/** ****************************************************************************** * @file stm32f0xx_ll_rcc.h * @author MCD Application Team * @brief Header file of RCC LL module. ****************************************************************************** * @attention * *

© COPYRIGHT(c) 2016 STMicroelectronics

* * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32F0xx_LL_RCC_H #define __STM32F0xx_LL_RCC_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "stm32f0xx.h" /** @addtogroup STM32F0xx_LL_Driver * @{ */ #if defined(RCC) /** @defgroup RCC_LL RCC * @{ */ /* Private types -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private constants ---------------------------------------------------------*/ /** @defgroup RCC_LL_Private_Constants RCC Private Constants * @{ */ /* Defines used for the bit position in the register and perform offsets*/ #define RCC_POSITION_HPRE (uint32_t)4U /*!< field position in register RCC_CFGR */ #define RCC_POSITION_PPRE1 (uint32_t)8U /*!< field position in register RCC_CFGR */ #define RCC_POSITION_PLLMUL (uint32_t)18U /*!< field position in register RCC_CFGR */ #define RCC_POSITION_HSICAL (uint32_t)8U /*!< field position in register RCC_CR */ #define RCC_POSITION_HSITRIM (uint32_t)3U /*!< field position in register RCC_CR */ #define RCC_POSITION_HSI14TRIM (uint32_t)3U /*!< field position in register RCC_CR2 */ #define RCC_POSITION_HSI14CAL (uint32_t)8U /*!< field position in register RCC_CR2 */ #if defined(RCC_HSI48_SUPPORT) #define RCC_POSITION_HSI48CAL (uint32_t)24U /*!< field position in register RCC_CR2 */ #endif /* RCC_HSI48_SUPPORT */ #define RCC_POSITION_USART1SW (uint32_t)0U /*!< field position in register RCC_CFGR3 */ #define RCC_POSITION_USART2SW (uint32_t)16U /*!< field position in register RCC_CFGR3 */ #define RCC_POSITION_USART3SW (uint32_t)18U /*!< field position in register RCC_CFGR3 */ /** * @} */ /* Private macros ------------------------------------------------------------*/ #if defined(USE_FULL_LL_DRIVER) /** @defgroup RCC_LL_Private_Macros RCC Private Macros * @{ */ /** * @} */ #endif /*USE_FULL_LL_DRIVER*/ /* Exported types ------------------------------------------------------------*/ #if defined(USE_FULL_LL_DRIVER) /** @defgroup RCC_LL_Exported_Types RCC Exported Types * @{ */ /** @defgroup LL_ES_CLOCK_FREQ Clocks Frequency Structure * @{ */ /** * @brief RCC Clocks Frequency Structure */ typedef struct { uint32_t SYSCLK_Frequency; /*!< SYSCLK clock frequency */ uint32_t HCLK_Frequency; /*!< HCLK clock frequency */ uint32_t PCLK1_Frequency; /*!< PCLK1 clock frequency */ } LL_RCC_ClocksTypeDef; /** * @} */ /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /* Exported constants --------------------------------------------------------*/ /** @defgroup RCC_LL_Exported_Constants RCC Exported Constants * @{ */ /** @defgroup RCC_LL_EC_OSC_VALUES Oscillator Values adaptation * @brief Defines used to adapt values of different oscillators * @note These values could be modified in the user environment according to * HW set-up. * @{ */ #if !defined (HSE_VALUE) #define HSE_VALUE 12000000U /*!< Value of the HSE oscillator in Hz */ #endif /* HSE_VALUE */ #if !defined (HSI_VALUE) #define HSI_VALUE 8000000U /*!< Value of the HSI oscillator in Hz */ #endif /* HSI_VALUE */ #if !defined (LSE_VALUE) #define LSE_VALUE 32768U /*!< Value of the LSE oscillator in Hz */ #endif /* LSE_VALUE */ #if !defined (LSI_VALUE) #define LSI_VALUE 32000U /*!< Value of the LSI oscillator in Hz */ #endif /* LSI_VALUE */ #if defined(RCC_HSI48_SUPPORT) #if !defined (HSI48_VALUE) #define HSI48_VALUE 48000000U /*!< Value of the HSI48 oscillator in Hz */ #endif /* HSI48_VALUE */ #endif /* RCC_HSI48_SUPPORT */ /** * @} */ /** @defgroup RCC_LL_EC_CLEAR_FLAG Clear Flags Defines * @brief Flags defines which can be used with LL_RCC_WriteReg function * @{ */ #define LL_RCC_CIR_LSIRDYC RCC_CIR_LSIRDYC /*!< LSI Ready Interrupt Clear */ #define LL_RCC_CIR_LSERDYC RCC_CIR_LSERDYC /*!< LSE Ready Interrupt Clear */ #define LL_RCC_CIR_HSIRDYC RCC_CIR_HSIRDYC /*!< HSI Ready Interrupt Clear */ #define LL_RCC_CIR_HSERDYC RCC_CIR_HSERDYC /*!< HSE Ready Interrupt Clear */ #define LL_RCC_CIR_PLLRDYC RCC_CIR_PLLRDYC /*!< PLL Ready Interrupt Clear */ #define LL_RCC_CIR_HSI14RDYC RCC_CIR_HSI14RDYC /*!< HSI14 Ready Interrupt Clear */ #if defined(RCC_HSI48_SUPPORT) #define LL_RCC_CIR_HSI48RDYC RCC_CIR_HSI48RDYC /*!< HSI48 Ready Interrupt Clear */ #endif /* RCC_HSI48_SUPPORT */ #define LL_RCC_CIR_CSSC RCC_CIR_CSSC /*!< Clock Security System Interrupt Clear */ /** * @} */ /** @defgroup RCC_LL_EC_GET_FLAG Get Flags Defines * @brief Flags defines which can be used with LL_RCC_ReadReg function * @{ */ #define LL_RCC_CIR_LSIRDYF RCC_CIR_LSIRDYF /*!< LSI Ready Interrupt flag */ #define LL_RCC_CIR_LSERDYF RCC_CIR_LSERDYF /*!< LSE Ready Interrupt flag */ #define LL_RCC_CIR_HSIRDYF RCC_CIR_HSIRDYF /*!< HSI Ready Interrupt flag */ #define LL_RCC_CIR_HSERDYF RCC_CIR_HSERDYF /*!< HSE Ready Interrupt flag */ #define LL_RCC_CIR_PLLRDYF RCC_CIR_PLLRDYF /*!< PLL Ready Interrupt flag */ #define LL_RCC_CIR_HSI14RDYF RCC_CIR_HSI14RDYF /*!< HSI14 Ready Interrupt flag */ #if defined(RCC_HSI48_SUPPORT) #define LL_RCC_CIR_HSI48RDYF RCC_CIR_HSI48RDYF /*!< HSI48 Ready Interrupt flag */ #endif /* RCC_HSI48_SUPPORT */ #define LL_RCC_CIR_CSSF RCC_CIR_CSSF /*!< Clock Security System Interrupt flag */ #define LL_RCC_CSR_OBLRSTF RCC_CSR_OBLRSTF /*!< OBL reset flag */ #define LL_RCC_CSR_PINRSTF RCC_CSR_PINRSTF /*!< PIN reset flag */ #define LL_RCC_CSR_PORRSTF RCC_CSR_PORRSTF /*!< POR/PDR reset flag */ #define LL_RCC_CSR_SFTRSTF RCC_CSR_SFTRSTF /*!< Software Reset flag */ #define LL_RCC_CSR_IWDGRSTF RCC_CSR_IWDGRSTF /*!< Independent Watchdog reset flag */ #define LL_RCC_CSR_WWDGRSTF RCC_CSR_WWDGRSTF /*!< Window watchdog reset flag */ #define LL_RCC_CSR_LPWRRSTF RCC_CSR_LPWRRSTF /*!< Low-Power reset flag */ #if defined(RCC_CSR_V18PWRRSTF) #define LL_RCC_CSR_V18PWRRSTF RCC_CSR_V18PWRRSTF /*!< Reset flag of the 1.8 V domain. */ #endif /* RCC_CSR_V18PWRRSTF */ /** * @} */ /** @defgroup RCC_LL_EC_IT IT Defines * @brief IT defines which can be used with LL_RCC_ReadReg and LL_RCC_WriteReg functions * @{ */ #define LL_RCC_CIR_LSIRDYIE RCC_CIR_LSIRDYIE /*!< LSI Ready Interrupt Enable */ #define LL_RCC_CIR_LSERDYIE RCC_CIR_LSERDYIE /*!< LSE Ready Interrupt Enable */ #define LL_RCC_CIR_HSIRDYIE RCC_CIR_HSIRDYIE /*!< HSI Ready Interrupt Enable */ #define LL_RCC_CIR_HSERDYIE RCC_CIR_HSERDYIE /*!< HSE Ready Interrupt Enable */ #define LL_RCC_CIR_PLLRDYIE RCC_CIR_PLLRDYIE /*!< PLL Ready Interrupt Enable */ #define LL_RCC_CIR_HSI14RDYIE RCC_CIR_HSI14RDYIE /*!< HSI14 Ready Interrupt Enable */ #if defined(RCC_HSI48_SUPPORT) #define LL_RCC_CIR_HSI48RDYIE RCC_CIR_HSI48RDYIE /*!< HSI48 Ready Interrupt Enable */ #endif /* RCC_HSI48_SUPPORT */ /** * @} */ /** @defgroup RCC_LL_EC_LSEDRIVE LSE oscillator drive capability * @{ */ #define LL_RCC_LSEDRIVE_LOW ((uint32_t)0x00000000U) /*!< Xtal mode lower driving capability */ #define LL_RCC_LSEDRIVE_MEDIUMLOW RCC_BDCR_LSEDRV_1 /*!< Xtal mode medium low driving capability */ #define LL_RCC_LSEDRIVE_MEDIUMHIGH RCC_BDCR_LSEDRV_0 /*!< Xtal mode medium high driving capability */ #define LL_RCC_LSEDRIVE_HIGH RCC_BDCR_LSEDRV /*!< Xtal mode higher driving capability */ /** * @} */ /** @defgroup RCC_LL_EC_SYS_CLKSOURCE System clock switch * @{ */ #define LL_RCC_SYS_CLKSOURCE_HSI RCC_CFGR_SW_HSI /*!< HSI selection as system clock */ #define LL_RCC_SYS_CLKSOURCE_HSE RCC_CFGR_SW_HSE /*!< HSE selection as system clock */ #define LL_RCC_SYS_CLKSOURCE_PLL RCC_CFGR_SW_PLL /*!< PLL selection as system clock */ #if defined(RCC_CFGR_SW_HSI48) #define LL_RCC_SYS_CLKSOURCE_HSI48 RCC_CFGR_SW_HSI48 /*!< HSI48 selection as system clock */ #endif /* RCC_CFGR_SW_HSI48 */ /** * @} */ /** @defgroup RCC_LL_EC_SYS_CLKSOURCE_STATUS System clock switch status * @{ */ #define LL_RCC_SYS_CLKSOURCE_STATUS_HSI RCC_CFGR_SWS_HSI /*!< HSI used as system clock */ #define LL_RCC_SYS_CLKSOURCE_STATUS_HSE RCC_CFGR_SWS_HSE /*!< HSE used as system clock */ #define LL_RCC_SYS_CLKSOURCE_STATUS_PLL RCC_CFGR_SWS_PLL /*!< PLL used as system clock */ #if defined(RCC_CFGR_SWS_HSI48) #define LL_RCC_SYS_CLKSOURCE_STATUS_HSI48 RCC_CFGR_SWS_HSI48 /*!< HSI48 used as system clock */ #endif /* RCC_CFGR_SWS_HSI48 */ /** * @} */ /** @defgroup RCC_LL_EC_SYSCLK_DIV AHB prescaler * @{ */ #define LL_RCC_SYSCLK_DIV_1 RCC_CFGR_HPRE_DIV1 /*!