/*! * \file sx126x.c * * \brief SX126x driver implementation * * \copyright Revised BSD License, see section \ref LICENSE. * * \code * ______ _ * / _____) _ | | * ( (____ _____ ____ _| |_ _____ ____| |__ * \____ \| ___ | (_ _) ___ |/ ___) _ \ * _____) ) ____| | | || |_| ____( (___| | | | * (______/|_____)_|_|_| \__)_____)\____)_| |_| * (C)2013-2017 Semtech * * \endcode * * \author Miguel Luis ( Semtech ) * * \author Gregory Cristian ( Semtech ) */ #include #include #include "sx126x.h" #include "sx126x-board.h" #include "delay.h" //#define USE_TCXO /*! * \brief Radio registers definition */ typedef struct { uint16_t Addr; //!< The address of the register uint8_t Value; //!< The value of the register }RadioRegisters_t; /*! * \brief Holds the internal operating mode of the radio */ static RadioOperatingModes_t OperatingMode; /*! * \brief Stores the current packet type set in the radio */ static RadioPacketTypes_t PacketType; /*! * \brief Stores the last frequency error measured on LoRa received packet */ volatile uint32_t FrequencyError = 0; /*! * \brief Hold the status of the Image calibration */ static bool ImageCalibrated = false; /* * SX126x DIO IRQ callback functions prototype */ /*! * \brief DIO 0 IRQ callback */ void SX126xOnDioIrq( void ); /*! * \brief DIO 0 IRQ callback */ void SX126xSetPollingMode( void ); /*! * \brief DIO 0 IRQ callback */ void SX126xSetInterruptMode( void ); /* * \brief Process the IRQ if handled by the driver */ void SX126xProcessIrqs( void ); void SX126xInit( DioIrqHandler dioIrq ) { SX126xReset( ); SX126xWakeup( ); SX126xSetStandby( STDBY_RC ); #ifdef USE_TCXO CalibrationParams_t calibParam; SX126xSetDio3AsTcxoCtrl( TCXO_CTRL_1_7V, RADIO_TCXO_SETUP_TIME << 6 ); // convert from ms to SX126x time base calibParam.Value = 0x7F; SX126xCalibrate( calibParam ); #endif SX126xSetDio2AsRfSwitchCtrl( true ); OperatingMode = MODE_STDBY_RC; } RadioOperatingModes_t SX126xGetOperatingMode( void ) { return OperatingMode; } void SX126xCheckDeviceReady( void ) { if( ( SX126xGetOperatingMode( ) == MODE_SLEEP ) || ( SX126xGetOperatingMode( ) == MODE_RX_DC ) ) { SX126xWakeup( ); // Switch is turned off when device is in sleep mode and turned on is all other modes SX126xAntSwOn( ); } SX126xWaitOnBusy( ); } void SX126xSetPayload( uint8_t *payload, uint8_t size ) { SX126xWriteBuffer( 0x00, payload, size ); } uint8_t SX126xGetPayload( uint8_t *buffer, uint8_t *size, uint8_t maxSize ) { uint8_t offset = 0; SX126xGetRxBufferStatus( size, &offset ); if( *size > maxSize ) { return 1; } SX126xReadBuffer( offset, buffer, *size ); return 0; } void SX126xSendPayload( uint8_t *payload, uint8_t size, uint32_t timeout ) { SX126xSetPayload( payload, size ); SX126xSetTx( timeout ); } uint8_t SX126xSetSyncWord( uint8_t *syncWord ) { SX126xWriteRegisters( REG_LR_SYNCWORDBASEADDRESS, syncWord, 8 ); return 0; } void SX126xSetCrcSeed( uint16_t seed ) { uint8_t buf[2]; buf[0] = ( uint8_t )( ( seed >> 8 ) & 0xFF ); buf[1] = ( uint8_t )( seed & 0xFF ); switch( SX126xGetPacketType( ) ) { case PACKET_TYPE_GFSK: SX126xWriteRegisters( REG_LR_CRCSEEDBASEADDR, buf, 2 ); break; default: break; } } void SX126xSetCrcPolynomial( uint16_t polynomial ) { uint8_t buf[2]; buf[0] = ( uint8_t )( ( polynomial >> 8 ) & 0xFF ); buf[1] = ( uint8_t )( polynomial & 0xFF ); switch( SX126xGetPacketType( ) ) { case PACKET_TYPE_GFSK: SX126xWriteRegisters( REG_LR_CRCPOLYBASEADDR, buf, 2 ); break; default: break; } } void SX126xSetWhiteningSeed( uint16_t seed ) { uint8_t regValue = 0; switch( SX126xGetPacketType( ) ) { case PACKET_TYPE_GFSK: regValue = SX126xReadRegister( REG_LR_WHITSEEDBASEADDR_MSB ) & 0xFE; regValue = ( ( seed >> 8 ) & 0x01 ) | regValue; SX126xWriteRegister( REG_LR_WHITSEEDBASEADDR_MSB, regValue ); // only 1 bit. SX126xWriteRegister( REG_LR_WHITSEEDBASEADDR_LSB, ( uint8_t )seed ); break; default: break; } } uint32_t SX126xGetRandom( void ) { uint8_t buf[] = { 0, 0, 0, 0 }; // Set radio in continuous reception SX126xSetRx( 0 ); HAL_Delay_nMS( 1 ); SX126xReadRegisters( RANDOM_NUMBER_GENERATORBASEADDR, buf, 4 ); SX126xSetStandby( STDBY_RC ); return ( buf[0] << 24 ) | ( buf[1] << 16 ) | ( buf[2] << 8 ) | buf[3]; } void SX126xSetSleep( SleepParams_t sleepConfig ) { SX126xAntSwOff( ); SX126xWriteCommand( RADIO_SET_SLEEP, &sleepConfig.Value, 1 ); OperatingMode = MODE_SLEEP; } void SX126xSetStandby( RadioStandbyModes_t standbyConfig ) { SX126xWriteCommand( RADIO_SET_STANDBY, ( uint8_t* )&standbyConfig, 1 ); if( standbyConfig == STDBY_RC ) { OperatingMode = MODE_STDBY_RC; } else { OperatingMode = MODE_STDBY_XOSC; } } void SX126xSetFs( void ) { SX126xWriteCommand( RADIO_SET_FS, 0, 0 ); OperatingMode = MODE_FS; } void SX126xSetTx( uint32_t timeout ) { uint8_t buf[3]; OperatingMode = MODE_TX; buf[0] = ( uint8_t )( ( timeout >> 16 ) & 0xFF ); buf[1] = ( uint8_t )( ( timeout >> 8 ) & 0xFF ); buf[2] = ( uint8_t )( timeout & 0xFF ); SX126xWriteCommand( RADIO_SET_TX, buf, 3 ); } void SX126xSetRx( uint32_t timeout ) { uint8_t buf[3]; OperatingMode = MODE_RX; buf[0] = ( uint8_t )( ( timeout >> 16 ) & 0xFF ); buf[1] = ( uint8_t )( ( timeout >> 8 ) & 0xFF ); buf[2] = ( uint8_t )( timeout & 0xFF ); SX126xWriteCommand( RADIO_SET_RX, buf, 3 ); } void SX126xSetRxBoosted( uint32_t timeout ) { uint8_t buf[3]; OperatingMode = MODE_RX; SX126xWriteRegister( REG_RX_GAIN, 0x96 ); // max LNA gain, increase current by ~2mA for around ~3dB in sensivity buf[0] = ( uint8_t )( ( timeout >> 16 ) & 0xFF ); buf[1] = ( uint8_t )( ( timeout >> 8 ) & 0xFF ); buf[2] = ( uint8_t )( timeout & 0xFF ); SX126xWriteCommand( RADIO_SET_RX, buf, 3 ); } void SX126xSetRxDutyCycle( uint32_t rxTime, uint32_t sleepTime ) { uint8_t buf[6]; buf[0] = ( uint8_t )( ( rxTime >> 16 ) & 0xFF ); buf[1] = ( uint8_t )( ( rxTime >> 8 ) & 0xFF ); buf[2] = ( uint8_t )( rxTime & 0xFF ); buf[3] = ( uint8_t )( ( sleepTime >> 16 ) & 0xFF ); buf[4] = ( uint8_t )( ( sleepTime >> 8 ) & 0xFF ); buf[5] = ( uint8_t )( sleepTime & 0xFF ); SX126xWriteCommand( RADIO_SET_RXDUTYCYCLE, buf, 6 ); OperatingMode = MODE_RX_DC; } void SX126xSetCad( void ) { SX126xWriteCommand( RADIO_SET_CAD, 0, 0 ); OperatingMode = MODE_CAD; } void SX126xSetTxContinuousWave( void ) { SX126xWriteCommand( RADIO_SET_TXCONTINUOUSWAVE, 0, 0 ); } void SX126xSetTxInfinitePreamble( void ) { SX126xWriteCommand( RADIO_SET_TXCONTINUOUSPREAMBLE, 0, 0 ); } void SX126xSetStopRxTimerOnPreambleDetect( bool enable ) { SX126xWriteCommand( RADIO_SET_STOPRXTIMERONPREAMBLE, ( uint8_t* )&enable, 1 ); } void SX126xSetLoRaSymbNumTimeout( uint8_t SymbNum ) { SX126xWriteCommand( RADIO_SET_LORASYMBTIMEOUT, &SymbNum, 1 ); } void SX126xSetRegulatorMode( RadioRegulatorMode_t mode ) { SX126xWriteCommand( RADIO_SET_REGULATORMODE, ( uint8_t* )&mode, 1 ); } void SX126xCalibrate( CalibrationParams_t calibParam ) { SX126xWriteCommand( RADIO_CALIBRATE, ( uint8_t* )&calibParam, 1 ); } void SX126xCalibrateImage( uint32_t freq ) { uint8_t calFreq[2]; if( freq > 900000000 ) { calFreq[0] = 0xE1; calFreq[1] = 0xE9; } else if( freq > 850000000 ) { calFreq[0] = 0xD7; calFreq[1] = 0xD8; } else if( freq > 770000000 ) { calFreq[0] = 0xC1; calFreq[1] = 0xC5; } else if( freq > 460000000 ) { calFreq[0] = 0x75; calFreq[1] = 0x81; } else if( freq > 425000000 ) { calFreq[0] = 0x6B; calFreq[1] = 0x6F; } SX126xWriteCommand( RADIO_CALIBRATEIMAGE, calFreq, 2 ); } void SX126xSetPaConfig( uint8_t paDutyCycle, uint8_t hpMax, uint8_t deviceSel, uint8_t paLut ) { uint8_t buf[4]; buf[0] = paDutyCycle; buf[1] = hpMax; buf[2] = deviceSel; buf[3] = paLut; SX126xWriteCommand( RADIO_SET_PACONFIG, buf, 4 ); } void SX126xSetRxTxFallbackMode( uint8_t fallbackMode ) { SX126xWriteCommand( RADIO_SET_TXFALLBACKMODE, &fallbackMode, 1 ); } void SX126xSetDioIrqParams( uint16_t irqMask, uint16_t dio1Mask, uint16_t dio2Mask, uint16_t dio3Mask ) { uint8_t buf[8]; buf[0] = ( uint8_t )( ( irqMask >> 8 ) & 0x00FF ); buf[1] = ( uint8_t )( irqMask & 0x00FF ); buf[2] = ( uint8_t )( ( dio1Mask >> 8 ) & 0x00FF ); buf[3] = ( uint8_t )( dio1Mask & 0x00FF ); buf[4] = ( uint8_t )( ( dio2Mask >> 8 ) & 0x00FF ); buf[5] = ( uint8_t )( dio2Mask & 0x00FF ); buf[6] = ( uint8_t )( ( dio3Mask >> 8 ) & 0x00FF ); buf[7] = ( uint8_t )( dio3Mask & 0x00FF ); SX126xWriteCommand( RADIO_CFG_DIOIRQ, buf, 8 ); } uint16_t SX126xGetIrqStatus( void ) { uint8_t