/**
|
******************************************************************************
|
* @file stm32f0xx_hal_rcc_ex.c
|
* @author MCD Application Team
|
* @brief Extended RCC HAL module driver.
|
* This file provides firmware functions to manage the following
|
* functionalities RCC extension peripheral:
|
* + Extended Peripheral Control functions
|
* + Extended Clock Recovery System Control functions
|
*
|
******************************************************************************
|
* @attention
|
*
|
* <h2><center>© COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
|
*
|
* Redistribution and use in source and binary forms, with or without modification,
|
* are permitted provided that the following conditions are met:
|
* 1. Redistributions of source code must retain the above copyright notice,
|
* this list of conditions and the following disclaimer.
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
* this list of conditions and the following disclaimer in the documentation
|
* and/or other materials provided with the distribution.
|
* 3. Neither the name of STMicroelectronics nor the names of its contributors
|
* may be used to endorse or promote products derived from this software
|
* without specific prior written permission.
|
*
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
*
|
******************************************************************************
|
*/
|
|
/* Includes ------------------------------------------------------------------*/
|
#include "stm32f0xx_hal.h"
|
|
/** @addtogroup STM32F0xx_HAL_Driver
|
* @{
|
*/
|
|
#ifdef HAL_RCC_MODULE_ENABLED
|
|
/** @defgroup RCCEx RCCEx
|
* @brief RCC Extension HAL module driver.
|
* @{
|
*/
|
|
/* Private typedef -----------------------------------------------------------*/
|
/* Private define ------------------------------------------------------------*/
|
#if defined(CRS)
|
/** @defgroup RCCEx_Private_Constants RCCEx Private Constants
|
* @{
|
*/
|
/* Bit position in register */
|
#define CRS_CFGR_FELIM_BITNUMBER 16
|
#define CRS_CR_TRIM_BITNUMBER 8
|
#define CRS_ISR_FECAP_BITNUMBER 16
|
/**
|
* @}
|
*/
|
#endif /* CRS */
|
|
/* Private macro -------------------------------------------------------------*/
|
/** @defgroup RCCEx_Private_Macros RCCEx Private Macros
|
* @{
|
*/
|
/**
|
* @}
|
*/
|
|
/* Private variables ---------------------------------------------------------*/
|
/* Private function prototypes -----------------------------------------------*/
|
/* Private functions ---------------------------------------------------------*/
|
|
/** @defgroup RCCEx_Exported_Functions RCCEx Exported Functions
|
* @{
|
*/
|
|
/** @defgroup RCCEx_Exported_Functions_Group1 Extended Peripheral Control functions
|
* @brief Extended Peripheral Control functions
|
*
|
@verbatim
|
===============================================================================
|
##### Extended Peripheral Control functions #####
|
===============================================================================
|
[..]
|
This subsection provides a set of functions allowing to control the RCC Clocks
|
frequencies.
|
[..]
|
(@) Important note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to
|
select the RTC clock source; in this case the Backup domain will be reset in
|
order to modify the RTC Clock source, as consequence RTC registers (including
|
the backup registers) are set to their reset values.
|
|
@endverbatim
|
* @{
|
*/
|
|
/**
|
* @brief Initializes the RCC extended peripherals clocks according to the specified
|
* parameters in the RCC_PeriphCLKInitTypeDef.
|
* @param PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that
|
* contains the configuration information for the Extended Peripherals clocks
|
* (USART, RTC, I2C, CEC and USB).
|
*
|
* @note Care must be taken when @ref HAL_RCCEx_PeriphCLKConfig() is used to select
|
* the RTC clock source; in this case the Backup domain will be reset in
|
* order to modify the RTC Clock source, as consequence RTC registers (including
|
* the backup registers) and RCC_BDCR register are set to their reset values.
