/* ----------------------------------------------------------------------
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
*
* $Date: 19. March 2015
* $Revision: V.1.4.5
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_dot_prod_q31.c
*
* Description: Q31 complex dot product
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @addtogroup cmplx_dot_prod
* @{
*/
/**
* @brief Q31 complex dot product
* @param *pSrcA points to the first input vector
* @param *pSrcB points to the second input vector
* @param numSamples number of complex samples in each vector
* @param *realResult real part of the result returned here
* @param *imagResult imaginary part of the result returned here
* @return none.
*
* Scaling and Overflow Behavior:
* \par
* The function is implemented using an internal 64-bit accumulator.
* The intermediate 1.31 by 1.31 multiplications are performed with 64-bit precision and then shifted to 16.48 format.
* The internal real and imaginary accumulators are in 16.48 format and provide 15 guard bits.
* Additions are nonsaturating and no overflow will occur as long as numSamples
is less than 32768.
* The return results realResult
and imagResult
are in 16.48 format.
* Input down scaling is not required.
*/
void arm_cmplx_dot_prod_q31(
q31_t * pSrcA,
q31_t * pSrcB,
uint32_t numSamples,
q63_t * realResult,
q63_t * imagResult)
{
q63_t real_sum = 0, imag_sum = 0; /* Temporary result storage */
q31_t a0,b0,c0,d0;
#ifndef ARM_MATH_CM0_FAMILY
/* Run the below code for Cortex-M4 and Cortex-M3 */
uint32_t blkCnt; /* loop counter */
/*loop Unrolling */
blkCnt = numSamples >> 2u;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(blkCnt > 0u)
{
a0 = *pSrcA++;
b0 = *pSrcA++;
c0 = *pSrcB++;
d0 = *pSrcB++;
real_sum += ((q63_t)a0 * c0) >> 14;
imag_sum += ((q63_t)a0 * d0) >> 14;
real_sum -= ((q63_t)b0 * d0) >> 14;
imag_sum += ((q63_t)b0 * c0) >> 14;
a0 = *pSrcA++;
b0 = *pSrcA++;
c0 = *pSrcB++;
d0 = *pSrcB++;
real_sum += ((q63_t)a0 * c0) >> 14;
imag_sum += ((q63_t)a0 * d0) >> 14;
real_sum -= ((q63_t)b0 * d0) >> 14;
imag_sum += ((q63_t)b0 * c0) >> 14;
a0 = *pSrcA++;
b0 = *pSrcA++;
c0 = *pSrcB++;
d0 = *pSrcB++;
real_sum += ((q63_t)a0 * c0) >> 14;
imag_sum += ((q63_t)a0 * d0) >> 14;
real_sum -= ((q63_t)b0 * d0) >> 14;
imag_sum += ((q63_t)b0 * c0) >> 14;
a0 = *pSrcA++;
b0 = *pSrcA++;
c0 = *pSrcB++;
d0 = *pSrcB++;
real_sum += ((q63_t)a0 * c0) >> 14;
imag_sum += ((q63_t)a0 * d0) >> 14;
real_sum -= ((q63_t)b0 * d0) >> 14;
imag_sum += ((q63_t)b0 * c0) >> 14;
/* Decrement the loop counter */
blkCnt--;
}
/* If the numSamples is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
blkCnt = numSamples % 0x4u;
while(blkCnt > 0u)
{
a0 = *pSrcA++;
b0 = *pSrcA++;
c0 = *pSrcB++;
d0 = *pSrcB++;
real_sum += ((q63_t)a0 * c0) >> 14;
imag_sum += ((q63_t)a0 * d0) >> 14;
real_sum -= ((q63_t)b0 * d0) >> 14;
imag_sum += ((q63_t)b0 * c0) >> 14;
/* Decrement the loop counter */
blkCnt--;
}
#else
/* Run the below code for Cortex-M0 */
while(numSamples > 0u)
{
a0 = *pSrcA++;
b0 = *pSrcA++;
c0 = *pSrcB++;
d0 = *pSrcB++;
real_sum += ((q63_t)a0 * c0) >> 14;
imag_sum += ((q63_t)a0 * d0) >> 14;
real_sum -= ((q63_t)b0 * d0) >> 14;
imag_sum += ((q63_t)b0 * c0) >> 14;
/* Decrement the loop counter */
numSamples--;
}
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
/* Store the real and imaginary results in 16.48 format */
*realResult = real_sum;
*imagResult = imag_sum;
}
/**
* @} end of cmplx_dot_prod group
*/