irqStatus[2]; SX126xReadCommand( RADIO_GET_IRQSTATUS, irqStatus, 2 ); return ( irqStatus[0] << 8 ) | irqStatus[1]; } void SX126xSetDio2AsRfSwitchCtrl( uint8_t enable ) { SX126xWriteCommand( RADIO_SET_RFSWITCHMODE, &enable, 1 ); } void SX126xSetDio3AsTcxoCtrl( RadioTcxoCtrlVoltage_t tcxoVoltage, uint32_t timeout ) { uint8_t buf[4]; buf[0] = tcxoVoltage & 0x07; buf[1] = ( uint8_t )( ( timeout >> 16 ) & 0xFF ); buf[2] = ( uint8_t )( ( timeout >> 8 ) & 0xFF ); buf[3] = ( uint8_t )( timeout & 0xFF ); SX126xWriteCommand( RADIO_SET_TCXOMODE, buf, 4 ); } void SX126xSetRfFrequency( uint32_t frequency ) { uint8_t buf[4]; uint32_t freq = 0; if( ImageCalibrated == false ) { SX126xCalibrateImage( frequency ); ImageCalibrated = true; } freq = ( uint32_t )( ( double )frequency / ( double )FREQ_STEP ); buf[0] = ( uint8_t )( ( freq >> 24 ) & 0xFF ); buf[1] = ( uint8_t )( ( freq >> 16 ) & 0xFF ); buf[2] = ( uint8_t )( ( freq >> 8 ) & 0xFF ); buf[3] = ( uint8_t )( freq & 0xFF ); SX126xWriteCommand( RADIO_SET_RFFREQUENCY, buf, 4 ); } void SX126xSetPacketType( RadioPacketTypes_t packetType ) { // Save packet type internally to avoid questioning the radio PacketType = packetType; SX126xWriteCommand( RADIO_SET_PACKETTYPE, ( uint8_t* )&packetType, 1 ); } RadioPacketTypes_t SX126xGetPacketType( void ) { return PacketType; } void SX126xSetTxParams( int8_t power, RadioRampTimes_t rampTime ) { uint8_t buf[2]; if( SX126xGetPaSelect( 0 ) == SX1261 ) { if( power == 15 ) { SX126xSetPaConfig( 0x06, 0x00, 0x01, 0x01 ); } else { SX126xSetPaConfig( 0x04, 0x00, 0x01, 0x01 ); } if( power >= 14 ) { power = 14; } else if( power < -3 ) { power = -3; } SX126xWriteRegister( REG_OCP, 0x18 ); // current max is 80 mA for the whole device } else // sx1262 { SX126xSetPaConfig( 0x04, 0x07, 0x00, 0x01 ); if( power > 22 ) { power = 22; } else if( power < -3 ) { power = -3; } SX126xWriteRegister( REG_OCP, 0x38 ); // current max 160mA for the whole device } buf[0] = power; buf[1] = ( uint8_t )rampTime; SX126xWriteCommand( RADIO_SET_TXPARAMS, buf, 2 ); } void SX126xSetModulationParams( ModulationParams_t *modulationParams ) { uint8_t n; uint32_t tempVal = 0; uint8_t buf[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; // Check if required configuration corresponds to the stored packet type // If not, silently update radio packet type if( PacketType != modulationParams->PacketType ) { SX126xSetPacketType( modulationParams->PacketType ); } switch( modulationParams->PacketType ) { case PACKET_TYPE_GFSK: n = 8; tempVal = ( uint32_t )( 32 * ( ( double )XTAL_FREQ / ( double )modulationParams->Params.Gfsk.BitRate ) ); buf[0] = ( tempVal >> 16 ) & 0xFF; buf[1] = ( tempVal >> 8 ) & 0xFF; buf[2] = tempVal & 