|
*
|
* @retval HAL status
|
*/
|
HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
|
{
|
uint32_t tickstart = 0U;
|
uint32_t temp_reg = 0U;
|
|
/* Check the parameters */
|
assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection));
|
|
/*---------------------------- RTC configuration -------------------------------*/
|
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == (RCC_PERIPHCLK_RTC))
|
{
|
/* check for RTC Parameters used to output RTCCLK */
|
assert_param(IS_RCC_RTCCLKSOURCE(PeriphClkInit->RTCClockSelection));
|
|
FlagStatus pwrclkchanged = RESET;
|
|
/* As soon as function is called to change RTC clock source, activation of the
|
power domain is done. */
|
/* Requires to enable write access to Backup Domain of necessary */
|
if(__HAL_RCC_PWR_IS_CLK_DISABLED())
|
{
|
__HAL_RCC_PWR_CLK_ENABLE();
|
pwrclkchanged = SET;
|
}
|
|
if(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
|
{
|
/* Enable write access to Backup domain */
|
SET_BIT(PWR->CR, PWR_CR_DBP);
|
|
/* Wait for Backup domain Write protection disable */
|
tickstart = HAL_GetTick();
|
|
while(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
|
{
|
if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
|
{
|
return HAL_TIMEOUT;
|
}
|
}
|
}
|
|
/* Reset the Backup domain only if the RTC Clock source selection is modified from reset value */
|
temp_reg = (RCC->BDCR & RCC_BDCR_RTCSEL);
|
if((temp_reg != 0x00000000U) && (temp_reg != (PeriphClkInit->RTCClockSelection & RCC_BDCR_RTCSEL)))
|
{
|
/* Store the content of BDCR register before the reset of Backup Domain */
|
temp_reg = (RCC->BDCR & ~(RCC_BDCR_RTCSEL));
|
/* RTC Clock selection can be changed only if the Backup Domain is reset */
|
__HAL_RCC_BACKUPRESET_FORCE();
|
__HAL_RCC_BACKUPRESET_RELEASE();
|
/* Restore the Content of BDCR register */
|
RCC->BDCR = temp_reg;
|
|
/* Wait for LSERDY if LSE was enabled */
|
if (HAL_IS_BIT_SET(temp_reg, RCC_BDCR_LSEON))
|
{
|
/* Get Start Tick */
|
tickstart = HAL_GetTick();
|
|
/* Wait till LSE is ready */
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
|
{
|
if((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
|
{
|
return HAL_TIMEOUT;
|
}
|
}
|
}
|
}
|
__HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection);
|
|
/* Require to disable power clock if necessary */
|
if(pwrclkchanged == SET)
|
{
|
__HAL_RCC_PWR_CLK_DISABLE();
|
}
|
}
|
|
/*------------------------------- USART1 Configuration ------------------------*/
|
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART1) == RCC_PERIPHCLK_USART1)
|
{
|
/* Check the parameters */
|
assert_param(IS_RCC_USART1CLKSOURCE(PeriphClkInit->Usart1ClockSelection));
|
|
/* Configure the USART1 clock source */
|
__HAL_RCC_USART1_CONFIG(PeriphClkInit->Usart1ClockSelection);
|
}
|
|
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)\
|
|| defined(STM32F091xC) || defined(STM32F098xx)
|
/*----------------------------- USART2 Configuration --------------------------*/
|
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART2) == RCC_PERIPHCLK_USART2)
|
{
|
/* Check the parameters */
|
assert_param(IS_RCC_USART2CLKSOURCE(PeriphClkInit->Usart2ClockSelection));
|
|
/* Configure the USART2 clock source */
|
__HAL_RCC_USART2_CONFIG(PeriphClkInit->Usart2ClockSelection);
|
}
|
#endif /* STM32F071xB || STM32F072xB || STM32F078xx || */
|
/* STM32F091xC || STM32F098xx */
|
|
#if defined(STM32F091xC) || defined(STM32F098xx)
|
/*----------------------------- USART3 Configuration --------------------------*/
|
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART3) == RCC_PERIPHCLK_USART3)
|
{
|
/* Check the parameters */
|
assert_param(IS_RCC_USART3CLKSOURCE(PeriphClkInit->Usart3ClockSelection));
|
|
/* Configure the USART3 clock source */
|
__HAL_RCC_USART3_CONFIG(PeriphClkInit->Usart3ClockSelection);
|
}
|
#endif /* STM32F091xC || STM32F098xx */
|
|
/*------------------------------ I2C1 Configuration ------------------------*/
|
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C1) == RCC_PERIPHCLK_I2C1)
|
{
|
/* Check the parameters */
|
assert_param(IS_RCC_I2C1CLKSOURCE(PeriphClkInit->I2c1ClockSelection));
|
|
/* Configure the I2C1 clock source */
|
__HAL_RCC_I2C1_CONFIG(PeriphClkInit->I2c1ClockSelection);
|
}
|
|
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F070xB) || defined(STM32F070x6)
|
/*------------------------------ USB Configuration ------------------------*/
|
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USB) == RCC_PERIPHCLK_USB)
|
{
|
/* Check the parameters */
|
assert_param(IS_RCC_USBCLKSOURCE(PeriphClkInit->UsbClockSelection));
|
|
/* Configure the USB clock source */
|
__HAL_RCC_USB_CONFIG(PeriphClkInit->UsbClockSelection);
|
}
|
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || STM32F070xB || STM32F070x6 */
|
|
#if defined(STM32F042x6) || defined(STM32F048xx)\
|
|| defined(STM32F051x8) || defined(STM32F058xx)\
|
|| defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)\
|
|| defined(STM32F091xC) || defined(STM32F098xx)
|
/*------------------------------ CEC clock Configuration -------------------*/
|
if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_CEC) == RCC_PERIPHCLK_CEC)
|
{
|
/* Check the parameters */
|
assert_param(IS_RCC_CECCLKSOURCE(PeriphClkInit->CecClockSelection));
|
|
/* Configure the CEC clock source */
|
__HAL_RCC_CEC_CONFIG(PeriphClkInit->CecClockSelection);
|
}
|
#endif /* STM32F042x6 || STM32F048xx || */
|
/* STM32F051x8 || STM32F058xx || */
|
/* STM32F071xB || STM32F072xB || STM32F078xx || */
|
/* STM32F091xC || STM32F098xx */
|
|
return HAL_OK;
|
}
|
|
/**
|
* @brief Get the RCC_ClkInitStruct according to the internal
|
* RCC configuration registers.
