/* ----------------------------------------------------------------------
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
*
* $Date: 19. March 2015
* $Revision: V.1.4.5
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_dot_prod_f32.c
*
* Description: Floating-point complex dot product
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupCmplxMath
*/
/**
* @defgroup cmplx_dot_prod Complex Dot Product
*
* Computes the dot product of two complex vectors.
* The vectors are multiplied element-by-element and then summed.
*
* The pSrcA
points to the first complex input vector and
* pSrcB
points to the second complex input vector.
* numSamples
specifies the number of complex samples
* and the data in each array is stored in an interleaved fashion
* (real, imag, real, imag, ...).
* Each array has a total of 2*numSamples
values.
*
* The underlying algorithm is used:
*
* realResult=0; * imagResult=0; * for(n=0; n* * There are separate functions for floating-point, Q15, and Q31 data types. */ /** * @addtogroup cmplx_dot_prod * @{ */ /** * @brief Floating-point complex dot product * @param *pSrcA points to the first input vector * @param *pSrcB points to the second input vector * @param numSamples number of complex samples in each vector * @param *realResult real part of the result returned here * @param *imagResult imaginary part of the result returned here * @return none. */ void arm_cmplx_dot_prod_f32( float32_t * pSrcA, float32_t * pSrcB, uint32_t numSamples, float32_t * realResult, float32_t * imagResult) { float32_t real_sum = 0.0f, imag_sum = 0.0f; /* Temporary result storage */ float32_t a0,b0,c0,d0; #ifndef ARM_MATH_CM0_FAMILY /* Run the below code for Cortex-M4 and Cortex-M3 */ uint32_t blkCnt; /* loop counter */ /*loop Unrolling */ blkCnt = numSamples >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { a0 = *pSrcA++; b0 = *pSrcA++; c0 = *pSrcB++; d0 = *pSrcB++; real_sum += a0 * c0; imag_sum += a0 * d0; real_sum -= b0 * d0; imag_sum += b0 * c0; a0 = *pSrcA++; b0 = *pSrcA++; c0 = *pSrcB++; d0 = *pSrcB++; real_sum += a0 * c0; imag_sum += a0 * d0; real_sum -= b0 * d0; imag_sum += b0 * c0; a0 = *pSrcA++; b0 = *pSrcA++; c0 = *pSrcB++; d0 = *pSrcB++; real_sum += a0 * c0; imag_sum += a0 * d0; real_sum -= b0 * d0; imag_sum += b0 * c0; a0 = *pSrcA++; b0 = *pSrcA++; c0 = *pSrcB++; d0 = *pSrcB++; real_sum += a0 * c0; imag_sum += a0 * d0; real_sum -= b0 * d0; imag_sum += b0 * c0; /* Decrement the loop counter */ blkCnt--; } /* If the numSamples is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples & 0x3u; while(blkCnt > 0u) { a0 = *pSrcA++; b0 = *pSrcA++; c0 = *pSrcB++; d0 = *pSrcB++; real_sum += a0 * c0; imag_sum += a0 * d0; real_sum -= b0 * d0; imag_sum += b0 * c0; /* Decrement the loop counter */ blkCnt--; } #else /* Run the below code for Cortex-M0 */ while(numSamples > 0u) { a0 = *pSrcA++; b0 = *pSrcA++; c0 = *pSrcB++; d0 = *pSrcB++; real_sum += a0 * c0; imag_sum += a0 * d0; real_sum -= b0 * d0; imag_sum += b0 * c0; /* Decrement the loop counter */ numSamples--; } #endif /* #ifndef ARM_MATH_CM0_FAMILY */ /* Store the real and imaginary results in the destination buffers */ *realResult = real_sum; *imagResult = imag_sum; } /** * @} end of cmplx_dot_prod group */