8_t * tData, uint8_t * rData, uint8_t nLen) { register int nToSend=nLen; // /* __IO uint32_t * pSR = &(SPI1->SR); __IO uint8_t * pDR = (__IO uint8_t *)&(SPI1->DR); __disable_irq(); while(nLen >0) { if (*pSR & SPI_SR_TXE && nToSend>0) { LL_SPI_TransmitData8(SPI1,*tData++); nToSend--; } if (*pSR & SPI_SR_RXNE) { *rData++ = * pDR; nLen--; // if (nLen == 0) break; } } // */ /* while(nLen > 0) { if (LL_SPI_IsActiveFlag_TXE(SPI1) && nToSend>0) { LL_SPI_TransmitData8(SPI1,*tData++); nToSend--; } if (LL_SPI_IsActiveFlag_RXNE(SPI1)) { *rData++ = LL_SPI_ReceiveData8(SPI1); nLen--; // if (nLen == 0) break; } } // */ __enable_irq(); return nLen; } uint8_t SPI1_Flash_ReadSR(void) { uint8_t Data1[2]= {W25X_ReadStatusReg,0x00}; uint8_t Rxdata[2]; uint8_t byte=0; SPI1_CS_EN; SPI1_Tranceive(Data1,Rxdata,2); SPI1_CS_NA; byte=Rxdata[1]; return byte; } void SPI_Flash_Wait_Busy(void) { while((SPI1_Flash_ReadSR()&0x01)==0x01); // ??BUSY??? } void SPI_FLASH_Write_SR(uint8_t sr) { uint8_t Data1[2]= {W25X_ReadStatusReg,0x00}; Data1[1]=sr; SPI1_CS_EN; SPI_Transmit(SPI1, Data1, 2,100); SPI1_CS_NA; } uint16_t SPI_Flash_ReadID(void) { uint16_t Temp = 0; uint8_t Data1[6] = {W25X_ManufactDeviceID,0x00,0x00,0x00,0x00,0x00}; uint8_t Data2[6]= {0x00,0x00}; // uint8_t Rxdata[2]; SPI1_CS_EN; //SPI_Transmit(SPI1, Data1,4,100); // SPI_TransmitReceive(SPI1,Data1,Data2,6,100); SPI1_Tranceive(Data1,Data2,6); SPI1_CS_NA; Temp=(Data2[4]<<8)|Data2[5]; return Temp; } uint64_t SPI_Flash_ReadUID(uint8_t * Uid) { union { uint64_t Temp; uint32_t temp2[2]; uint8_t Rxdata[8]; }uids; uint8_t Data1[5] = {W25X_ReadUniqueID,0x00,0x00,0x00,0x00}; uint8_t Data2[8]= {0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00}; SPI1_CS_EN; SPI_Transmit(SPI1, Data1,5,100); SPI_TransmitReceive(SPI1, Data2,uids.Rxdata,8,100); SPI1_CS_NA; memcpy(Uid,uids.Rxdata,8); uint32_t t1 = __rev(uids.temp2[0]); uids.temp2[0]= __rev(uids.temp2[1]); uids.temp2[1]=t1; return uids.Temp; } void SPI_FLASH_Write_Enable(void) { uint8_t Txdata[2]={W25X_WriteEnable}; SPI1_CS_EN; SPI1_Tranceive(Txdata,Txdata,1); SPI1_CS_NA; } void SPI_FLASH_Write_Disable(void) { uint8_t Txdata[2]={W25X_WriteDisable}; SPI1_CS_EN; SPI_Transmit(SPI1, Txdata,1,100); SPI1_CS_NA; } void W25QXX_Erase_Sector(uint32_t Dst_Addr) { //??falsh????,??? Dst_Addr*=4096; uint8_t Data1[4] = {W25X_SectorErase,0x00,0x00,0x00}; Data1[1]=Dst_Addr>>16; Data1[2]=Dst_Addr>>8; Data1[3]=Dst_Addr; SPI_FLASH_Write_Enable(); //SET WEL ,??? SPI_Flash_Wait_Busy(); SPI1_CS_EN; SPI1_Tranceive(Data1,Data1,4); SPI1_CS_NA; SPI_Flash_Wait_Busy(); //?????? } void W25QXX_Read(uint8_t* pBuffer,uint32_t ReadAddr,uint16_t NumByteToRead) { uint16_t i; uint8_t Data1[4] = {W25X_ReadData,0x00,0x00,0x00}; // uint8_t Data2[16]= {0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff}; Data1[1]=ReadAddr>>16; Data1[2]=ReadAddr>>8; Data1[3]=ReadAddr; SPI1_CS_EN; SPI_Transmit(SPI1, Data1,4,100); // HAL_SPI_TransmitReceive(&hspi1,pBuffer,pBuffer,NumByteToRead,10); // HAL_SPI_TransmitReceive_DMA(&hspi1,pBuffer,pBuffer,NumByteToRead); SPI1_Tranceive(pBuffer,pBuffer,NumByteToRead); /* for(i=0;i>16; Data1[2]=WriteAddr>>8; Data1[3]=WriteAddr; SPI_FLASH_Write_Enable(); //SET