|
* @param PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that
|
* returns the configuration information for the Extended Peripherals clocks
|
* (USART, RTC, I2C, CEC and USB).
|
* @retval None
|
*/
|
void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef *PeriphClkInit)
|
{
|
/* Set all possible values for the extended clock type parameter------------*/
|
/* Common part first */
|
PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_I2C1 | RCC_PERIPHCLK_RTC;
|
/* Get the RTC configuration --------------------------------------------*/
|
PeriphClkInit->RTCClockSelection = __HAL_RCC_GET_RTC_SOURCE();
|
/* Get the USART1 clock configuration --------------------------------------------*/
|
PeriphClkInit->Usart1ClockSelection = __HAL_RCC_GET_USART1_SOURCE();
|
/* Get the I2C1 clock source -----------------------------------------------*/
|
PeriphClkInit->I2c1ClockSelection = __HAL_RCC_GET_I2C1_SOURCE();
|
|
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)\
|
|| defined(STM32F091xC) || defined(STM32F098xx)
|
PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USART2;
|
/* Get the USART2 clock source ---------------------------------------------*/
|
PeriphClkInit->Usart2ClockSelection = __HAL_RCC_GET_USART2_SOURCE();
|
#endif /* STM32F071xB || STM32F072xB || STM32F078xx || */
|
/* STM32F091xC || STM32F098xx */
|
|
#if defined(STM32F091xC) || defined(STM32F098xx)
|
PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USART3;
|
/* Get the USART3 clock source ---------------------------------------------*/
|
PeriphClkInit->Usart3ClockSelection = __HAL_RCC_GET_USART3_SOURCE();
|
#endif /* STM32F091xC || STM32F098xx */
|
|
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F070xB) || defined(STM32F070x6)
|
PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USB;
|
/* Get the USB clock source ---------------------------------------------*/
|
PeriphClkInit->UsbClockSelection = __HAL_RCC_GET_USB_SOURCE();
|
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || STM32F070xB || STM32F070x6 */
|
|
#if defined(STM32F042x6) || defined(STM32F048xx)\
|
|| defined(STM32F051x8) || defined(STM32F058xx)\
|
|| defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)\
|
|| defined(STM32F091xC) || defined(STM32F098xx)
|
PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_CEC;
|
/* Get the CEC clock source ------------------------------------------------*/
|
PeriphClkInit->CecClockSelection = __HAL_RCC_GET_CEC_SOURCE();
|
#endif /* STM32F042x6 || STM32F048xx || */
|
/* STM32F051x8 || STM32F058xx || */
|
/* STM32F071xB || STM32F072xB || STM32F078xx || */
|
/* STM32F091xC || STM32F098xx */
|
|
}
|
|
/**
|
* @brief Returns the peripheral clock frequency
|
* @note Returns 0 if peripheral clock is unknown
|
* @param PeriphClk Peripheral clock identifier
|
* This parameter can be one of the following values:
|
* @arg @ref RCC_PERIPHCLK_RTC RTC peripheral clock
|
* @arg @ref RCC_PERIPHCLK_USART1 USART1 peripheral clock
|
* @arg @ref RCC_PERIPHCLK_I2C1 I2C1 peripheral clock
|
@if STM32F042x6
|
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
|
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
|
@endif
|
@if STM32F048xx
|
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
|
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
|
@endif
|
@if STM32F051x8
|
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
|
@endif
|
@if STM32F058xx
|
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
|
@endif
|
@if STM32F070x6
|
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
|
@endif
|
@if STM32F070xB
|
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
|
@endif
|
@if STM32F071xB
|
* @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock
|
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
|
@endif
|
@if STM32F072xB
|
* @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock
|
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
|
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
|
@endif
|
@if STM32F078xx
|
* @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock
|
* @arg @ref RCC_PERIPHCLK_USB USB peripheral clock
|
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
|
@endif
|
@if STM32F091xC
|
* @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock
|
* @arg @ref RCC_PERIPHCLK_USART3 USART2 peripheral clock
|
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
|
@endif
|
@if STM32F098xx
|
* @arg @ref RCC_PERIPHCLK_USART2 USART2 peripheral clock
|
* @arg @ref RCC_PERIPHCLK_USART3 USART2 peripheral clock
|
* @arg @ref RCC_PERIPHCLK_CEC CEC peripheral clock
|
@endif
|
* @retval Frequency in Hz (0: means that no available frequency for the peripheral)
|
*/
|
uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk)
|
{
|
/* frequency == 0 : means that no available frequency for the peripheral */
|
uint32_t frequency = 0U;
|
|
uint32_t srcclk = 0U;
|
#if defined(USB)
|
uint32_t pllmull = 0U, pllsource = 0U, predivfactor = 0U;
|
#endif /* USB */
|
|
/* Check the parameters */
|
assert_param(IS_RCC_PERIPHCLOCK(PeriphClk));
|
|
switch (PeriphClk)
|
{
|
case RCC_PERIPHCLK_RTC:
|
{
|
/* Get the current RTC source */
|
srcclk = __HAL_RCC_GET_RTC_SOURCE();
|
|
/* Check if LSE is ready and if RTC clock selection is LSE */
|
if ((srcclk == RCC_RTCCLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
|
{
|
frequency = LSE_VALUE;
|
}
|
/* Check if LSI is ready and if RTC clock selection is LSI */
|
else if ((srcclk == RCC_RTCCLKSOURCE_LSI) && (HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIRDY)))
|
{
|
frequency = LSI_VALUE;
|
}
|
/* Check if HSE is ready and if RTC clock selection is HSI_DIV32*/
|
else if ((srcclk == RCC_RTCCLKSOURCE_HSE_DIV32) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSERDY)))
|
{
|
frequency = HSE_VALUE / 32U;
|
}
|
break;
|
}
|
case RCC_PERIPHCLK_USART1:
|
{
|
/* Get the current USART1 source */
|
srcclk = __HAL_RCC_GET_USART1_SOURCE();
|
|
/* Check if USART1 clock selection is PCLK1 */
|
if (srcclk == RCC_USART1CLKSOURCE_PCLK1)
|
{
|
frequency = HAL_RCC_GetPCLK1Freq();
|
}
|
/* Check if HSI is ready and if USART1 clock selection is HSI */
|
else if ((srcclk == RCC_USART1CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
|
{
|
frequency = HSI_VALUE;
|
}
|
/* Check if USART1 clock selection is SYSCLK */
|
else if (srcclk == RCC_USART1CLKSOURCE_SYSCLK)
|
{
|
frequency = HAL_RCC_GetSysClockFreq();
|
}
|
/* Check if LSE is ready and if USART1 clock selection is LSE */
|
else if ((srcclk == RCC_USART1CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
|
{
|
frequency = LSE_VALUE;
|
}
|
break;
|
}
|
#if defined(RCC_CFGR3_USART2SW)
|
case RCC_PERIPHCLK_USART2:
|
{
|
/* Get the current USART2 source */
|
srcclk = __HAL_RCC_GET_USART2_SOURCE();
|
|
/* Check if USART2 clock selection is PCLK1 */
|
if (srcclk == RCC_USART2CLKSOURCE_PCLK1)
|
{
|
frequency = HAL_RCC_GetPCLK1Freq();
|
}
|
/* Check if HSI is ready and if USART2 clock selection is HSI */
|
else if ((srcclk == RCC_USART2CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
|
{
|
frequency = HSI_VALUE;
|
}
|
/* Check if USART2 clock selection is SYSCLK */
|
else if (srcclk == RCC_USART2CLKSOURCE_SYSCLK)
|
{
|
frequency = HAL_RCC_GetSysClockFreq();
|
}
|
/* Check if LSE is ready and if USART2 clock selection is LSE */
|
else if ((srcclk == RCC_USART2CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
|
{
|
frequency = LSE_VALUE;
|
}
|
break;
|
}
|
#endif /* RCC_CFGR3_USART2SW */
|
#if defined(RCC_CFGR3_USART3SW)
|
case RCC_PERIPHCLK_USART3:
|
{
|
/* Get the current USART3 source */
|
srcclk = __HAL_RCC_GET_USART3_SOURCE();
|
|
/* Check if USART3 clock selection is PCLK1 */
|
if (srcclk == RCC_USART3CLKSOURCE_PCLK1)