0xFF; buf[3] = modulationParams->Params.Gfsk.ModulationShaping; buf[4] = modulationParams->Params.Gfsk.Bandwidth; tempVal = ( uint32_t )( ( double )modulationParams->Params.Gfsk.Fdev / ( double )FREQ_STEP ); buf[5] = ( tempVal >> 16 ) & 0xFF; buf[6] = ( tempVal >> 8 ) & 0xFF; buf[7] = ( tempVal& 0xFF ); SX126xWriteCommand( RADIO_SET_MODULATIONPARAMS, buf, n ); break; case PACKET_TYPE_LORA: n = 4; buf[0] = modulationParams->Params.LoRa.SpreadingFactor; buf[1] = modulationParams->Params.LoRa.Bandwidth; buf[2] = modulationParams->Params.LoRa.CodingRate; buf[3] = modulationParams->Params.LoRa.LowDatarateOptimize; SX126xWriteCommand( RADIO_SET_MODULATIONPARAMS, buf, n ); break; default: case PACKET_TYPE_NONE: return; } } void SX126xSetPacketParams( PacketParams_t *packetParams ) { uint8_t n; uint8_t crcVal = 0; uint8_t buf[9] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; // Check if required configuration corresponds to the stored packet type // If not, silently update radio packet type if( PacketType != packetParams->PacketType ) { SX126xSetPacketType( packetParams->PacketType ); } switch( packetParams->PacketType ) { case PACKET_TYPE_GFSK: if( packetParams->Params.Gfsk.CrcLength == RADIO_CRC_2_BYTES_IBM ) { SX126xSetCrcSeed( CRC_IBM_SEED ); SX126xSetCrcPolynomial( CRC_POLYNOMIAL_IBM ); crcVal = RADIO_CRC_2_BYTES; } else if( packetParams->Params.Gfsk.CrcLength == RADIO_CRC_2_BYTES_CCIT ) { SX126xSetCrcSeed( CRC_CCITT_SEED ); SX126xSetCrcPolynomial( CRC_POLYNOMIAL_CCITT ); crcVal = RADIO_CRC_2_BYTES_INV; } else { crcVal = packetParams->Params.Gfsk.CrcLength; } n = 9; buf[0] = ( packetParams->Params.Gfsk.PreambleLength >> 8 ) & 0xFF; buf[1] = packetParams->Params.Gfsk.PreambleLength; buf[2] = packetParams->Params.Gfsk.PreambleMinDetect; buf[3] = ( packetParams->Params.Gfsk.SyncWordLength /*<< 3*/ ); // convert from byte to bit buf[4] = packetParams->Params.Gfsk.AddrComp; buf[5] = packetParams->Params.Gfsk.HeaderType; buf[6] = packetParams->Params.Gfsk.PayloadLength; buf[7] = crcVal; buf[8] = packetParams->Params.Gfsk.DcFree; break; case PACKET_TYPE_LORA: n = 6; buf[0] = ( packetParams->Params.LoRa.PreambleLength >> 8 ) & 0xFF; buf[1] = packetParams->Params.LoRa.PreambleLength; buf[2] = packetParams->Params.LoRa.HeaderType; buf[3] = packetParams->Params.LoRa.PayloadLength; buf[4] = packetParams->Params.LoRa.CrcMode; buf[5] = packetParams->Params.LoRa.InvertIQ; break; default: case PACKET_TYPE_NONE: return; } SX126xWriteCommand( RADIO_SET_PACKETPARAMS, buf, n ); } void SX126xSetCadParams( RadioLoRaCadSymbols_t cadSymbolNum, uint8_t cadDetPeak, uint8_t cadDetMin, RadioCadExitModes_t cadExitMode, uint32_t cadTimeout ) { uint8_t buf[7]; buf[0] = ( uint8_t )cadSymbolNum; buf[1] = cadDetPeak; buf[2] = cadDetMin; buf[3] = ( uint8_t )cadExitMode; buf[4] = ( uint8_t )( ( cadTimeout >> 16 ) & 0xFF ); buf[5] = ( uint8_t )( ( cadTimeout >> 8 ) & 0xFF ); buf[6] = ( uint8_t )( cadTimeout & 0xFF ); SX126xWriteCommand( RADIO_SET_CADPARAMS, buf, 5 ); OperatingMode = MODE_CAD; } void SX126xSetBufferBaseAddress( uint8_t txBaseAddress, uint8_t rxBaseAddress ) { uint8_t buf[2]; buf[0] = txBaseAddress; buf[1] = rxBaseAddress; SX126xWriteCommand( RADIO_SET_BUFFERBASEADDRESS, buf, 2 ); } RadioStatus_t SX126xGetStatus( void ) { uint8_t stat = 0; RadioStatus_t status; SX126xReadCommand( RADIO_GET_STATUS, ( uint8_t * )&stat, 1 ); status.Value = stat; return status; } int8_t SX126xGetRssiInst( void ) { uint8_t buf[1]; int8_t rssi = 0; SX126xReadCommand( RADIO_GET_RSSIINST, buf, 1 ); rssi = -buf[0] >> 1; return rssi; } void SX126xGetRxBufferStatus( uint8_t *payloadLength, uint8_t *rxStartBufferPointer ) { uint8_t status[2]; SX126xReadCommand( RADIO_GET_RXBUFFERSTATUS, status, 2 ); // In case of LORA fixed header, the payloadLength is obtained by reading // the register REG_LR_PAYLOADLENGTH if( ( SX126xGetPacketType( ) == PACKET_TYPE_LORA ) && ( SX126xReadRegister( REG_LR_PACKETPARAMS ) >> 7 == 1 ) ) { *payloadLength = SX126xReadRegister( REG_LR_PAYLOADLENGTH ); } else { *payloadLength = status[0]; } *rxStartBufferPointer = status[1]; } void SX126xGetPacketStatus( PacketStatus_t *pktStatus ) { uint8_t status[3]; SX126xReadCommand( RADIO_GET_PACKETSTATUS, status, 3 ); pktStatus->packetType = SX126xGetPacketType( ); switch( pktStatus->packetType ) { case PACKET_TYPE_GFSK: pktStatus->Params.Gfsk.RxStatus = status[0]; pktStatus->Params.Gfsk.RssiSync = -status[1] >> 1; pktStatus->Params.Gfsk.RssiAvg = -status[2] >> 1; pktStatus->Params.Gfsk.FreqError = 0; break; case PACKET_TYPE_LORA: pktStatus->Params.LoRa.RssiPkt = -status[0] >> 1; ( status[1] < 128 ) ? ( pktStatus->Params.LoRa.SnrPkt = status[1] >> 2 ) : ( pktStatus->Params.LoRa.SnrPkt = ( ( status[1] - 256 ) >> 2 ) ); pktStatus->Params.LoRa.SignalRssiPkt = -status[2] >> 1; pktStatus->Params.LoRa.FreqError = FrequencyError; break; default: case PACKET_TYPE_NONE: // In that specific case, we set everything in the pktStatus to zeros // and reset the packet type accordingly memset( pktStatus, 0, sizeof( PacketStatus_t ) ); pktStatus->packetType = PACKET_TYPE_NONE; break; } } RadioError_t SX126xGetDeviceErrors( void ) { RadioError_t error; SX126xReadCommand( RADIO_GET_ERROR, ( uint8_t * )&error, 2 ); return error; } void SX126xClearDeviceErrors( void ) { uint8_t buf[2] = { 0x00, 0x00 }; SX126xWriteCommand( RADIO_CLR_ERROR, buf, 2 ); } void SX126xClearIrqStatus( uint16_t irq ) { uint8_t buf[2]; buf[0] = ( uint8_t )( ( ( uint16_t )irq >> 8 ) & 0x00FF ); buf[1] = ( uint8_t )( ( uint16_t )irq & 0x00FF ); SX126xWriteCommand( RADIO_CLR_IRQSTATUS, buf, 2 ); }