WEL ,??? SPI_Flash_Wait_Busy(); SPI1_CS_EN; SPI_Transmit(SPI1, Data1,4,100); SPI_Transmit(SPI1, pBuffer,NumByteToWrite,100); SPI1_CS_NA; SPI_Flash_Wait_Busy(); //?????? } /* int flash_func(int argc, char * argv[]) { char str1[128]; int len1; uint8_t databuf[4096]; if (argc<=1) { len1=sprintf(str1," id uid sr en dis read speed er write write2\r\n");fputstr(str1,len1,0); }else if (argc>=2) { if (strcmp(argv[1],"id")==0) { uint16_t flashid; flashid=SPI_Flash_ReadID(); len1=sprintf(str1,"Readid %4X \r\n",flashid); fputstr(str1,len1,0); } else if (strcmp(argv[1],"sr")==0) { uint8_t flashsr; flashsr=SPI_Flash_ReadSR(); len1=sprintf(str1,"Readsr %2X \r\n",flashsr); fputstr(str1,len1,0); } else if (strcmp(argv[1],"uid")==0) { uint8_t Uid[8]; uint64_t uid; uid=SPI_Flash_ReadUID(Uid); len1=sprintf(str1,"Uid %016llX %02X%02X%02X%02X%02X%02X%02X%02X \r\n",uid,Uid[0],Uid[1],Uid[2],Uid[3],Uid[4],Uid[5],Uid[6],Uid[7]); fputstr(str1,len1,0); } else if (strcmp(argv[1],"en")==0) { SPI_FLASH_Write_Enable(); len1=sprintf(str1,"Write Enable \r\n"); fputstr(str1,len1,0); } else if (strcmp(argv[1],"dis")==0) { SPI_FLASH_Write_Disable(); len1=sprintf(str1,"Write Disable \r\n"); fputstr(str1,len1,0); }else if (strcmp(argv[1],"read")==0) { len1=0; uint32_t addr=0; if (argc>=3) addr=atoi(argv[2]); uint16_t datalens=256; len1=sprintf(str1,"Read Flash %08X for %d bytes \r\n",addr,datalens); fputstr(str1,len1,0); W25QXX_Read(databuf,addr,datalens); for (int i=0;i<16;i++) { len1=sprintf(str1,"%2X: ",i); for (int j=0;j<16;j++) { len1+=sprintf(str1+len1," %2X",databuf[i*16+j]); } len1+=sprintf(str1+len1,"\r\n"); fputstr(str1,len1,0); } }else if (strcmp(argv[1],"speed")==0) { len1=0; uint32_t addr=0; if (argc>=3) addr=atoi(argv[2]); uint16_t datalens=4096; int times=1000; len1=sprintf(str1,"Read Flash speed test for %d bytes %d times\r\n",datalens,times); fputstr(str1,len1,0); int time1=HAL_GetTick(); for (int i=0;i=3) addr=atoi(argv[2]); W25QXX_Erase_Sector(addr); len1=sprintf(str1," erase %d\r\n",addr); fputstr(str1,len1,0); } else if (strcmp(argv[1],"write")==0) { uint32_t addr=0; if (argc>=3) addr=atoi(argv[2]); uint16_t datalens=256; uint8_t value; if (argc>=4) { value=atoi(argv[3]); for(int i=0;i<256;i++) {databuf[i]=value;} }else for(int i=0;i<256;i++) {databuf[i]=i;} W25QXX_Write_Page(databuf,addr,datalens); len1=sprintf(str1," write %06X for %d bytes\r\n",addr,datalens); fputstr(str1,len1,0); } else if (strcmp(argv[1],"write2")==0) { uint32_t addr=0; if (argc>=3) addr=atoi(argv[2]); uint16_t datalens=256; for(int i=0;i<256;i++) {databuf[i]=0;} W25QXX_Write_Page(databuf,addr,datalens); len1=sprintf(str1," write %06X for %d bytes\r\n",addr,datalens); fputstr(str1,len1,0); } else { len1=sprintf(str1,"unknown %s \r\n",argv[1]); fputstr(str1,len1,0); } } return 0; } */