|
{
|
frequency = HAL_RCC_GetPCLK1Freq();
|
}
|
/* Check if HSI is ready and if USART3 clock selection is HSI */
|
else if ((srcclk == RCC_USART3CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
|
{
|
frequency = HSI_VALUE;
|
}
|
/* Check if USART3 clock selection is SYSCLK */
|
else if (srcclk == RCC_USART3CLKSOURCE_SYSCLK)
|
{
|
frequency = HAL_RCC_GetSysClockFreq();
|
}
|
/* Check if LSE is ready and if USART3 clock selection is LSE */
|
else if ((srcclk == RCC_USART3CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
|
{
|
frequency = LSE_VALUE;
|
}
|
break;
|
}
|
#endif /* RCC_CFGR3_USART3SW */
|
case RCC_PERIPHCLK_I2C1:
|
{
|
/* Get the current I2C1 source */
|
srcclk = __HAL_RCC_GET_I2C1_SOURCE();
|
|
/* Check if HSI is ready and if I2C1 clock selection is HSI */
|
if ((srcclk == RCC_I2C1CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
|
{
|
frequency = HSI_VALUE;
|
}
|
/* Check if I2C1 clock selection is SYSCLK */
|
else if (srcclk == RCC_I2C1CLKSOURCE_SYSCLK)
|
{
|
frequency = HAL_RCC_GetSysClockFreq();
|
}
|
break;
|
}
|
#if defined(USB)
|
case RCC_PERIPHCLK_USB:
|
{
|
/* Get the current USB source */
|
srcclk = __HAL_RCC_GET_USB_SOURCE();
|
|
/* Check if PLL is ready and if USB clock selection is PLL */
|
if ((srcclk == RCC_USBCLKSOURCE_PLL) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLRDY)))
|
{
|
/* Get PLL clock source and multiplication factor ----------------------*/
|
pllmull = RCC->CFGR & RCC_CFGR_PLLMUL;
|
pllsource = RCC->CFGR & RCC_CFGR_PLLSRC;
|
pllmull = (pllmull >> RCC_CFGR_PLLMUL_BITNUMBER) + 2U;
|
predivfactor = (RCC->CFGR2 & RCC_CFGR2_PREDIV) + 1U;
|
|
if (pllsource == RCC_CFGR_PLLSRC_HSE_PREDIV)
|
{
|
/* HSE used as PLL clock source : frequency = HSE/PREDIV * PLLMUL */
|
frequency = (HSE_VALUE/predivfactor) * pllmull;
|
}
|
#if defined(RCC_CR2_HSI48ON)
|
else if (pllsource == RCC_CFGR_PLLSRC_HSI48_PREDIV)
|
{
|
/* HSI48 used as PLL clock source : frequency = HSI48/PREDIV * PLLMUL */
|
frequency = (HSI48_VALUE / predivfactor) * pllmull;
|
}
|
#endif /* RCC_CR2_HSI48ON */
|
else
|
{
|
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F078xx) || defined(STM32F072xB) || defined(STM32F070xB)
|
/* HSI used as PLL clock source : frequency = HSI/PREDIV * PLLMUL */
|
frequency = (HSI_VALUE / predivfactor) * pllmull;
|
#else
|
/* HSI used as PLL clock source : frequency = HSI/2U * PLLMUL */
|
frequency = (HSI_VALUE >> 1U) * pllmull;
|
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || STM32F070xB */
|
}
|
}
|
#if defined(RCC_CR2_HSI48ON)
|
/* Check if HSI48 is ready and if USB clock selection is HSI48 */
|
else if ((srcclk == RCC_USBCLKSOURCE_HSI48) && (HAL_IS_BIT_SET(RCC->CR2, RCC_CR2_HSI48RDY)))
|
{
|
frequency = HSI48_VALUE;
|
}
|
#endif /* RCC_CR2_HSI48ON */
|
break;
|
}
|
#endif /* USB */
|
#if defined(CEC)
|
case RCC_PERIPHCLK_CEC:
|
{
|
/* Get the current CEC source */
|
srcclk = __HAL_RCC_GET_CEC_SOURCE();
|
|
/* Check if HSI is ready and if CEC clock selection is HSI */
|
if ((srcclk == RCC_CECCLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
|
{
|
frequency = HSI_VALUE;
|
}
|
/* Check if LSE is ready and if CEC clock selection is LSE */
|
else if ((srcclk == RCC_CECCLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
|
{
|
frequency = LSE_VALUE;
|
}
|
break;
|
}
|
#endif /* CEC */
|
default:
|
{
|
break;
|
}
|
}
|
return(frequency);
|
}
|
|
/**
|
* @}
|
*/
|
|
#if defined(CRS)
|
|
/** @defgroup RCCEx_Exported_Functions_Group3 Extended Clock Recovery System Control functions
|
* @brief Extended Clock Recovery System Control functions
|
*
|
@verbatim
|
===============================================================================
|
##### Extended Clock Recovery System Control functions #####
|
===============================================================================
|
[..]
