/* ----------------------------------------------------------------------
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
*
* $Date: 19. March 2015
* $Revision: V.1.4.5
*
* Project: CMSIS DSP Library
* Title: arm_cmplx_mat_mult_q15.c
*
* Description: Q15 complex matrix multiplication.
*
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* - Neither the name of ARM LIMITED nor the names of its contributors
* may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */
#include "arm_math.h"
/**
* @ingroup groupMatrix
*/
/**
* @addtogroup CmplxMatrixMult
* @{
*/
/**
* @brief Q15 Complex matrix multiplication
* @param[in] *pSrcA points to the first input complex matrix structure
* @param[in] *pSrcB points to the second input complex matrix structure
* @param[out] *pDst points to output complex matrix structure
* @param[in] *pScratch points to the array for storing intermediate results
* @return The function returns either
* ARM_MATH_SIZE_MISMATCH
or ARM_MATH_SUCCESS
based on the outcome of size checking.
*
* \par Conditions for optimum performance
* Input, output and state buffers should be aligned by 32-bit
*
* \par Restrictions
* If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
* In this case input, output, scratch buffers should be aligned by 32-bit
*
* @details
* Scaling and Overflow Behavior:
*
* \par
* The function is implemented using a 64-bit internal accumulator. The inputs to the
* multiplications are in 1.15 format and multiplications yield a 2.30 result.
* The 2.30 intermediate
* results are accumulated in a 64-bit accumulator in 34.30 format. This approach
* provides 33 guard bits and there is no risk of overflow. The 34.30 result is then
* truncated to 34.15 format by discarding the low 15 bits and then saturated to
* 1.15 format.
*
* \par
* Refer to arm_mat_mult_fast_q15()
for a faster but less precise version of this function.
*
*/
arm_status arm_mat_cmplx_mult_q15(
const arm_matrix_instance_q15 * pSrcA,
const arm_matrix_instance_q15 * pSrcB,
arm_matrix_instance_q15 * pDst,
q15_t * pScratch)
{
/* accumulator */
q15_t *pSrcBT = pScratch; /* input data matrix pointer for transpose */
q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */
q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */
q15_t *px; /* Temporary output data matrix pointer */
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
uint16_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */
uint16_t col, i = 0u, row = numRowsB, colCnt; /* loop counters */
arm_status status; /* status of matrix multiplication */
q63_t sumReal, sumImag;
#ifdef UNALIGNED_SUPPORT_DISABLE
q15_t in; /* Temporary variable to hold the input value */
q15_t a, b, c, d;
#else
q31_t in; /* Temporary variable to hold the input value */
q31_t prod1, prod2;
q31_t pSourceA, pSourceB;
#endif
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if((pSrcA->numCols != pSrcB->numRows) ||
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif
{
/* Matrix transpose */
do
{
/* Apply loop unrolling and exchange the columns with row elements */
col = numColsB >> 2;
/* The pointer px is set to starting address of the column being processed */
px = pSrcBT + i;
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
** a second loop below computes the remaining 1 to 3 samples. */
while(col > 0u)
{
#ifdef UNALIGNED_SUPPORT_DISABLE
/* Read two elements from the row */
in = *pInB++;
*px = in;
in = *pInB++;
px[1] = in;
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB * 2;
/* Read two elements from the row */
in = *pInB++;
*px = in;
in = *pInB++;
px[1] = in;
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB * 2;
/* Read two elements from the row */
in = *pInB++;
*px = in;
in = *pInB++;
px[1] = in;
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB * 2;
/* Read two elements from the row */
in = *pInB++;
*px = in;
in = *pInB++;
px[1] = in;
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB * 2;
/* Decrement the column loop counter */
col--;
}
/* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
col = numColsB % 0x4u;
while(col > 0u)
{
/* Read two elements from the row */
in = *pInB++;
*px = in;
in = *pInB++;
px[1] = in;
#else
/* Read two elements from the row */
in = *__SIMD32(pInB)++;
*__SIMD32(px) = in;
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB * 2;
/* Read two elements from the row */
in = *__SIMD32(pInB)++;
*__SIMD32(px) = in;