< SYSCLK not divided */ #define LL_RCC_SYSCLK_DIV_2 RCC_CFGR_HPRE_DIV2 /*!< SYSCLK divided by 2 */ #define LL_RCC_SYSCLK_DIV_4 RCC_CFGR_HPRE_DIV4 /*!< SYSCLK divided by 4 */ #define LL_RCC_SYSCLK_DIV_8 RCC_CFGR_HPRE_DIV8 /*!< SYSCLK divided by 8 */ #define LL_RCC_SYSCLK_DIV_16 RCC_CFGR_HPRE_DIV16 /*!< SYSCLK divided by 16 */ #define LL_RCC_SYSCLK_DIV_64 RCC_CFGR_HPRE_DIV64 /*!< SYSCLK divided by 64 */ #define LL_RCC_SYSCLK_DIV_128 RCC_CFGR_HPRE_DIV128 /*!< SYSCLK divided by 128 */ #define LL_RCC_SYSCLK_DIV_256 RCC_CFGR_HPRE_DIV256 /*!< SYSCLK divided by 256 */ #define LL_RCC_SYSCLK_DIV_512 RCC_CFGR_HPRE_DIV512 /*!< SYSCLK divided by 512 */ /** * @} */ /** @defgroup RCC_LL_EC_APB1_DIV APB low-speed prescaler (APB1) * @{ */ #define LL_RCC_APB1_DIV_1 RCC_CFGR_PPRE_DIV1 /*!< HCLK not divided */ #define LL_RCC_APB1_DIV_2 RCC_CFGR_PPRE_DIV2 /*!< HCLK divided by 2 */ #define LL_RCC_APB1_DIV_4 RCC_CFGR_PPRE_DIV4 /*!< HCLK divided by 4 */ #define LL_RCC_APB1_DIV_8 RCC_CFGR_PPRE_DIV8 /*!< HCLK divided by 8 */ #define LL_RCC_APB1_DIV_16 RCC_CFGR_PPRE_DIV16 /*!< HCLK divided by 16 */ /** * @} */ /** @defgroup RCC_LL_EC_MCO1SOURCE MCO1 SOURCE selection * @{ */ #define LL_RCC_MCO1SOURCE_NOCLOCK RCC_CFGR_MCOSEL_NOCLOCK /*!< MCO output disabled, no clock on MCO */ #define LL_RCC_MCO1SOURCE_HSI14 RCC_CFGR_MCOSEL_HSI14 /*!< HSI14 oscillator clock selected */ #define LL_RCC_MCO1SOURCE_SYSCLK RCC_CFGR_MCOSEL_SYSCLK /*!< SYSCLK selection as MCO source */ #define LL_RCC_MCO1SOURCE_HSI RCC_CFGR_MCOSEL_HSI /*!< HSI selection as MCO source */ #define LL_RCC_MCO1SOURCE_HSE RCC_CFGR_MCOSEL_HSE /*!< HSE selection as MCO source */ #define LL_RCC_MCO1SOURCE_LSI RCC_CFGR_MCOSEL_LSI /*!< LSI selection as MCO source */ #define LL_RCC_MCO1SOURCE_LSE RCC_CFGR_MCOSEL_LSE /*!< LSE selection as MCO source */ #if defined(RCC_CFGR_MCOSEL_HSI48) #define LL_RCC_MCO1SOURCE_HSI48 RCC_CFGR_MCOSEL_HSI48 /*!< HSI48 selection as MCO source */ #endif /* RCC_CFGR_MCOSEL_HSI48 */ #define LL_RCC_MCO1SOURCE_PLLCLK_DIV_2 RCC_CFGR_MCOSEL_PLL_DIV2 /*!< PLL clock divided by 2*/ #if defined(RCC_CFGR_PLLNODIV) #define LL_RCC_MCO1SOURCE_PLLCLK (RCC_CFGR_MCOSEL_PLL_DIV2 | RCC_CFGR_PLLNODIV) /*!< PLL clock selected*/ #endif /* RCC_CFGR_PLLNODIV */ /** * @} */ /** @defgroup RCC_LL_EC_MCO1_DIV MCO1 prescaler * @{ */ #define LL_RCC_MCO1_DIV_1 ((uint32_t)0x00000000U)/*!< MCO Clock divided by 1 */ #if defined(RCC_CFGR_MCOPRE) #define LL_RCC_MCO1_DIV_2 RCC_CFGR_MCOPRE_DIV2 /*!< MCO Clock divided by 2 */ #define LL_RCC_MCO1_DIV_4 RCC_CFGR_MCOPRE_DIV4 /*!< MCO Clock divided by 4 */ #define LL_RCC_MCO1_DIV_8 RCC_CFGR_MCOPRE_DIV8 /*!< MCO Clock divided by 8 */ #define LL_RCC_MCO1_DIV_16 RCC_CFGR_MCOPRE_DIV16 /*!< MCO Clock divided by 16 */ #define LL_RCC_MCO1_DIV_32 RCC_CFGR_MCOPRE_DIV32 /*!< MCO Clock divided by 32 */ #define LL_RCC_MCO1_DIV_64 RCC_CFGR_MCOPRE_DIV64 /*!< MCO Clock divided by 64 */ #define LL_RCC_MCO1_DIV_128 RCC_CFGR_MCOPRE_DIV128 /*!< MCO Clock divided by 128 */ #endif /* RCC_CFGR_MCOPRE */ /** * @} */ #if defined(USE_FULL_LL_DRIVER) /** @defgroup RCC_LL_EC_PERIPH_FREQUENCY Peripheral clock frequency * @{ */ #define LL_RCC_PERIPH_FREQUENCY_NO 0x00000000U /*!< No clock enabled for the peripheral */ #define LL_RCC_PERIPH_FREQUENCY_NA 0xFFFFFFFFU /*!< Frequency cannot be provided as external clock */ /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /** @defgroup RCC_LL_EC_USART1_CLKSOURCE Peripheral USART clock source selection * @{ */ #define LL_RCC_USART1_CLKSOURCE_PCLK1 (uint32_t)((RCC_POSITION_USART1SW << 24) | RCC_CFGR3_USART1SW_PCLK) /*!< PCLK1 clock used as USART1 clock source */ #define LL_RCC_USART1_CLKSOURCE_SYSCLK (uint32_t)((RCC_POSITION_USART1SW << 24) | RCC_CFGR3_USART1SW_SYSCLK) /*!< System clock selected as USART1 clock source */ #define LL_RCC_USART1_CLKSOURCE_LSE (uint32_t)((RCC_POSITION_USART1SW << 24) | RCC_CFGR3_USART1SW_LSE) /*!< LSE oscillator clock used as USART1 clock source */ #define LL_RCC_USART1_CLKSOURCE_HSI (uint32_t)((RCC_POSITION_USART1SW << 24) | RCC_CFGR3_USART1SW_HSI) /*!< HSI oscillator clock used as USART1 clock source */ #if defined(RCC_CFGR3_USART2SW) #define LL_RCC_USART2_CLKSOURCE_PCLK1 (uint32_t)((RCC_POSITION_USART2SW << 24) | RCC_CFGR3_USART2SW_PCLK) /*!< PCLK1 clock used as USART2 clock source */ #define LL_RCC_USART2_CLKSOURCE_SYSCLK (uint32_t)((RCC_POSITION_USART2SW << 24) | RCC_CFGR3_USART2SW_SYSCLK) /*!< System clock selected as USART2 clock source */ #define LL_RCC_USART2_CLKSOURCE_LSE (uint32_t)((RCC_POSITION_USART2SW << 24) | RCC_CFGR3_USART2SW_LSE) /*!< LSE oscillator clock used as USART2 clock source */ #define LL_RCC_USART2_CLKSOURCE_HSI (uint32_t)((RCC_POSITION_USART2SW << 24) | RCC_CFGR3_USART2SW_HSI) /*!< HSI oscillator clock used as USART2 clock source */ #endif /* RCC_CFGR3_USART2SW */ #if defined(RCC_CFGR3_USART3SW) #define LL_RCC_USART3_CLKSOURCE_PCLK1 (uint32_t)((RCC_POSITION_USART3SW << 24) | RCC_CFGR3_USART3SW_PCLK) /*!< PCLK1 clock used as USART3 clock source */ #define LL_RCC_USART3_CLKSOURCE_SYSCLK (uint32_t)((RCC_POSITION_USART3SW << 24) | RCC_CFGR3_USART3SW_SYSCLK) /*!< System clock selected as USART3 clock source */ #define LL_RCC_USART3_CLKSOURCE_LSE (uint32_t)((RCC_POSITION_USART3SW << 24) | RCC_CFGR3_USART3SW_LSE) /*!< LSE oscillator clock used as USART3 clock source */ #define LL_RCC_USART3_CLKSOURCE_HSI (uint32_t)((RCC_POSITION_USART3SW << 24) | RCC_CFGR3_USART3SW_HSI) /*!< HSI oscillator clock used as USART3 clock source */ #endif /* RCC_CFGR3_USART3SW */ /** * @} */ /** @defgroup RCC_LL_EC_I2C1_CLKSOURCE Peripheral I2C clock source selection * @{ */ #define LL_RCC_I2C1_CLKSOURCE_HSI RCC_CFGR3_I2C1SW_HSI /*!< HSI oscillator clock used as I2C1 clock source */ #define LL_RCC_I2C1_CLKSOURCE_SYSCLK RCC_CFGR3_I2C1SW_SYSCLK /*!< System clock selected as I2C1 clock source */ /** * @} */ #if defined(CEC) /** @defgroup RCC_LL_EC_CEC_CLKSOURCE Peripheral CEC clock source selection * @{ */ #define LL_RCC_CEC_CLKSOURCE_HSI_DIV244 RCC_CFGR3_CECSW_HSI_DIV244 /*!< HSI clock divided by 244 selected as HDMI CEC entry clock source */ #define LL_RCC_CEC_CLKSOURCE_LSE RCC_CFGR3_CECSW_LSE /*!< LSE clock selected as HDMI CEC entry clock source */ /** * @} */ #endif /* CEC */ #if defined(USB) /** @defgroup RCC_LL_EC_USB_CLKSOURCE Peripheral USB clock source selection * @{ */ #if defined(RCC_CFGR3_USBSW_HSI48) #define LL_RCC_USB_CLKSOURCE_HSI48 RCC_CFGR3_USBSW_HSI48 /*!< HSI48 oscillator clock used as USB clock source */ #else #define LL_RCC_USB_CLKSOURCE_NONE ((uint32_t)0x00000000) /*!< USB Clock disabled */ #endif /*RCC_CFGR3_USBSW_HSI48*/ #define LL_RCC_USB_CLKSOURCE_PLL RCC_CFGR3_USBSW_PLLCLK /*!< PLL selected as USB clock source */ /** * @} */ #endif /* USB */ /** @defgroup RCC_LL_EC_USART1 Peripheral USART get clock source * @{ */ #define LL_RCC_USART1_CLKSOURCE RCC_POSITION_USART1SW /*!< USART1 Clock source selection */ #if defined(RCC_CFGR3_USART2SW) #define LL_RCC_USART2_CLKSOURCE RCC_POSITION_USART2SW /*!< USART2 Clock source selection */ #endif /* RCC_CFGR3_USART2SW */ #if defined(RCC_CFGR3_USART3SW) #define LL_RCC_USART3_CLKSOURCE RCC_POSITION_USART3SW /*!< USART3 Clock source selection */ #endif /* RCC_CFGR3_USART3SW */ /** * @} */ /** @defgroup RCC_LL_EC_I2C1 Peripheral I2C get clock source * @{ */ #define LL_RCC_I2C1_CLKSOURCE RCC_CFGR3_I2C1SW /*!< I2C1 Clock source selection */ /** * @} */ #if defined(CEC) /** @defgroup RCC_LL_EC_CEC Peripheral CEC get clock source * @{ */ #define LL_RCC_CEC_CLKSOURCE RCC_CFGR3_CECSW /*!< CEC Clock source selection */ /** * @} */ #endif /* CEC */ #if defined(USB) /** @defgroup RCC_LL_EC_USB Peripheral USB get clock source * @{ */ #define LL_RCC_USB_CLKSOURCE RCC_CFGR3_USBSW /*!< USB Clock source selection */ /** * @} */ #endif /* USB */ /** @defgroup RCC_LL_EC_RTC_CLKSOURCE RTC clock source selection * @{ */ #define LL_RCC_RTC_CLKSOURCE_NONE 0x00000000U /*!< No clock used as RTC clock */ #define LL_RCC_RTC_CLKSOURCE_LSE RCC_BDCR_RTCSEL_0 /*!< LSE oscillator clock used as RTC clock */ #define LL_RCC_RTC_CLKSOURCE_LSI RCC_BDCR_RTCSEL_1 /*!< LSI oscillator clock used as RTC clock */ #define LL_RCC_RTC_CLKSOURCE_HSE_DIV32 RCC_BDCR_RTCSEL /*!< HSE oscillator clock divided by 32 used as RTC clock */ /** * @} */ /** @defgroup RCC_LL_EC_PLL_MUL PLL Multiplicator factor * @{ */ #define LL_RCC_PLL_MUL_2 RCC_CFGR_PLLMUL2 /*!