|
For devices with Clock Recovery System feature (CRS), RCC Extention HAL driver can be used as follows:
|
|
(#) In System clock config, HSI48 needs to be enabled
|
|
(#) Enable CRS clock in IP MSP init which will use CRS functions
|
|
(#) Call CRS functions as follows:
|
(##) Prepare synchronization configuration necessary for HSI48 calibration
|
(+++) Default values can be set for frequency Error Measurement (reload and error limit)
|
and also HSI48 oscillator smooth trimming.
|
(+++) Macro @ref __HAL_RCC_CRS_RELOADVALUE_CALCULATE can be also used to calculate
|
directly reload value with target and synchronization frequencies values
|
(##) Call function @ref HAL_RCCEx_CRSConfig which
|
(+++) Reset CRS registers to their default values.
|
(+++) Configure CRS registers with synchronization configuration
|
(+++) Enable automatic calibration and frequency error counter feature
|
Note: When using USB LPM (Link Power Management) and the device is in Sleep mode, the
|
periodic USB SOF will not be generated by the host. No SYNC signal will therefore be
|
provided to the CRS to calibrate the HSI48 on the run. To guarantee the required clock
|
precision after waking up from Sleep mode, the LSE or reference clock on the GPIOs
|
should be used as SYNC signal.
|
|
(##) A polling function is provided to wait for complete synchronization
|
(+++) Call function @ref HAL_RCCEx_CRSWaitSynchronization()
|
(+++) According to CRS status, user can decide to adjust again the calibration or continue
|
application if synchronization is OK
|
|
(#) User can retrieve information related to synchronization in calling function
|
@ref HAL_RCCEx_CRSGetSynchronizationInfo()
|
|
(#) Regarding synchronization status and synchronization information, user can try a new calibration
|
in changing synchronization configuration and call again HAL_RCCEx_CRSConfig.
|
Note: When the SYNC event is detected during the downcounting phase (before reaching the zero value),
|
it means that the actual frequency is lower than the target (and so, that the TRIM value should be
|
incremented), while when it is detected during the upcounting phase it means that the actual frequency
|
is higher (and that the TRIM value should be decremented).
|
|
(#) In interrupt mode, user can resort to the available macros (__HAL_RCC_CRS_XXX_IT). Interrupts will go
|
through CRS Handler (RCC_IRQn/RCC_IRQHandler)
|
(++) Call function @ref HAL_RCCEx_CRSConfig()
|
(++) Enable RCC_IRQn (thanks to NVIC functions)
|
(++) Enable CRS interrupt (@ref __HAL_RCC_CRS_ENABLE_IT)
|
(++) Implement CRS status management in the following user callbacks called from
|
HAL_RCCEx_CRS_IRQHandler():
|
(+++) @ref HAL_RCCEx_CRS_SyncOkCallback()
|
(+++) @ref HAL_RCCEx_CRS_SyncWarnCallback()
|
(+++) @ref HAL_RCCEx_CRS_ExpectedSyncCallback()
|
(+++) @ref HAL_RCCEx_CRS_ErrorCallback()
|
|
(#) To force a SYNC EVENT, user can use the function @ref HAL_RCCEx_CRSSoftwareSynchronizationGenerate().
|
This function can be called before calling @ref HAL_RCCEx_CRSConfig (for instance in Systick handler)
|
|
@endverbatim
|
* @{
|
*/
|
|
/**
|
* @brief Start automatic synchronization for polling mode
|
* @param pInit Pointer on RCC_CRSInitTypeDef structure
|
* @retval None
|
*/
|
void HAL_RCCEx_CRSConfig(RCC_CRSInitTypeDef *pInit)
|
{
|
uint32_t value = 0U;
|
|
/* Check the parameters */
|
assert_param(IS_RCC_CRS_SYNC_DIV(pInit->Prescaler));
|
assert_param(IS_RCC_CRS_SYNC_SOURCE(pInit->Source));
|
assert_param(IS_RCC_CRS_SYNC_POLARITY(pInit->Polarity));
|
assert_param(IS_RCC_CRS_RELOADVALUE(pInit->ReloadValue));
|
assert_param(IS_RCC_CRS_ERRORLIMIT(pInit->ErrorLimitValue));
|
assert_param(IS_RCC_CRS_HSI48CALIBRATION(pInit->HSI48CalibrationValue));
|
|
/* CONFIGURATION */
|
|
/* Before configuration, reset CRS registers to their default values*/
|
__HAL_RCC_CRS_FORCE_RESET();
|
__HAL_RCC_CRS_RELEASE_RESET();
|
|
/* Set the SYNCDIV[2:0] bits according to Prescaler value */
|
/* Set the SYNCSRC[1:0] bits according to Source value */
|
/* Set the SYNCSPOL bit according to Polarity value */
|
value = (pInit->Prescaler | pInit->Source | pInit->Polarity);
|
/* Set the RELOAD[15:0] bits according to ReloadValue value */
|
value |= pInit->ReloadValue;