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB * 2;
/* Read two elements from the row */
in = *__SIMD32(pInB)++;
*__SIMD32(px) = in;
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB * 2;
/* Read two elements from the row */
in = *__SIMD32(pInB)++;
*__SIMD32(px) = in;
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB * 2;
/* Decrement the column loop counter */
col--;
}
/* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
** No loop unrolling is used. */
col = numColsB % 0x4u;
while(col > 0u)
{
/* Read two elements from the row */
in = *__SIMD32(pInB)++;
*__SIMD32(px) = in;
#endif
/* Update the pointer px to point to the next row of the transposed matrix */
px += numRowsB * 2;
/* Decrement the column loop counter */
col--;
}
i = i + 2u;
/* Decrement the row loop counter */
row--;
} while(row > 0u);
/* Reset the variables for the usage in the following multiplication process */
row = numRowsA;
i = 0u;
px = pDst->pData;
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
/* row loop */
do
{
/* For every row wise process, the column loop counter is to be initiated */
col = numColsB;
/* For every row wise process, the pIn2 pointer is set
** to the starting address of the transposed pSrcB data */
pInB = pSrcBT;
/* column loop */
do
{
/* Set the variable sum, that acts as accumulator, to zero */
sumReal = 0;
sumImag = 0;
/* Apply loop unrolling and compute 2 MACs simultaneously. */
colCnt = numColsA >> 1;
/* Initiate the pointer pIn1 to point to the starting address of the column being processed */
pInA = pSrcA->pData + i * 2;
/* matrix multiplication */
while(colCnt > 0u)
{
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
#ifdef UNALIGNED_SUPPORT_DISABLE
/* read real and imag values from pSrcA buffer */
a = *pInA;
b = *(pInA + 1u);
/* read real and imag values from pSrcB buffer */
c = *pInB;
d = *(pInB + 1u);
/* Multiply and Accumlates */
sumReal += (q31_t) a *c;
sumImag += (q31_t) a *d;
sumReal -= (q31_t) b *d;
sumImag += (q31_t) b *c;
/* read next real and imag values from pSrcA buffer */
a = *(pInA + 2u);
b = *(pInA + 3u);
/* read next real and imag values from pSrcB buffer */
c = *(pInB + 2u);
d = *(pInB + 3u);
/* update pointer */
pInA += 4u;
/* Multiply and Accumlates */
sumReal += (q31_t) a *c;
sumImag += (q31_t) a *d;
sumReal -= (q31_t) b *d;
sumImag += (q31_t) b *c;
/* update pointer */
pInB += 4u;
#else
/* read real and imag values from pSrcA and pSrcB buffer */
pSourceA = *__SIMD32(pInA)++;
pSourceB = *__SIMD32(pInB)++;
/* Multiply and Accumlates */
#ifdef ARM_MATH_BIG_ENDIAN
prod1 = -__SMUSD(pSourceA, pSourceB);
#else
prod1 = __SMUSD(pSourceA, pSourceB);
#endif
prod2 = __SMUADX(pSourceA, pSourceB);
sumReal += (q63_t) prod1;
sumImag += (q63_t) prod2;
/* read real and imag values from pSrcA and pSrcB buffer */
pSourceA = *__SIMD32(pInA)++;
pSourceB = *__SIMD32(pInB)++;
/* Multiply and Accumlates */
#ifdef ARM_MATH_BIG_ENDIAN
prod1 = -__SMUSD(pSourceA, pSourceB);
#else
prod1 = __SMUSD(pSourceA, pSourceB);
#endif
prod2 = __SMUADX(pSourceA, pSourceB);
sumReal += (q63_t) prod1;
sumImag += (q63_t) prod2;
#endif /* #ifdef UNALIGNED_SUPPORT_DISABLE */
/* Decrement the loop counter */
colCnt--;
}
/* process odd column samples */
if((numColsA & 0x1u) > 0u)
{
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
#ifdef UNALIGNED_SUPPORT_DISABLE
/* read real and imag values from pSrcA and pSrcB buffer */
a = *pInA++;
b = *pInA++;
c = *pInB++;
d = *pInB++;
/* Multiply and Accumlates */
sumReal += (q31_t) a *c;
sumImag += (q31_t) a *d;
sumReal -= (q31_t) b *d;
sumImag += (q31_t) b *c;
#else
/* read real and imag values from pSrcA and pSrcB buffer */
pSourceA = *__SIMD32(pInA)++;
pSourceB = *__SIMD32(pInB)++;
/* Multiply and Accumlates */
#ifdef ARM_MATH_BIG_ENDIAN
prod1 = -__SMUSD(pSourceA, pSourceB);
#else
prod1 = __SMUSD(pSourceA, pSourceB);
#endif
prod2 = __SMUADX(pSourceA, pSourceB);
sumReal += (q63_t) prod1;
sumImag += (q63_t) prod2;
#endif /* #ifdef UNALIGNED_SUPPORT_DISABLE */
}
/* Saturate and store the result in the destination buffer */
*px++ = (q15_t) (__SSAT(sumReal >> 15, 16));
*px++ = (q15_t) (__SSAT(sumImag >> 15, 16));
/* Decrement the column loop counter */
col--;
} while(col > 0u);
i = i + numColsA;
/* Decrement the row loop counter */
row--;
} while(row > 0u);
/* set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
/**
* @} end of MatrixMult group
*/