< PLL input clock*2 */ #define LL_RCC_PLL_MUL_3 RCC_CFGR_PLLMUL3 /*!< PLL input clock*3 */ #define LL_RCC_PLL_MUL_4 RCC_CFGR_PLLMUL4 /*!< PLL input clock*4 */ #define LL_RCC_PLL_MUL_5 RCC_CFGR_PLLMUL5 /*!< PLL input clock*5 */ #define LL_RCC_PLL_MUL_6 RCC_CFGR_PLLMUL6 /*!< PLL input clock*6 */ #define LL_RCC_PLL_MUL_7 RCC_CFGR_PLLMUL7 /*!< PLL input clock*7 */ #define LL_RCC_PLL_MUL_8 RCC_CFGR_PLLMUL8 /*!< PLL input clock*8 */ #define LL_RCC_PLL_MUL_9 RCC_CFGR_PLLMUL9 /*!< PLL input clock*9 */ #define LL_RCC_PLL_MUL_10 RCC_CFGR_PLLMUL10 /*!< PLL input clock*10 */ #define LL_RCC_PLL_MUL_11 RCC_CFGR_PLLMUL11 /*!< PLL input clock*11 */ #define LL_RCC_PLL_MUL_12 RCC_CFGR_PLLMUL12 /*!< PLL input clock*12 */ #define LL_RCC_PLL_MUL_13 RCC_CFGR_PLLMUL13 /*!< PLL input clock*13 */ #define LL_RCC_PLL_MUL_14 RCC_CFGR_PLLMUL14 /*!< PLL input clock*14 */ #define LL_RCC_PLL_MUL_15 RCC_CFGR_PLLMUL15 /*!< PLL input clock*15 */ #define LL_RCC_PLL_MUL_16 RCC_CFGR_PLLMUL16 /*!< PLL input clock*16 */ /** * @} */ /** @defgroup RCC_LL_EC_PLLSOURCE PLL SOURCE * @{ */ #define LL_RCC_PLLSOURCE_HSE RCC_CFGR_PLLSRC_HSE_PREDIV /*!< HSE/PREDIV clock selected as PLL entry clock source */ #if defined(RCC_PLLSRC_PREDIV1_SUPPORT) #define LL_RCC_PLLSOURCE_HSI RCC_CFGR_PLLSRC_HSI_PREDIV /*!< HSI/PREDIV clock selected as PLL entry clock source */ #if defined(RCC_CFGR_SW_HSI48) #define LL_RCC_PLLSOURCE_HSI48 RCC_CFGR_PLLSRC_HSI48_PREDIV /*!< HSI48/PREDIV clock selected as PLL entry clock source */ #endif /* RCC_CFGR_SW_HSI48 */ #else #define LL_RCC_PLLSOURCE_HSI_DIV_2 RCC_CFGR_PLLSRC_HSI_DIV2 /*!< HSI clock divided by 2 selected as PLL entry clock source */ #define LL_RCC_PLLSOURCE_HSE_DIV_1 (RCC_CFGR_PLLSRC_HSE_PREDIV | RCC_CFGR2_PREDIV_DIV1) /*!< HSE clock selected as PLL entry clock source */ #define LL_RCC_PLLSOURCE_HSE_DIV_2 (RCC_CFGR_PLLSRC_HSE_PREDIV | RCC_CFGR2_PREDIV_DIV2) /*!< HSE/2 clock selected as PLL entry clock source */ #define LL_RCC_PLLSOURCE_HSE_DIV_3 (RCC_CFGR_PLLSRC_HSE_PREDIV | RCC_CFGR2_PREDIV_DIV3) /*!< HSE/3 clock selected as PLL entry clock source */ #define LL_RCC_PLLSOURCE_HSE_DIV_4 (RCC_CFGR_PLLSRC_HSE_PREDIV | RCC_CFGR2_PREDIV_DIV4) /*!< HSE/4 clock selected as PLL entry clock source */ #define LL_RCC_PLLSOURCE_HSE_DIV_5 (RCC_CFGR_PLLSRC_HSE_PREDIV | RCC_CFGR2_PREDIV_DIV5) /*!< HSE/5 clock selected as PLL entry clock source */ #define LL_RCC_PLLSOURCE_HSE_DIV_6 (RCC_CFGR_PLLSRC_HSE_PREDIV | RCC_CFGR2_PREDIV_DIV6) /*!< HSE/6 clock selected as PLL entry clock source */ #define LL_RCC_PLLSOURCE_HSE_DIV_7 (RCC_CFGR_PLLSRC_HSE_PREDIV | RCC_CFGR2_PREDIV_DIV7) /*!< HSE/7 clock selected as PLL entry clock source */ #define LL_RCC_PLLSOURCE_HSE_DIV_8 (RCC_CFGR_PLLSRC_HSE_PREDIV | RCC_CFGR2_PREDIV_DIV8) /*!< HSE/8 clock selected as PLL entry clock source */ #define LL_RCC_PLLSOURCE_HSE_DIV_9 (RCC_CFGR_PLLSRC_HSE_PREDIV | RCC_CFGR2_PREDIV_DIV9) /*!< HSE/9 clock selected as PLL entry clock source */ #define LL_RCC_PLLSOURCE_HSE_DIV_10 (RCC_CFGR_PLLSRC_HSE_PREDIV | RCC_CFGR2_PREDIV_DIV10) /*!< HSE/10 clock selected as PLL entry clock source */ #define LL_RCC_PLLSOURCE_HSE_DIV_11 (RCC_CFGR_PLLSRC_HSE_PREDIV | RCC_CFGR2_PREDIV_DIV11) /*!< HSE/11 clock selected as PLL entry clock source */ #define LL_RCC_PLLSOURCE_HSE_DIV_12 (RCC_CFGR_PLLSRC_HSE_PREDIV | RCC_CFGR2_PREDIV_DIV12) /*!< HSE/12 clock selected as PLL entry clock source */ #define LL_RCC_PLLSOURCE_HSE_DIV_13 (RCC_CFGR_PLLSRC_HSE_PREDIV | RCC_CFGR2_PREDIV_DIV13) /*!< HSE/13 clock selected as PLL entry clock source */ #define LL_RCC_PLLSOURCE_HSE_DIV_14 (RCC_CFGR_PLLSRC_HSE_PREDIV | RCC_CFGR2_PREDIV_DIV14) /*!< HSE/14 clock selected as PLL entry clock source */ #define LL_RCC_PLLSOURCE_HSE_DIV_15 (RCC_CFGR_PLLSRC_HSE_PREDIV | RCC_CFGR2_PREDIV_DIV15) /*!< HSE/15 clock selected as PLL entry clock source */ #define LL_RCC_PLLSOURCE_HSE_DIV_16 (RCC_CFGR_PLLSRC_HSE_PREDIV | RCC_CFGR2_PREDIV_DIV16) /*!< HSE/16 clock selected as PLL entry clock source */ #endif /* RCC_PLLSRC_PREDIV1_SUPPORT */ /** * @} */ /** @defgroup RCC_LL_EC_PREDIV_DIV PREDIV Division factor * @{ */ #define LL_RCC_PREDIV_DIV_1 RCC_CFGR2_PREDIV_DIV1 /*!< PREDIV input clock not divided */ #define LL_RCC_PREDIV_DIV_2 RCC_CFGR2_PREDIV_DIV2 /*!< PREDIV input clock divided by 2 */ #define LL_RCC_PREDIV_DIV_3 RCC_CFGR2_PREDIV_DIV3 /*!< PREDIV input clock divided by 3 */ #define LL_RCC_PREDIV_DIV_4 RCC_CFGR2_PREDIV_DIV4 /*!< PREDIV input clock divided by 4 */ #define LL_RCC_PREDIV_DIV_5 RCC_CFGR2_PREDIV_DIV5 /*!< PREDIV input clock divided by 5 */ #define LL_RCC_PREDIV_DIV_6 RCC_CFGR2_PREDIV_DIV6 /*!< PREDIV input clock divided by 6 */ #define LL_RCC_PREDIV_DIV_7 RCC_CFGR2_PREDIV_DIV7 /*!< PREDIV input clock divided by 7 */ #define LL_RCC_PREDIV_DIV_8 RCC_CFGR2_PREDIV_DIV8 /*!< PREDIV input clock divided by 8 */ #define LL_RCC_PREDIV_DIV_9 RCC_CFGR2_PREDIV_DIV9 /*!< PREDIV input clock divided by 9 */ #define LL_RCC_PREDIV_DIV_10 RCC_CFGR2_PREDIV_DIV10 /*!< PREDIV input clock divided by 10 */ #define LL_RCC_PREDIV_DIV_11 RCC_CFGR2_PREDIV_DIV11 /*!< PREDIV input clock divided by 11 */ #define LL_RCC_PREDIV_DIV_12 RCC_CFGR2_PREDIV_DIV12 /*!< PREDIV input clock divided by 12 */ #define LL_RCC_PREDIV_DIV_13 RCC_CFGR2_PREDIV_DIV13 /*!< PREDIV input clock divided by 13 */ #define LL_RCC_PREDIV_DIV_14 RCC_CFGR2_PREDIV_DIV14 /*!< PREDIV input clock divided by 14 */ #define LL_RCC_PREDIV_DIV_15 RCC_CFGR2_PREDIV_DIV15 /*!< PREDIV input clock divided by 15 */ #define LL_RCC_PREDIV_DIV_16 RCC_CFGR2_PREDIV_DIV16 /*!< PREDIV input clock divided by 16 */ /** * @} */ /** * @} */ /* Exported macro ------------------------------------------------------------*/ /** @defgroup RCC_LL_Exported_Macros RCC Exported Macros * @{ */ /** @defgroup RCC_LL_EM_WRITE_READ Common Write and read registers Macros * @{ */ /** * @brief Write a value in RCC register * @param __REG__ Register to be written * @param __VALUE__ Value to be written in the register * @retval None */ #define LL_RCC_WriteReg(__REG__, __VALUE__) WRITE_REG(RCC->__REG__, (__VALUE__)) /** * @brief Read a value in RCC register * @param __REG__ Register to be read * @retval Register value */ #define LL_RCC_ReadReg(__REG__) READ_REG(RCC->__REG__) /** * @} */ /** @defgroup RCC_LL_EM_CALC_FREQ Calculate frequencies * @{ */ #if defined(RCC_PLLSRC_PREDIV1_SUPPORT) /** * @brief Helper macro to calculate the PLLCLK frequency * @note ex: @ref __LL_RCC_CALC_PLLCLK_FREQ (HSE_VALUE, @ref LL_RCC_PLL_GetMultiplicator() * , @ref LL_RCC_PLL_GetPrediv()); * @param __INPUTFREQ__ PLL Input frequency (based on HSE/HSI/HSI48) * @param __PLLMUL__ This parameter can be one of the following values: * @arg @ref LL_RCC_PLL_MUL_2 * @arg @ref LL_RCC_PLL_MUL_3 * @arg @ref LL_RCC_PLL_MUL_4 * @arg @ref LL_RCC_PLL_MUL_5 * @arg @ref LL_RCC_PLL_MUL_6 * @arg @ref LL_RCC_PLL_MUL_7 * @arg @ref LL_RCC_PLL_MUL_8 * @arg @ref LL_RCC_PLL_MUL_9 * @arg @ref LL_RCC_PLL_MUL_10 * @arg @ref LL_RCC_PLL_MUL_11 * @arg @ref LL_RCC_PLL_MUL_12 * @arg @ref LL_RCC_PLL_MUL_13 * @arg @ref LL_RCC_PLL_MUL_14 * @arg @ref LL_RCC_PLL_MUL_15 * @arg @ref LL_RCC_PLL_MUL_16 * @param __PLLPREDIV__ This parameter can be one of the following values: * @arg @ref LL_RCC_PREDIV_DIV_1 * @arg @ref LL_RCC_PREDIV_DIV_2 * @arg @ref LL_RCC_PREDIV_DIV_3 * @arg @ref LL_RCC_PREDIV_DIV_4 * @arg @ref LL_RCC_PREDIV_DIV_5 * @arg @ref LL_RCC_PREDIV_DIV_6 * @arg @ref LL_RCC_PREDIV_DIV_7 * @arg @ref LL_RCC_PREDIV_DIV_8 * @arg @ref LL_RCC_PREDIV_DIV_9 * @arg @ref LL_RCC_PREDIV_DIV_10 * @arg @ref LL_RCC_PREDIV_DIV_11 * @arg @ref LL_RCC_PREDIV_DIV_12 * @arg @ref LL_RCC_PREDIV_DIV_13 * @arg @ref LL_RCC_PREDIV_DIV_14 * @arg @ref LL_RCC_PREDIV_DIV_15 * @arg @ref LL_RCC_PREDIV_DIV_16 * @retval PLL clock frequency (in Hz) */ #define __LL_RCC_CALC_PLLCLK_FREQ(__INPUTFREQ__, __PLLMUL__, __PLLPREDIV__) \ (((__INPUTFREQ__) / ((((__PLLPREDIV__) & RCC_CFGR2_PREDIV) + 1U))) * ((((__PLLMUL__) & RCC_CFGR_PLLMUL) >> RCC_POSITION_PLLMUL) + 2U)) #else /** * @brief Helper macro to calculate the PLLCLK frequency * @note ex: @ref __LL_RCC_CALC_PLLCLK_FREQ (HSE_VALUE / (@ref LL_RCC_PLL_GetPrediv () + 1), @ref LL_RCC_PLL_GetMultiplicator()); * @param __INPUTFREQ__ PLL Input frequency (based on HSE div Prediv / HSI div 2) * @param __PLLMUL__ This parameter can be one of the following values: * @arg @ref