|
/* Set the FELIM[7:0] bits according to ErrorLimitValue value */
|
value |= (pInit->ErrorLimitValue << CRS_CFGR_FELIM_BITNUMBER);
|
WRITE_REG(CRS->CFGR, value);
|
|
/* Adjust HSI48 oscillator smooth trimming */
|
/* Set the TRIM[5:0] bits according to RCC_CRS_HSI48CalibrationValue value */
|
MODIFY_REG(CRS->CR, CRS_CR_TRIM, (pInit->HSI48CalibrationValue << CRS_CR_TRIM_BITNUMBER));
|
|
/* START AUTOMATIC SYNCHRONIZATION*/
|
|
/* Enable Automatic trimming & Frequency error counter */
|
SET_BIT(CRS->CR, CRS_CR_AUTOTRIMEN | CRS_CR_CEN);
|
}
|
|
/**
|
* @brief Generate the software synchronization event
|
* @retval None
|
*/
|
void HAL_RCCEx_CRSSoftwareSynchronizationGenerate(void)
|
{
|
SET_BIT(CRS->CR, CRS_CR_SWSYNC);
|
}
|
|
/**
|
* @brief Return synchronization info
|
* @param pSynchroInfo Pointer on RCC_CRSSynchroInfoTypeDef structure
|
* @retval None
|
*/
|
void HAL_RCCEx_CRSGetSynchronizationInfo(RCC_CRSSynchroInfoTypeDef *pSynchroInfo)
|
{
|
/* Check the parameter */
|
assert_param(pSynchroInfo != NULL);
|
|
/* Get the reload value */
|
pSynchroInfo->ReloadValue = (uint32_t)(READ_BIT(CRS->CFGR, CRS_CFGR_RELOAD));
|
|
/* Get HSI48 oscillator smooth trimming */
|
pSynchroInfo->HSI48CalibrationValue = (uint32_t)(READ_BIT(CRS->CR, CRS_CR_TRIM) >> CRS_CR_TRIM_BITNUMBER);
|
|
/* Get Frequency error capture */
|
pSynchroInfo->FreqErrorCapture = (uint32_t)(READ_BIT(CRS->ISR, CRS_ISR_FECAP) >> CRS_ISR_FECAP_BITNUMBER);
|
|
/* Get Frequency error direction */
|
pSynchroInfo->FreqErrorDirection = (uint32_t)(READ_BIT(CRS->ISR, CRS_ISR_FEDIR));
|
}
|
|
/**
|
* @brief Wait for CRS Synchronization status.
|
* @param Timeout Duration of the timeout
|
* @note Timeout is based on the maximum time to receive a SYNC event based on synchronization
|
* frequency.
|
* @note If Timeout set to HAL_MAX_DELAY, HAL_TIMEOUT will be never returned.
|
* @retval Combination of Synchronization status
|
* This parameter can be a combination of the following values:
|
* @arg @ref RCC_CRS_TIMEOUT
|
* @arg @ref RCC_CRS_SYNCOK
|
* @arg @ref RCC_CRS_SYNCWARN
|
* @arg @ref RCC_CRS_SYNCERR
|
* @arg @ref RCC_CRS_SYNCMISS
|
* @arg @ref RCC_CRS_TRIMOVF
|
*/
|
uint32_t HAL_RCCEx_CRSWaitSynchronization(uint32_t Timeout)
|
{
|
uint32_t crsstatus = RCC_CRS_NONE;
|
uint32_t tickstart = 0U;
|
|
/* Get timeout */
|
tickstart = HAL_GetTick();
|
|
/* Wait for CRS flag or timeout detection */
|
do
|
{
|
if(Timeout != HAL_MAX_DELAY)
|
{
|
if((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
|
{
|
crsstatus = RCC_CRS_TIMEOUT;
|
}
|
}
|
/* Check CRS SYNCOK flag */
|
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCOK))
|
{
|
/* CRS SYNC event OK */
|
crsstatus |= RCC_CRS_SYNCOK;
|
|
/* Clear CRS SYNC event OK bit */
|
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCOK);
|
}
|
|
/* Check CRS SYNCWARN flag */
|
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCWARN))
|
{
|
/* CRS SYNC warning */
|
crsstatus |= RCC_CRS_SYNCWARN;
|
|
/* Clear CRS SYNCWARN bit */
|
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCWARN);
|
}
|
|
/* Check CRS TRIM overflow flag */
|
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_TRIMOVF))
|
{
|
/* CRS SYNC Error */
|
crsstatus |= RCC_CRS_TRIMOVF;
|
|
/* Clear CRS Error bit */
|
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_TRIMOVF);
|
}
|
|
/* Check CRS Error flag */
|
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCERR))
|
{
|
/* CRS SYNC Error */
|
crsstatus |= RCC_CRS_SYNCERR;
|
|
/* Clear CRS Error bit */
|
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCERR);
|
}
|
|
/* Check CRS SYNC Missed flag */
|
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCMISS))
|
{
|
/* CRS SYNC Missed */
|
crsstatus |= RCC_CRS_SYNCMISS;
|
|
/* Clear CRS SYNC Missed bit */
|
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCMISS);
|
}
|
|
/* Check CRS Expected SYNC flag */
|
if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_ESYNC))
|
{
|
/* frequency error counter reached a zero value */
|
__HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_ESYNC);
|
}
|
} while(RCC_CRS_NONE == crsstatus);
|
|
return crsstatus;
|
}
|
|
/**
|
* @brief Handle the Clock Recovery System interrupt request.