LL_RCC_PLL_MUL_2 * @arg @ref LL_RCC_PLL_MUL_3 * @arg @ref LL_RCC_PLL_MUL_4 * @arg @ref LL_RCC_PLL_MUL_5 * @arg @ref LL_RCC_PLL_MUL_6 * @arg @ref LL_RCC_PLL_MUL_7 * @arg @ref LL_RCC_PLL_MUL_8 * @arg @ref LL_RCC_PLL_MUL_9 * @arg @ref LL_RCC_PLL_MUL_10 * @arg @ref LL_RCC_PLL_MUL_11 * @arg @ref LL_RCC_PLL_MUL_12 * @arg @ref LL_RCC_PLL_MUL_13 * @arg @ref LL_RCC_PLL_MUL_14 * @arg @ref LL_RCC_PLL_MUL_15 * @arg @ref LL_RCC_PLL_MUL_16 * @retval PLL clock frequency (in Hz) */ #define __LL_RCC_CALC_PLLCLK_FREQ(__INPUTFREQ__, __PLLMUL__) \ ((__INPUTFREQ__) * ((((__PLLMUL__) & RCC_CFGR_PLLMUL) >> RCC_POSITION_PLLMUL) + 2U)) #endif /* RCC_PLLSRC_PREDIV1_SUPPORT */ /** * @brief Helper macro to calculate the HCLK frequency * @note: __AHBPRESCALER__ be retrieved by @ref LL_RCC_GetAHBPrescaler * ex: __LL_RCC_CALC_HCLK_FREQ(LL_RCC_GetAHBPrescaler()) * @param __SYSCLKFREQ__ SYSCLK frequency (based on HSE/HSI/PLLCLK) * @param __AHBPRESCALER__ This parameter can be one of the following values: * @arg @ref LL_RCC_SYSCLK_DIV_1 * @arg @ref LL_RCC_SYSCLK_DIV_2 * @arg @ref LL_RCC_SYSCLK_DIV_4 * @arg @ref LL_RCC_SYSCLK_DIV_8 * @arg @ref LL_RCC_SYSCLK_DIV_16 * @arg @ref LL_RCC_SYSCLK_DIV_64 * @arg @ref LL_RCC_SYSCLK_DIV_128 * @arg @ref LL_RCC_SYSCLK_DIV_256 * @arg @ref LL_RCC_SYSCLK_DIV_512 * @retval HCLK clock frequency (in Hz) */ #define __LL_RCC_CALC_HCLK_FREQ(__SYSCLKFREQ__, __AHBPRESCALER__) ((__SYSCLKFREQ__) >> AHBPrescTable[((__AHBPRESCALER__) & RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos]) /** * @brief Helper macro to calculate the PCLK1 frequency (ABP1) * @note: __APB1PRESCALER__ be retrieved by @ref LL_RCC_GetAPB1Prescaler * ex: __LL_RCC_CALC_PCLK1_FREQ(LL_RCC_GetAPB1Prescaler()) * @param __HCLKFREQ__ HCLK frequency * @param __APB1PRESCALER__ This parameter can be one of the following values: * @arg @ref LL_RCC_APB1_DIV_1 * @arg @ref LL_RCC_APB1_DIV_2 * @arg @ref LL_RCC_APB1_DIV_4 * @arg @ref LL_RCC_APB1_DIV_8 * @arg @ref LL_RCC_APB1_DIV_16 * @retval PCLK1 clock frequency (in Hz) */ #define __LL_RCC_CALC_PCLK1_FREQ(__HCLKFREQ__, __APB1PRESCALER__) ((__HCLKFREQ__) >> APBPrescTable[(__APB1PRESCALER__) >> RCC_CFGR_PPRE_Pos]) /** * @} */ /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @defgroup RCC_LL_Exported_Functions RCC Exported Functions * @{ */ /** @defgroup RCC_LL_EF_HSE HSE * @{ */ /** * @brief Enable the Clock Security System. * @rmtoll CR CSSON LL_RCC_HSE_EnableCSS * @retval None */ __STATIC_INLINE void LL_RCC_HSE_EnableCSS(void) { SET_BIT(RCC->CR, RCC_CR_CSSON); } /** * @brief Disable the Clock Security System. * @note Cannot be disabled in HSE is ready (only by hardware) * @rmtoll CR CSSON LL_RCC_HSE_DisableCSS * @retval None */ __STATIC_INLINE void LL_RCC_HSE_DisableCSS(void) { CLEAR_BIT(RCC->CR, RCC_CR_CSSON); } /** * @brief Enable HSE external oscillator (HSE Bypass) * @rmtoll CR HSEBYP LL_RCC_HSE_EnableBypass * @retval None */ __STATIC_INLINE void LL_RCC_HSE_EnableBypass(void) { SET_BIT(RCC->CR, RCC_CR_HSEBYP); } /** * @brief Disable HSE external oscillator (HSE Bypass) * @rmtoll CR HSEBYP LL_RCC_HSE_DisableBypass * @retval None */ __STATIC_INLINE void LL_RCC_HSE_DisableBypass(void) { CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP); } /** * @brief Enable HSE crystal oscillator (HSE ON) * @rmtoll CR HSEON LL_RCC_HSE_Enable * @retval None */ __STATIC_INLINE void LL_RCC_HSE_Enable(void) { SET_BIT(RCC->CR, RCC_CR_HSEON); } /** * @brief Disable HSE crystal oscillator (HSE ON) * @rmtoll CR HSEON LL_RCC_HSE_Disable * @retval None */ __STATIC_INLINE void LL_RCC_HSE_Disable(void) { CLEAR_BIT(RCC->CR, RCC_CR_HSEON); } /** * @brief Check if HSE oscillator Ready * @rmtoll CR HSERDY LL_RCC_HSE_IsReady * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_HSE_IsReady(void) { return (READ_BIT(RCC->CR, RCC_CR_HSERDY) == (RCC_CR_HSERDY)); } /** * @} */ /** @defgroup RCC_LL_EF_HSI HSI * @{ */ /** * @brief Enable HSI oscillator * @rmtoll CR HSION LL_RCC_HSI_Enable * @retval None */ __STATIC_INLINE void LL_RCC_HSI_Enable(void) { SET_BIT(RCC->CR, RCC_CR_HSION); } /** * @brief Disable HSI oscillator * @rmtoll CR HSION LL_RCC_HSI_Disable * @retval None */ __STATIC_INLINE void LL_RCC_HSI_Disable(void) { CLEAR_BIT(RCC->CR, RCC_CR_HSION); } /** * @brief Check if HSI clock is ready * @rmtoll CR HSIRDY LL_RCC_HSI_IsReady * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_HSI_IsReady(void) { return (READ_BIT(RCC->CR, RCC_CR_HSIRDY) == (RCC_CR_HSIRDY)); } /** * @brief Get HSI Calibration value * @note When HSITRIM is written, HSICAL is updated with the sum of * HSITRIM and the factory trim value * @rmtoll CR HSICAL LL_RCC_HSI_GetCalibration * @retval Between Min_Data = 0x00 and Max_Data = 0xFF */ __STATIC_INLINE uint32_t LL_RCC_HSI_GetCalibration(void) { return (uint32_t)(READ_BIT(RCC->CR, RCC_CR_HSICAL) >> RCC_CR_HSICAL_Pos); } /** * @brief Set HSI Calibration trimming * @note user-programmable trimming value that is added to the HSICAL * @note Default value is 16, which, when added to the HSICAL value, * should trim the HSI to 16 MHz +/- 1 % * @rmtoll CR HSITRIM LL_RCC_HSI_SetCalibTrimming * @param Value between Min_Data = 0x00 and Max_Data = 0x1F * @retval None */ __STATIC_INLINE void LL_RCC_HSI_SetCalibTrimming(uint32_t Value) { MODIFY_REG(RCC->CR, RCC_CR_HSITRIM, Value << RCC_CR_HSITRIM_Pos); } /** * @brief Get HSI Calibration trimming * @rmtoll CR HSITRIM LL_RCC_HSI_GetCalibTrimming * @retval Between Min_Data = 0x00 and Max_Data = 0x1F */ __STATIC_INLINE uint32_t LL_RCC_HSI_GetCalibTrimming(void) { return (uint32_t)(READ_BIT(RCC->CR, RCC_CR_HSITRIM) >> RCC_CR_HSITRIM_Pos); } /** * @} */ #if defined(RCC_HSI48_SUPPORT) /** @defgroup RCC_LL_EF_HSI48 HSI48 * @{ */ /** * @brief Enable HSI48 * @rmtoll CR2 HSI48ON LL_RCC_HSI48_Enable * @retval None */ __STATIC_INLINE void LL_RCC_HSI48_Enable(void) { SET_BIT(RCC->CR2, RCC_CR2_HSI48ON); } /** * @brief Disable HSI48 * @rmtoll CR2 HSI48ON LL_RCC_HSI48_Disable * @retval None */ __STATIC_INLINE void LL_RCC_HSI48_Disable(void) { CLEAR_BIT(RCC->CR2, RCC_CR2_HSI48ON); } /** * @brief Check if HSI48 oscillator Ready * @rmtoll CR2 HSI48RDY LL_RCC_HSI48_IsReady * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_HSI48_IsReady(void) { return (READ_BIT(RCC->CR2, RCC_CR2_HSI48RDY) == (RCC_CR2_HSI48RDY)); } /** * @brief Get HSI48 Calibration value * @rmtoll CR2 HSI48CAL LL_RCC_HSI48_GetCalibration * @retval Between Min_Data = 0x00 and Max_Data = 0xFF */ __STATIC_INLINE uint32_t LL_RCC_HSI48_GetCalibration(void) { return (uint32_t)(READ_BIT(RCC->CR2, RCC_CR2_HSI48CAL) >> RCC_POSITION_HSI48CAL); } /** * @} */ #endif /* RCC_HSI48_SUPPORT */ /** @defgroup RCC_LL_EF_HSI14 HSI14 * @{ */ /** * @brief Enable HSI14 * @rmtoll CR2 HSI14ON LL_RCC_HSI14_Enable * @retval None */ __STATIC_INLINE void LL_RCC_HSI14_Enable(void) { SET_BIT(RCC->CR2, RCC_CR2_HSI14ON); } /** * @brief Disable HSI14 * @rmtoll CR2 HSI14ON LL_RCC_HSI14_Disable * @retval None */ __STATIC_INLINE void LL_RCC_HSI14_Disable(void) { CLEAR_BIT(RCC->CR2, RCC_CR2_HSI14ON); } /** * @brief Check if HSI14 oscillator Ready * @rmtoll CR2 HSI14RDY LL_RCC_HSI14_IsReady * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_HSI14_IsReady(void) { return (READ_BIT(RCC->CR2, RCC_CR2_HSI14RDY) == (RCC_CR2_HSI14RDY)); } /** * @brief ADC interface can turn on the HSI14 oscillator * @rmtoll CR2 HSI14DIS LL_RCC_HSI14_EnableADCControl * @retval None */ __STATIC_INLINE void LL_RCC_HSI14_EnableADCControl(void) { CLEAR_BIT(RCC->CR2, RCC_CR2_HSI14DIS); } /** * @brief ADC interface can not turn on the HSI14 oscillator * @rmtoll CR2 HSI14DIS LL_RCC_HSI14_DisableADCControl * @retval None */ __STATIC_INLINE void LL_RCC_HSI14_DisableADCControl(void) { SET_BIT(RCC->CR2, RCC_CR2_HSI14DIS); } /** * @brief Set HSI14 Calibration trimming * @note user-programmable trimming value that is added to the HSI14CAL * @note Default value is 16, which, when added to the HSI14CAL value, * should trim the HSI14 to 14 MHz +/- 1 % * @rmtoll CR2 HSI14TRIM LL_RCC_HSI14_SetCalibTrimming * @param Value between Min_Data = 0x00 and Max_Data = 0xFF * @retval None */ __STATIC_INLINE void LL_RCC_HSI14_SetCalibTrimming(uint32_t Value) { MODIFY_REG(RCC->CR2, RCC_CR2_HSI14TRIM, Value << RCC_POSITION_HSI14TRIM); } /** * @brief Get HSI14 Calibration value * @note When HSI14TRIM is written, HSI14CAL is updated with the sum of * HSI14TRIM and the factory trim value * @rmtoll CR2 HSI14TRIM LL_RCC_HSI14_GetCalibTrimming * @retval Between Min_Data = 0x00 and Max_Data = 0x1F */ __STATIC_INLINE uint32_t LL_RCC_HSI14_GetCalibTrimming(void) { return (uint32_t)(READ_BIT(RCC->CR2, RCC_CR2_HSI14TRIM) >> RCC_POSITION_HSI14TRIM); } /** * @brief Get HSI14 Calibration trimming * @rmtoll CR2 HSI14CAL LL_RCC_HSI14_GetCalibration * @retval Between Min_Data = 0x00 and Max_Data = 0x1F */ __STATIC_INLINE uint32_t LL_RCC_HSI14_GetCalibration(void) { return (uint32_t)(READ_BIT(RCC->CR2, RCC_CR2_HSI14CAL) >> RCC_POSITION_HSI14CAL); } /** * @} */ /** @defgroup RCC_LL_EF_LSE LSE * @{ */ /** * @brief Enable Low Speed External (LSE) crystal. * @rmtoll BDCR LSEON LL_RCC_LSE_Enable * @retval None */ __STATIC_INLINE void LL_RCC_LSE_Enable(void) { SET_BIT(RCC->BDCR, RCC_BDCR_LSEON); } /** * @brief Disable Low Speed External (LSE) crystal. * @rmtoll BDCR LSEON LL_RCC_LSE_Disable * @retval None */ __STATIC_INLINE void LL_RCC_LSE_Disable(void) { CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEON); } /** * @brief Enable external clock source (LSE bypass). * @rmtoll BDCR LSEBYP LL_RCC_LSE_EnableBypass * @retval None */ __STATIC_INLINE void LL_RCC_LSE_EnableBypass(void) { SET_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); } /** * @brief Disable external clock source (LSE bypass). * @rmtoll BDCR LSEBYP LL_RCC_LSE_DisableBypass * @retval None */ __STATIC_INLINE void LL_RCC_LSE_DisableBypass(void) { CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEBYP); } /** * @brief Set LSE oscillator drive capability * @note The oscillator is in Xtal mode when it is not in bypass mode. * @rmtoll BDCR LSEDRV LL_RCC_LSE_SetDriveCapability * @param LSEDrive This parameter can be one of the following values: * @arg @ref LL_RCC_LSEDRIVE_LOW * @arg @ref LL_RCC_LSEDRIVE_MEDIUMLOW * @arg @ref LL_RCC_LSEDRIVE_MEDIUMHIGH * @arg @ref LL_RCC_LSEDRIVE_HIGH * @retval None */ __STATIC_INLINE void LL_RCC_LSE_SetDriveCapability(uint32_t LSEDrive) { MODIFY_REG(RCC->BDCR, RCC_BDCR_LSEDRV, LSEDrive); } /** * @brief Get LSE oscillator drive capability * @rmtoll BDCR LSEDRV LL_RCC_LSE_GetDriveCapability * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_LSEDRIVE_LOW * @arg @ref LL_RCC_LSEDRIVE_MEDIUMLOW * @arg @ref LL_RCC_LSEDRIVE_MEDIUMHIGH * @arg @ref LL_RCC_LSEDRIVE_HIGH */ __STATIC_INLINE uint32_t LL_RCC_LSE_GetDriveCapability(void) { return (uint32_t)(READ_BIT(RCC->BDCR, RCC_BDCR_LSEDRV)); } /** * @brief Check if LSE oscillator Ready * @rmtoll BDCR LSERDY LL_RCC_LSE_IsReady * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_LSE_IsReady(void) { return (READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == (RCC_BDCR_LSERDY)); } /** * @} */ /** @defgroup RCC_LL_EF_LSI LSI * @{ */ /** * @brief Enable LSI Oscillator * @rmtoll CSR LSION LL_RCC_LSI_Enable * @retval None */ __STATIC_INLINE void LL_RCC_LSI_Enable(void) { SET_BIT(RCC->CSR, RCC_CSR_LSION); } /** * @brief Disable LSI Oscillator * @rmtoll CSR LSION LL_RCC_LSI_Disable * @retval None */ __STATIC_INLINE void LL_RCC_LSI_Disable(void) { CLEAR_BIT(RCC->CSR, RCC_CSR_LSION); } /** * @brief Check if LSI is Ready * @rmtoll CSR LSIRDY LL_RCC_LSI_IsReady * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_LSI_IsReady(void) { return (READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) == (RCC_CSR_LSIRDY)); } /** * @} */ /** @defgroup RCC_LL_EF_System System * @{ */ /** * @brief Configure the system clock source * @rmtoll CFGR SW LL_RCC_SetSysClkSource * @param Source This parameter can be one of the following values: * @arg @ref LL_RCC_SYS_CLKSOURCE_HSI * @arg @ref LL_RCC_SYS_CLKSOURCE_HSE * @arg @ref LL_RCC_SYS_CLKSOURCE_PLL * @arg @ref LL_RCC_SYS_CLKSOURCE_HSI48 (*) * * (*) value not defined in all devices * @retval None */ __STATIC_INLINE void LL_RCC_SetSysClkSource(uint32_t Source) { MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, Source); } /** * @brief Get the system clock source * @rmtoll CFGR SWS LL_RCC_GetSysClkSource * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_HSI * @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_HSE * @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_PLL * @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_HSI48 (*) * * (*) value not defined in all devices */ __STATIC_INLINE uint32_t LL_RCC_GetSysClkSource(void) { return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_SWS)); } /** * @brief Set AHB prescaler * @rmtoll CFGR HPRE LL_RCC_SetAHBPrescaler * @param Prescaler This parameter can be one of the following values: * @arg @ref LL_RCC_SYSCLK_DIV_1 * @arg @ref LL_RCC_SYSCLK_DIV_2 * @arg @ref LL_RCC_SYSCLK_DIV_4 * @arg @ref LL_RCC_SYSCLK_DIV_8 * @arg @ref LL_RCC_SYSCLK_DIV_16 * @arg @ref LL_RCC_SYSCLK_DIV_64 * @arg @ref LL_RCC_SYSCLK_DIV_128 * @arg @ref LL_RCC_SYSCLK_DIV_256 * @arg @ref LL_RCC_SYSCLK_DIV_512 * @retval None */ __STATIC_INLINE void LL_RCC_SetAHBPrescaler(uint32_t Prescaler) { MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, Prescaler); } /** * @brief Set APB1 prescaler * @rmtoll CFGR PPRE LL_RCC_SetAPB1Prescaler * @param Prescaler This parameter can be one of the following values: * @arg @ref LL_RCC_APB1_DIV_1 * @arg @ref LL_RCC_APB1_DIV_2 * @arg @ref LL_RCC_APB1_DIV_4 * @arg @ref LL_RCC_APB1_DIV_8 * @arg @ref LL_RCC_APB1_DIV_16 * @retval None */ __STATIC_INLINE void LL_RCC_SetAPB1Prescaler(uint32_t Prescaler) { MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE, Prescaler); } /** * @brief Get AHB prescaler * @rmtoll CFGR HPRE LL_RCC_GetAHBPrescaler * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_SYSCLK_DIV_1 * @arg @ref LL_RCC_SYSCLK_DIV_2 * @arg @ref LL_RCC_SYSCLK_DIV_4 * @arg @ref LL_RCC_SYSCLK_DIV_8 * @arg @ref LL_RCC_SYSCLK_DIV_16 * @arg @ref LL_RCC_SYSCLK_DIV_64 * @arg @ref LL_RCC_SYSCLK_DIV_128 * @arg @ref LL_RCC_SYSCLK_DIV_256 * @arg @ref LL_RCC_SYSCLK_DIV_512 */ __STATIC_INLINE uint32_t LL_RCC_GetAHBPrescaler(void) { return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_HPRE)); } /** * @brief Get APB1 prescaler * @rmtoll CFGR PPRE LL_RCC_GetAPB1Prescaler * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_APB1_DIV_1 * @arg @ref LL_RCC_APB1_DIV_2 * @arg @ref LL_RCC_APB1_DIV_4 * @arg @ref LL_RCC_APB1_DIV_8 * @arg @ref LL_RCC_APB1_DIV_16 */ __STATIC_INLINE uint32_t LL_RCC_GetAPB1Prescaler(void) { return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PPRE)); } /** * @} */ /** @defgroup RCC_LL_EF_MCO MCO * @{ */ /** * @brief Configure MCOx * @rmtoll CFGR MCO LL_RCC_ConfigMCO\n * CFGR MCOPRE LL_RCC_ConfigMCO\n * CFGR PLLNODIV LL_RCC_ConfigMCO * @param MCOxSource This parameter can be one of the following values: * @arg @ref LL_RCC_MCO1SOURCE_NOCLOCK * @arg @ref LL_RCC_MCO1SOURCE_HSI14 * @arg @ref LL_RCC_MCO1SOURCE_SYSCLK * @arg @ref LL_RCC_MCO1SOURCE_HSI * @arg @ref LL_RCC_MCO1SOURCE_HSE * @arg @ref LL_RCC_MCO1SOURCE_LSI * @arg @ref LL_RCC_MCO1SOURCE_LSE * @arg @ref LL_RCC_MCO1SOURCE_HSI48 (*) * @arg @ref LL_RCC_MCO1SOURCE_PLLCLK (*) * @arg @ref LL_RCC_MCO1SOURCE_PLLCLK_DIV_2 * * (*) value not defined in all devices * @param MCOxPrescaler This parameter can be one of the following values: * @arg @ref LL_RCC_MCO1_DIV_1 * @arg @ref LL_RCC_MCO1_DIV_2 (*) * @arg @ref LL_RCC_MCO1_DIV_4 (*) * @arg @ref LL_RCC_MCO1_DIV_8 (*) * @arg @ref LL_RCC_MCO1_DIV_16 (*) * @arg @ref LL_RCC_MCO1_DIV_32 (*) * @arg @ref LL_RCC_MCO1_DIV_64 (*) * @arg @ref LL_RCC_MCO1_DIV_128 (*) * * (*) value not defined in all devices * @retval None */ __STATIC_INLINE void LL_RCC_ConfigMCO(uint32_t MCOxSource, uint32_t MCOxPrescaler) { #if defined(RCC_CFGR_MCOPRE) #if defined(RCC_CFGR_PLLNODIV) MODIFY_REG(RCC->CFGR, RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE | RCC_CFGR_PLLNODIV, MCOxSource | MCOxPrescaler); #else MODIFY_REG(RCC->CFGR, RCC_CFGR_MCOSEL | RCC_CFGR_MCOPRE, MCOxSource | MCOxPrescaler); #endif /* RCC_CFGR_PLLNODIV */ #else MODIFY_REG(RCC->CFGR, RCC_CFGR_MCOSEL, MCOxSource); #endif /* RCC_CFGR_MCOPRE */ } /** * @} */ /** @defgroup RCC_LL_EF_Peripheral_Clock_Source Peripheral Clock Source * @{ */ /** * @brief Configure USARTx clock source * @rmtoll CFGR3 USART1SW LL_RCC_SetUSARTClockSource\n * CFGR3 USART2SW LL_RCC_SetUSARTClockSource\n * CFGR3 USART3SW LL_RCC_SetUSARTClockSource * @param USARTxSource This parameter can be one of the following values: * @arg @ref LL_RCC_USART1_CLKSOURCE_PCLK1 * @arg @ref LL_RCC_USART1_CLKSOURCE_SYSCLK * @arg @ref LL_RCC_USART1_CLKSOURCE_LSE * @arg @ref LL_RCC_USART1_CLKSOURCE_HSI * @arg @ref LL_RCC_USART2_CLKSOURCE_PCLK1 (*) * @arg @ref LL_RCC_USART2_CLKSOURCE_SYSCLK (*) * @arg @ref LL_RCC_USART2_CLKSOURCE_LSE (*) * @arg @ref LL_RCC_USART2_CLKSOURCE_HSI (*) * @arg @ref LL_RCC_USART3_CLKSOURCE_PCLK1 (*) * @arg @ref LL_RCC_USART3_CLKSOURCE_SYSCLK (*) * @arg @ref LL_RCC_USART3_CLKSOURCE_LSE (*) * @arg @ref LL_RCC_USART3_CLKSOURCE_HSI (*) * * (*) value not defined in all devices. * @retval None */ __STATIC_INLINE void LL_RCC_SetUSARTClockSource(uint32_t USARTxSource) { MODIFY_REG(RCC->CFGR3, (RCC_CFGR3_USART1SW << ((USARTxSource & 0xFF000000U) >> 24U)), (USARTxSource & 0x00FFFFFFU)); } /** * @brief Configure I2Cx clock source * @rmtoll CFGR3 I2C1SW LL_RCC_SetI2CClockSource * @param I2CxSource This parameter can be one of the following values: * @arg @ref LL_RCC_I2C1_CLKSOURCE_HSI * @arg @ref LL_RCC_I2C1_CLKSOURCE_SYSCLK * @retval None */ __STATIC_INLINE void LL_RCC_SetI2CClockSource(uint32_t I2CxSource) { MODIFY_REG(RCC->CFGR3, RCC_CFGR3_I2C1SW, I2CxSource); } #if defined(CEC) /** * @brief Configure CEC clock source * @rmtoll CFGR3 CECSW LL_RCC_SetCECClockSource * @param CECxSource This parameter can be one of the following values: * @arg @ref LL_RCC_CEC_CLKSOURCE_HSI_DIV244 * @arg @ref LL_RCC_CEC_CLKSOURCE_LSE * @retval None */ __STATIC_INLINE void LL_RCC_SetCECClockSource(uint32_t CECxSource) { MODIFY_REG(RCC->CFGR3, RCC_CFGR3_CECSW, CECxSource); } #endif /* CEC */ #if defined(USB) /** * @brief Configure USB clock source * @rmtoll CFGR3 USBSW LL_RCC_SetUSBClockSource * @param USBxSource This parameter can be one of the following values: * @arg @ref LL_RCC_USB_CLKSOURCE_HSI48 (*) * @arg @ref LL_RCC_USB_CLKSOURCE_NONE (*) * @arg @ref LL_RCC_USB_CLKSOURCE_PLL * * (*) value not defined in all devices. * @retval None */ __STATIC_INLINE void LL_RCC_SetUSBClockSource(uint32_t USBxSource) { MODIFY_REG(RCC->CFGR3, RCC_CFGR3_USBSW, USBxSource); } #endif /* USB */ /** * @brief Get USARTx clock source * @rmtoll CFGR3 USART1SW LL_RCC_GetUSARTClockSource\n * CFGR3 USART2SW LL_RCC_GetUSARTClockSource\n * CFGR3 USART3SW LL_RCC_GetUSARTClockSource * @param USARTx This parameter can be one of the following values: * @arg @ref LL_RCC_USART1_CLKSOURCE * @arg @ref LL_RCC_USART2_CLKSOURCE (*) * @arg @ref LL_RCC_USART3_CLKSOURCE (*) * * (*) value not defined in all devices. * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_USART1_CLKSOURCE_PCLK1 * @arg @ref LL_RCC_USART1_CLKSOURCE_SYSCLK * @arg @ref LL_RCC_USART1_CLKSOURCE_LSE * @arg @ref LL_RCC_USART1_CLKSOURCE_HSI * @arg @ref LL_RCC_USART2_CLKSOURCE_PCLK1 (*) * @arg @ref LL_RCC_USART2_CLKSOURCE_SYSCLK (*) * @arg @ref LL_RCC_USART2_CLKSOURCE_LSE (*) * @arg @ref LL_RCC_USART2_CLKSOURCE_HSI (*) * @arg @ref LL_RCC_USART3_CLKSOURCE_PCLK1 (*) * @arg @ref LL_RCC_USART3_CLKSOURCE_SYSCLK (*) * @arg @ref LL_RCC_USART3_CLKSOURCE_LSE (*) * @arg @ref LL_RCC_USART3_CLKSOURCE_HSI (*) * * (*) value not defined in all devices. */ __STATIC_INLINE uint32_t LL_RCC_GetUSARTClockSource(uint32_t USARTx) { return (uint32_t)(READ_BIT(RCC->CFGR3, (RCC_CFGR3_USART1SW << USARTx)) | (USARTx << 24U)); } /** * @brief Get I2Cx clock source * @rmtoll CFGR3 I2C1SW LL_RCC_GetI2CClockSource * @param I2Cx This parameter can be one of the following values: * @arg @ref LL_RCC_I2C1_CLKSOURCE * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_I2C1_CLKSOURCE_HSI * @arg @ref LL_RCC_I2C1_CLKSOURCE_SYSCLK */ __STATIC_INLINE uint32_t LL_RCC_GetI2CClockSource(uint32_t I2Cx) { return (uint32_t)(READ_BIT(RCC->CFGR3, I2Cx)); } #if defined(CEC) /** * @brief Get CEC clock source * @rmtoll CFGR3 CECSW LL_RCC_GetCECClockSource * @param CECx This parameter can be one of the following values: * @arg @ref LL_RCC_CEC_CLKSOURCE * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_CEC_CLKSOURCE_HSI_DIV244 * @arg @ref LL_RCC_CEC_CLKSOURCE_LSE */ __STATIC_INLINE uint32_t LL_RCC_GetCECClockSource(uint32_t CECx) { return (uint32_t)(READ_BIT(RCC->CFGR3, CECx)); } #endif /* CEC */ #if defined(USB) /** * @brief Get USBx clock source * @rmtoll CFGR3 USBSW LL_RCC_GetUSBClockSource * @param USBx This parameter can be one of the following values: * @arg @ref LL_RCC_USB_CLKSOURCE * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_USB_CLKSOURCE_HSI48 (*) * @arg @ref LL_RCC_USB_CLKSOURCE_NONE (*) * @arg @ref LL_RCC_USB_CLKSOURCE_PLL * * (*) value not defined in all devices. */ __STATIC_INLINE uint32_t LL_RCC_GetUSBClockSource(uint32_t USBx) { return (uint32_t)(READ_BIT(RCC->CFGR3, USBx)); } #endif /* USB */ /** * @} */ /** @defgroup RCC_LL_EF_RTC RTC * @{ */ /** * @brief Set RTC Clock Source * @note Once the RTC clock source has been selected, it cannot be changed any more unless * the Backup domain is reset. The BDRST bit can be used to reset them. * @rmtoll BDCR RTCSEL LL_RCC_SetRTCClockSource * @param Source This parameter can be one of the following values: * @arg @ref LL_RCC_RTC_CLKSOURCE_NONE * @arg @ref LL_RCC_RTC_CLKSOURCE_LSE * @arg @ref LL_RCC_RTC_CLKSOURCE_LSI * @arg @ref LL_RCC_RTC_CLKSOURCE_HSE_DIV32 * @retval None */ __STATIC_INLINE void LL_RCC_SetRTCClockSource(uint32_t Source) { MODIFY_REG(RCC->BDCR, RCC_BDCR_RTCSEL, Source); } /** * @brief Get RTC Clock Source * @rmtoll BDCR RTCSEL LL_RCC_GetRTCClockSource * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_RTC_CLKSOURCE_NONE * @arg @ref LL_RCC_RTC_CLKSOURCE_LSE * @arg @ref LL_RCC_RTC_CLKSOURCE_LSI * @arg @ref LL_RCC_RTC_CLKSOURCE_HSE_DIV32 */ __STATIC_INLINE uint32_t LL_RCC_GetRTCClockSource(void) { return (uint32_t)(READ_BIT(RCC->BDCR, RCC_BDCR_RTCSEL)); } /** * @brief Enable RTC * @rmtoll BDCR RTCEN LL_RCC_EnableRTC * @retval None */ __STATIC_INLINE void LL_RCC_EnableRTC(void) { SET_BIT(RCC->BDCR, RCC_BDCR_RTCEN); } /** * @brief Disable RTC * @rmtoll BDCR RTCEN LL_RCC_DisableRTC * @retval None */ __STATIC_INLINE void LL_RCC_DisableRTC(void) { CLEAR_BIT(RCC->BDCR, RCC_BDCR_RTCEN); } /** * @brief Check if RTC has been enabled or not * @rmtoll BDCR RTCEN LL_RCC_IsEnabledRTC * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsEnabledRTC(void) { return (READ_BIT(RCC->BDCR, RCC_BDCR_RTCEN) == (RCC_BDCR_RTCEN)); } /** * @brief Force the Backup domain reset * @rmtoll BDCR BDRST LL_RCC_ForceBackupDomainReset * @retval None */ __STATIC_INLINE void LL_RCC_ForceBackupDomainReset(void) { SET_BIT(RCC->BDCR, RCC_BDCR_BDRST); } /** * @brief Release the Backup domain reset * @rmtoll BDCR BDRST LL_RCC_ReleaseBackupDomainReset * @retval None */ __STATIC_INLINE void LL_RCC_ReleaseBackupDomainReset(void) { CLEAR_BIT(RCC->BDCR, RCC_BDCR_BDRST); } /** * @} */ /** @defgroup RCC_LL_EF_PLL PLL * @{ */ /** * @brief Enable PLL * @rmtoll CR PLLON LL_RCC_PLL_Enable * @retval None */ __STATIC_INLINE void LL_RCC_PLL_Enable(void) { SET_BIT(RCC->CR, RCC_CR_PLLON); } /** * @brief Disable PLL * @note Cannot be disabled if the PLL clock is used as the system clock * @rmtoll CR PLLON LL_RCC_PLL_Disable * @retval None */ __STATIC_INLINE void LL_RCC_PLL_Disable(void) { CLEAR_BIT(RCC->CR, RCC_CR_PLLON); } /** * @brief Check if PLL Ready * @rmtoll CR PLLRDY LL_RCC_PLL_IsReady * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_PLL_IsReady(void) { return (READ_BIT(RCC->CR, RCC_CR_PLLRDY) == (RCC_CR_PLLRDY)); } #if defined(RCC_PLLSRC_PREDIV1_SUPPORT) /** * @brief Configure PLL used for SYSCLK Domain * @rmtoll CFGR PLLSRC LL_RCC_PLL_ConfigDomain_SYS\n * CFGR PLLMUL LL_RCC_PLL_ConfigDomain_SYS\n * CFGR2 PREDIV LL_RCC_PLL_ConfigDomain_SYS * @param Source This parameter can be one of the following values: * @arg @ref LL_RCC_PLLSOURCE_HSI * @arg @ref LL_RCC_PLLSOURCE_HSE * @arg @ref LL_RCC_PLLSOURCE_HSI48 (*) * * (*) value not defined in all devices * @param PLLMul This parameter can be one of the following values: * @arg @ref LL_RCC_PLL_MUL_2 * @arg @ref LL_RCC_PLL_MUL_3 * @arg @ref LL_RCC_PLL_MUL_4 * @arg @ref LL_RCC_PLL_MUL_5 * @arg @ref LL_RCC_PLL_MUL_6 * @arg @ref LL_RCC_PLL_MUL_7 * @arg @ref LL_RCC_PLL_MUL_8 * @arg @ref LL_RCC_PLL_MUL_9 * @arg @ref LL_RCC_PLL_MUL_10 * @arg @ref LL_RCC_PLL_MUL_11 * @arg @ref LL_RCC_PLL_MUL_12 * @arg @ref LL_RCC_PLL_MUL_13 * @arg @ref LL_RCC_PLL_MUL_14 * @arg @ref LL_RCC_PLL_MUL_15 * @arg @ref LL_RCC_PLL_MUL_16 * @param PLLDiv This parameter can be one of the following values: * @arg @ref LL_RCC_PREDIV_DIV_1 * @arg @ref LL_RCC_PREDIV_DIV_2 * @arg @ref LL_RCC_PREDIV_DIV_3 * @arg @ref LL_RCC_PREDIV_DIV_4 * @arg @ref LL_RCC_PREDIV_DIV_5 * @arg @ref LL_RCC_PREDIV_DIV_6 * @arg @ref LL_RCC_PREDIV_DIV_7 * @arg @ref LL_RCC_PREDIV_DIV_8 * @arg @ref LL_RCC_PREDIV_DIV_9 * @arg @ref LL_RCC_PREDIV_DIV_10 * @arg @ref LL_RCC_PREDIV_DIV_11 * @arg @ref LL_RCC_PREDIV_DIV_12 * @arg @ref LL_RCC_PREDIV_DIV_13 * @arg @ref LL_RCC_PREDIV_DIV_14 * @arg @ref LL_RCC_PREDIV_DIV_15 * @arg @ref LL_RCC_PREDIV_DIV_16 * @retval None */ __STATIC_INLINE void LL_RCC_PLL_ConfigDomain_SYS(uint32_t Source, uint32_t PLLMul, uint32_t PLLDiv) { MODIFY_REG(RCC->CFGR, RCC_CFGR_PLLSRC | RCC_CFGR_PLLMUL, Source | PLLMul); MODIFY_REG(RCC->CFGR2, RCC_CFGR2_PREDIV, PLLDiv); } #else /** * @brief Configure PLL used for SYSCLK Domain * @rmtoll CFGR PLLSRC LL_RCC_PLL_ConfigDomain_SYS\n * CFGR PLLMUL LL_RCC_PLL_ConfigDomain_SYS\n * CFGR2 PREDIV LL_RCC_PLL_ConfigDomain_SYS * @param Source This parameter can be one of the following values: * @arg @ref LL_RCC_PLLSOURCE_HSI_DIV_2 * @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_1 * @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_2 * @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_3 * @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_4 * @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_5 * @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_6 * @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_7 * @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_8 * @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_9 * @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_10 * @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_11 * @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_12 * @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_13 * @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_14 * @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_15 * @arg @ref LL_RCC_PLLSOURCE_HSE_DIV_16 * @param PLLMul This parameter can be one of the following values: * @arg @ref LL_RCC_PLL_MUL_2 * @arg @ref LL_RCC_PLL_MUL_3 * @arg @ref LL_RCC_PLL_MUL_4 * @arg @ref LL_RCC_PLL_MUL_5 * @arg @ref LL_RCC_PLL_MUL_6 * @arg @ref LL_RCC_PLL_MUL_7 * @arg @ref LL_RCC_PLL_MUL_8 * @arg @ref LL_RCC_PLL_MUL_9 * @arg @ref LL_RCC_PLL_MUL_10 * @arg @ref LL_RCC_PLL_MUL_11 * @arg @ref LL_RCC_PLL_MUL_12 * @arg @ref LL_RCC_PLL_MUL_13 * @arg @ref LL_RCC_PLL_MUL_14 * @arg @ref LL_RCC_PLL_MUL_15 * @arg @ref LL_RCC_PLL_MUL_16 * @retval None */ __STATIC_INLINE void LL_RCC_PLL_ConfigDomain_SYS(uint32_t Source, uint32_t PLLMul) { MODIFY_REG(RCC->CFGR, RCC_CFGR_PLLSRC | RCC_CFGR_PLLMUL, (Source & RCC_CFGR_PLLSRC) | PLLMul); MODIFY_REG(RCC->CFGR2, RCC_CFGR2_PREDIV, (Source & RCC_CFGR2_PREDIV)); } #endif /* RCC_PLLSRC_PREDIV1_SUPPORT */ /** * @brief Get the oscillator used as PLL clock source. * @rmtoll CFGR PLLSRC LL_RCC_PLL_GetMainSource * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_PLLSOURCE_HSI (*) * @arg @ref LL_RCC_PLLSOURCE_HSI_DIV_2 (*) * @arg @ref LL_RCC_PLLSOURCE_HSE * @arg @ref LL_RCC_PLLSOURCE_HSI48 (*) * * (*) value not defined in all devices */ __STATIC_INLINE uint32_t LL_RCC_PLL_GetMainSource(void) { return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PLLSRC)); } /** * @brief Get PLL multiplication Factor * @rmtoll CFGR PLLMUL LL_RCC_PLL_GetMultiplicator * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_PLL_MUL_2 * @arg @ref LL_RCC_PLL_MUL_3 * @arg @ref LL_RCC_PLL_MUL_4 * @arg @ref LL_RCC_PLL_MUL_5 * @arg @ref LL_RCC_PLL_MUL_6 * @arg @ref LL_RCC_PLL_MUL_7 * @arg @ref LL_RCC_PLL_MUL_8 * @arg @ref LL_RCC_PLL_MUL_9 * @arg @ref LL_RCC_PLL_MUL_10 * @arg @ref LL_RCC_PLL_MUL_11 * @arg @ref LL_RCC_PLL_MUL_12 * @arg @ref LL_RCC_PLL_MUL_13 * @arg @ref LL_RCC_PLL_MUL_14 * @arg @ref LL_RCC_PLL_MUL_15 * @arg @ref LL_RCC_PLL_MUL_16 */ __STATIC_INLINE uint32_t LL_RCC_PLL_GetMultiplicator(void) { return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PLLMUL)); } /** * @brief Get PREDIV division factor for the main PLL * @note They can be written only when the PLL is disabled * @rmtoll CFGR2 PREDIV LL_RCC_PLL_GetPrediv * @retval Returned value can be one of the following values: * @arg @ref LL_RCC_PREDIV_DIV_1 * @arg @ref LL_RCC_PREDIV_DIV_2 * @arg @ref LL_RCC_PREDIV_DIV_3 * @arg @ref LL_RCC_PREDIV_DIV_4 * @arg @ref LL_RCC_PREDIV_DIV_5 * @arg @ref LL_RCC_PREDIV_DIV_6 * @arg @ref LL_RCC_PREDIV_DIV_7 * @arg @ref LL_RCC_PREDIV_DIV_8 * @arg @ref LL_RCC_PREDIV_DIV_9 * @arg @ref LL_RCC_PREDIV_DIV_10 * @arg @ref LL_RCC_PREDIV_DIV_11 * @arg @ref LL_RCC_PREDIV_DIV_12 * @arg @ref LL_RCC_PREDIV_DIV_13 * @arg @ref LL_RCC_PREDIV_DIV_14 * @arg @ref LL_RCC_PREDIV_DIV_15 * @arg @ref LL_RCC_PREDIV_DIV_16 */ __STATIC_INLINE uint32_t LL_RCC_PLL_GetPrediv(void) { return (uint32_t)(READ_BIT(RCC->CFGR2, RCC_CFGR2_PREDIV)); } /** * @} */ /** @defgroup RCC_LL_EF_FLAG_Management FLAG Management * @{ */ /** * @brief Clear LSI ready interrupt flag * @rmtoll CIR LSIRDYC LL_RCC_ClearFlag_LSIRDY * @retval None */ __STATIC_INLINE void LL_RCC_ClearFlag_LSIRDY(void) { SET_BIT(RCC->CIR, RCC_CIR_LSIRDYC); } /** * @brief Clear LSE ready interrupt flag * @rmtoll CIR LSERDYC LL_RCC_ClearFlag_LSERDY * @retval None */ __STATIC_INLINE void LL_RCC_ClearFlag_LSERDY(void) { SET_BIT(RCC->CIR, RCC_CIR_LSERDYC); } /** * @brief Clear HSI ready interrupt flag * @rmtoll CIR HSIRDYC LL_RCC_ClearFlag_HSIRDY * @retval None */ __STATIC_INLINE void LL_RCC_ClearFlag_HSIRDY(void) { SET_BIT(RCC->CIR, RCC_CIR_HSIRDYC); } /** * @brief Clear HSE ready interrupt flag * @rmtoll CIR HSERDYC LL_RCC_ClearFlag_HSERDY * @retval None */ __STATIC_INLINE void LL_RCC_ClearFlag_HSERDY(void) { SET_BIT(RCC->CIR, RCC_CIR_HSERDYC); } /** * @brief Clear PLL ready interrupt flag * @rmtoll CIR PLLRDYC LL_RCC_ClearFlag_PLLRDY * @retval None */ __STATIC_INLINE void LL_RCC_ClearFlag_PLLRDY(void) { SET_BIT(RCC->CIR, RCC_CIR_PLLRDYC); } /** * @brief Clear HSI14 ready interrupt flag * @rmtoll CIR HSI14RDYC LL_RCC_ClearFlag_HSI14RDY * @retval None */ __STATIC_INLINE void LL_RCC_ClearFlag_HSI14RDY(void) { SET_BIT(RCC->CIR, RCC_CIR_HSI14RDYC); } #if defined(RCC_HSI48_SUPPORT) /** * @brief Clear HSI48 ready interrupt flag * @rmtoll CIR HSI48RDYC LL_RCC_ClearFlag_HSI48RDY * @retval None */ __STATIC_INLINE void LL_RCC_ClearFlag_HSI48RDY(void) { SET_BIT(RCC->CIR, RCC_CIR_HSI48RDYC); } #endif /* RCC_HSI48_SUPPORT */ /** * @brief Clear Clock security system interrupt flag * @rmtoll CIR CSSC LL_RCC_ClearFlag_HSECSS * @retval None */ __STATIC_INLINE void LL_RCC_ClearFlag_HSECSS(void) { SET_BIT(RCC->CIR, RCC_CIR_CSSC); } /** * @brief Check if LSI ready interrupt occurred or not * @rmtoll CIR LSIRDYF LL_RCC_IsActiveFlag_LSIRDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LSIRDY(void) { return (READ_BIT(RCC->CIR, RCC_CIR_LSIRDYF) == (RCC_CIR_LSIRDYF)); } /** * @brief Check if LSE ready interrupt occurred or not * @rmtoll CIR LSERDYF LL_RCC_IsActiveFlag_LSERDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LSERDY(void) { return (READ_BIT(RCC->CIR, RCC_CIR_LSERDYF) == (RCC_CIR_LSERDYF)); } /** * @brief Check if HSI ready interrupt occurred or not * @rmtoll CIR HSIRDYF LL_RCC_IsActiveFlag_HSIRDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSIRDY(void) { return (READ_BIT(RCC->CIR, RCC_CIR_HSIRDYF) == (RCC_CIR_HSIRDYF)); } /** * @brief Check if HSE ready interrupt occurred or not * @rmtoll CIR HSERDYF LL_RCC_IsActiveFlag_HSERDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSERDY(void) { return (READ_BIT(RCC->CIR, RCC_CIR_HSERDYF) == (RCC_CIR_HSERDYF)); } /** * @brief Check if PLL ready interrupt occurred or not * @rmtoll CIR PLLRDYF LL_RCC_IsActiveFlag_PLLRDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PLLRDY(void) { return (READ_BIT(RCC->CIR, RCC_CIR_PLLRDYF) == (RCC_CIR_PLLRDYF)); } /** * @brief Check if HSI14 ready interrupt occurred or not * @rmtoll CIR HSI14RDYF LL_RCC_IsActiveFlag_HSI14RDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSI14RDY(void) { return (READ_BIT(RCC->CIR, RCC_CIR_HSI14RDYF) == (RCC_CIR_HSI14RDYF)); } #if defined(RCC_HSI48_SUPPORT) /** * @brief Check if HSI48 ready interrupt occurred or not * @rmtoll CIR HSI48RDYF LL_RCC_IsActiveFlag_HSI48RDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSI48RDY(void) { return (READ_BIT(RCC->CIR, RCC_CIR_HSI48RDYF) == (RCC_CIR_HSI48RDYF)); } #endif /* RCC_HSI48_SUPPORT */ /** * @brief Check if Clock security system interrupt occurred or not * @rmtoll CIR CSSF LL_RCC_IsActiveFlag_HSECSS * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSECSS(void) { return (READ_BIT(RCC->CIR, RCC_CIR_CSSF) == (RCC_CIR_CSSF)); } /** * @brief Check if RCC flag Independent Watchdog reset is set or not. * @rmtoll CSR IWDGRSTF LL_RCC_IsActiveFlag_IWDGRST * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_IWDGRST(void) { return (READ_BIT(RCC->CSR, RCC_CSR_IWDGRSTF) == (RCC_CSR_IWDGRSTF)); } /** * @brief Check if RCC flag Low Power reset is set or not. * @rmtoll CSR LPWRRSTF LL_RCC_IsActiveFlag_LPWRRST * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LPWRRST(void) { return (READ_BIT(RCC->CSR, RCC_CSR_LPWRRSTF) == (RCC_CSR_LPWRRSTF)); } /** * @brief Check if RCC flag is set or not. * @rmtoll CSR OBLRSTF LL_RCC_IsActiveFlag_OBLRST * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_OBLRST(void) { return (READ_BIT(RCC->CSR, RCC_CSR_OBLRSTF) == (RCC_CSR_OBLRSTF)); } /** * @brief Check if RCC flag Pin reset is set or not. * @rmtoll CSR PINRSTF LL_RCC_IsActiveFlag_PINRST * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PINRST(void) { return (READ_BIT(RCC->CSR, RCC_CSR_PINRSTF) == (RCC_CSR_PINRSTF)); } /** * @brief Check if RCC flag POR/PDR reset is set or not. * @rmtoll CSR PORRSTF LL_RCC_IsActiveFlag_PORRST * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PORRST(void) { return (READ_BIT(RCC->CSR, RCC_CSR_PORRSTF) == (RCC_CSR_PORRSTF)); } /** * @brief Check if RCC flag Software reset is set or not. * @rmtoll CSR SFTRSTF LL_RCC_IsActiveFlag_SFTRST * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_SFTRST(void) { return (READ_BIT(RCC->CSR, RCC_CSR_SFTRSTF) == (RCC_CSR_SFTRSTF)); } /** * @brief Check if RCC flag Window Watchdog reset is set or not. * @rmtoll CSR WWDGRSTF LL_RCC_IsActiveFlag_WWDGRST * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_WWDGRST(void) { return (READ_BIT(RCC->CSR, RCC_CSR_WWDGRSTF) == (RCC_CSR_WWDGRSTF)); } #if defined(RCC_CSR_V18PWRRSTF) /** * @brief Check if RCC Reset flag of the 1.8 V domain is set or not. * @rmtoll CSR V18PWRRSTF LL_RCC_IsActiveFlag_V18PWRRST * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_V18PWRRST(void) { return (READ_BIT(RCC->CSR, RCC_CSR_V18PWRRSTF) == (RCC_CSR_V18PWRRSTF)); } #endif /* RCC_CSR_V18PWRRSTF */ /** * @brief Set RMVF bit to clear the reset flags. * @rmtoll CSR RMVF LL_RCC_ClearResetFlags * @retval None */ __STATIC_INLINE void LL_RCC_ClearResetFlags(void) { SET_BIT(RCC->CSR, RCC_CSR_RMVF); } /** * @} */ /** @defgroup RCC_LL_EF_IT_Management IT Management * @{ */ /** * @brief Enable LSI ready interrupt * @rmtoll CIR LSIRDYIE LL_RCC_EnableIT_LSIRDY * @retval None */ __STATIC_INLINE void LL_RCC_EnableIT_LSIRDY(void) { SET_BIT(RCC->CIR, RCC_CIR_LSIRDYIE); } /** * @brief Enable LSE ready interrupt * @rmtoll CIR LSERDYIE LL_RCC_EnableIT_LSERDY * @retval None */ __STATIC_INLINE void LL_RCC_EnableIT_LSERDY(void) { SET_BIT(RCC->CIR, RCC_CIR_LSERDYIE); } /** * @brief Enable HSI ready interrupt * @rmtoll CIR HSIRDYIE LL_RCC_EnableIT_HSIRDY * @retval None */ __STATIC_INLINE void LL_RCC_EnableIT_HSIRDY(void) { SET_BIT(RCC->CIR, RCC_CIR_HSIRDYIE); } /** * @brief Enable HSE ready interrupt * @rmtoll CIR HSERDYIE LL_RCC_EnableIT_HSERDY * @retval None */ __STATIC_INLINE void LL_RCC_EnableIT_HSERDY(void) { SET_BIT(RCC->CIR, RCC_CIR_HSERDYIE); } /** * @brief Enable PLL ready interrupt * @rmtoll CIR PLLRDYIE LL_RCC_EnableIT_PLLRDY * @retval None */ __STATIC_INLINE void LL_RCC_EnableIT_PLLRDY(void) { SET_BIT(RCC->CIR, RCC_CIR_PLLRDYIE); } /** * @brief Enable HSI14 ready interrupt * @rmtoll CIR HSI14RDYIE LL_RCC_EnableIT_HSI14RDY * @retval None */ __STATIC_INLINE void LL_RCC_EnableIT_HSI14RDY(void) { SET_BIT(RCC->CIR, RCC_CIR_HSI14RDYIE); } #if defined(RCC_HSI48_SUPPORT) /** * @brief Enable HSI48 ready interrupt * @rmtoll CIR HSI48RDYIE LL_RCC_EnableIT_HSI48RDY * @retval None */ __STATIC_INLINE void LL_RCC_EnableIT_HSI48RDY(void) { SET_BIT(RCC->CIR, RCC_CIR_HSI48RDYIE); } #endif /* RCC_HSI48_SUPPORT */ /** * @brief Disable LSI ready interrupt * @rmtoll CIR LSIRDYIE LL_RCC_DisableIT_LSIRDY * @retval None */ __STATIC_INLINE void LL_RCC_DisableIT_LSIRDY(void) { CLEAR_BIT(RCC->CIR, RCC_CIR_LSIRDYIE); } /** * @brief Disable LSE ready interrupt * @rmtoll CIR LSERDYIE LL_RCC_DisableIT_LSERDY * @retval None */ __STATIC_INLINE void LL_RCC_DisableIT_LSERDY(void) { CLEAR_BIT(RCC->CIR, RCC_CIR_LSERDYIE); } /** * @brief Disable HSI ready interrupt * @rmtoll CIR HSIRDYIE LL_RCC_DisableIT_HSIRDY * @retval None */ __STATIC_INLINE void LL_RCC_DisableIT_HSIRDY(void) { CLEAR_BIT(RCC->CIR, RCC_CIR_HSIRDYIE); } /** * @brief Disable HSE ready interrupt * @rmtoll CIR HSERDYIE LL_RCC_DisableIT_HSERDY * @retval None */ __STATIC_INLINE void LL_RCC_DisableIT_HSERDY(void) { CLEAR_BIT(RCC->CIR, RCC_CIR_HSERDYIE); } /** * @brief Disable PLL ready interrupt * @rmtoll CIR PLLRDYIE LL_RCC_DisableIT_PLLRDY * @retval None */ __STATIC_INLINE void LL_RCC_DisableIT_PLLRDY(void) { CLEAR_BIT(RCC->CIR, RCC_CIR_PLLRDYIE); } /** * @brief Disable HSI14 ready interrupt * @rmtoll CIR HSI14RDYIE LL_RCC_DisableIT_HSI14RDY * @retval None */ __STATIC_INLINE void LL_RCC_DisableIT_HSI14RDY(void) { CLEAR_BIT(RCC->CIR, RCC_CIR_HSI14RDYIE); } #if defined(RCC_HSI48_SUPPORT) /** * @brief Disable HSI48 ready interrupt * @rmtoll CIR HSI48RDYIE LL_RCC_DisableIT_HSI48RDY * @retval None */ __STATIC_INLINE void LL_RCC_DisableIT_HSI48RDY(void) { CLEAR_BIT(RCC->CIR, RCC_CIR_HSI48RDYIE); } #endif /* RCC_HSI48_SUPPORT */ /** * @brief Checks if LSI ready interrupt source is enabled or disabled. * @rmtoll CIR LSIRDYIE LL_RCC_IsEnabledIT_LSIRDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_LSIRDY(void) { return (READ_BIT(RCC->CIR, RCC_CIR_LSIRDYIE) == (RCC_CIR_LSIRDYIE)); } /** * @brief Checks if LSE ready interrupt source is enabled or disabled. * @rmtoll CIR LSERDYIE LL_RCC_IsEnabledIT_LSERDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_LSERDY(void) { return (READ_BIT(RCC->CIR, RCC_CIR_LSERDYIE) == (RCC_CIR_LSERDYIE)); } /** * @brief Checks if HSI ready interrupt source is enabled or disabled. * @rmtoll CIR HSIRDYIE LL_RCC_IsEnabledIT_HSIRDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_HSIRDY(void) { return (READ_BIT(RCC->CIR, RCC_CIR_HSIRDYIE) == (RCC_CIR_HSIRDYIE)); } /** * @brief Checks if HSE ready interrupt source is enabled or disabled. * @rmtoll CIR HSERDYIE LL_RCC_IsEnabledIT_HSERDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_HSERDY(void) { return (READ_BIT(RCC->CIR, RCC_CIR_HSERDYIE) == (RCC_CIR_HSERDYIE)); } /** * @brief Checks if PLL ready interrupt source is enabled or disabled. * @rmtoll CIR PLLRDYIE LL_RCC_IsEnabledIT_PLLRDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_PLLRDY(void) { return (READ_BIT(RCC->CIR, RCC_CIR_PLLRDYIE) == (RCC_CIR_PLLRDYIE)); } /** * @brief Checks if HSI14 ready interrupt source is enabled or disabled. * @rmtoll CIR HSI14RDYIE LL_RCC_IsEnabledIT_HSI14RDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_HSI14RDY(void) { return (READ_BIT(RCC->CIR, RCC_CIR_HSI14RDYIE) == (RCC_CIR_HSI14RDYIE)); } #if defined(RCC_HSI48_SUPPORT) /** * @brief Checks if HSI48 ready interrupt source is enabled or disabled. * @rmtoll CIR HSI48RDYIE LL_RCC_IsEnabledIT_HSI48RDY * @retval State of bit (1 or 0). */ __STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_HSI48RDY(void) { return (READ_BIT(RCC->CIR, RCC_CIR_HSI48RDYIE) == (RCC_CIR_HSI48RDYIE)); } #endif /* RCC_HSI48_SUPPORT */ /** * @} */ #if defined(USE_FULL_LL_DRIVER) /** @defgroup RCC_LL_EF_Init De-initialization function * @{ */ ErrorStatus LL_RCC_DeInit(void); /** * @} */ /** @defgroup RCC_LL_EF_Get_Freq Get system and peripherals clocks frequency functions * @{ */ void LL_RCC_GetSystemClocksFreq(LL_RCC_ClocksTypeDef *RCC_Clocks); uint32_t LL_RCC_GetUSARTClockFreq(uint32_t USARTxSource); uint32_t LL_RCC_GetI2CClockFreq(uint32_t I2CxSource); #if defined(USB_OTG_FS) || defined(USB) uint32_t LL_RCC_GetUSBClockFreq(uint32_t USBxSource); #endif /* USB_OTG_FS || USB */ #if defined(CEC) uint32_t LL_RCC_GetCECClockFreq(uint32_t CECxSource); #endif /* CEC */ /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /** * @} */ /** * @} */ #endif /* RCC */ /** * @} */ #ifdef __cplusplus } #endif #endif /* __STM32F0xx_LL_RCC_H */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/