|
* @retval None
|
*/
|
void HAL_RCCEx_CRS_IRQHandler(void)
|
{
|
uint32_t crserror = RCC_CRS_NONE;
|
/* Get current IT flags and IT sources values */
|
uint32_t itflags = READ_REG(CRS->ISR);
|
uint32_t itsources = READ_REG(CRS->CR);
|
|
/* Check CRS SYNCOK flag */
|
if(((itflags & RCC_CRS_FLAG_SYNCOK) != RESET) && ((itsources & RCC_CRS_IT_SYNCOK) != RESET))
|
{
|
/* Clear CRS SYNC event OK flag */
|
WRITE_REG(CRS->ICR, CRS_ICR_SYNCOKC);
|
|
/* user callback */
|
HAL_RCCEx_CRS_SyncOkCallback();
|
}
|
/* Check CRS SYNCWARN flag */
|
else if(((itflags & RCC_CRS_FLAG_SYNCWARN) != RESET) && ((itsources & RCC_CRS_IT_SYNCWARN) != RESET))
|
{
|
/* Clear CRS SYNCWARN flag */
|
WRITE_REG(CRS->ICR, CRS_ICR_SYNCWARNC);
|
|
/* user callback */
|
HAL_RCCEx_CRS_SyncWarnCallback();
|
}
|
/* Check CRS Expected SYNC flag */
|
else if(((itflags & RCC_CRS_FLAG_ESYNC) != RESET) && ((itsources & RCC_CRS_IT_ESYNC) != RESET))
|
{
|
/* frequency error counter reached a zero value */
|
WRITE_REG(CRS->ICR, CRS_ICR_ESYNCC);
|
|
/* user callback */
|
HAL_RCCEx_CRS_ExpectedSyncCallback();
|
}
|
/* Check CRS Error flags */
|
else
|
{
|
if(((itflags & RCC_CRS_FLAG_ERR) != RESET) && ((itsources & RCC_CRS_IT_ERR) != RESET))
|
{
|
if((itflags & RCC_CRS_FLAG_SYNCERR) != RESET)
|
{
|
crserror |= RCC_CRS_SYNCERR;
|
}
|
if((itflags & RCC_CRS_FLAG_SYNCMISS) != RESET)
|
{
|
crserror |= RCC_CRS_SYNCMISS;
|
}
|
if((itflags & RCC_CRS_FLAG_TRIMOVF) != RESET)
|
{
|
crserror |= RCC_CRS_TRIMOVF;
|
}
|
|
/* Clear CRS Error flags */
|
WRITE_REG(CRS->ICR, CRS_ICR_ERRC);
|
|
/* user error callback */
|
HAL_RCCEx_CRS_ErrorCallback(crserror);
|
}
|
}
|
}
|
|
/**
|
* @brief RCCEx Clock Recovery System SYNCOK interrupt callback.
|
* @retval none
|
*/
|
__weak void HAL_RCCEx_CRS_SyncOkCallback(void)
|
{
|
/* NOTE : This function should not be modified, when the callback is needed,
|
the @ref HAL_RCCEx_CRS_SyncOkCallback should be implemented in the user file
|
*/
|
}
|
|
/**
|
* @brief RCCEx Clock Recovery System SYNCWARN interrupt callback.
|
* @retval none
|
*/
|
__weak void HAL_RCCEx_CRS_SyncWarnCallback(void)
|
{
|
/* NOTE : This function should not be modified, when the callback is needed,
|
the @ref HAL_RCCEx_CRS_SyncWarnCallback should be implemented in the user file
|
*/
|
}
|
|
/**
|
* @brief RCCEx Clock Recovery System Expected SYNC interrupt callback.
|
* @retval none
|
*/
|
__weak void HAL_RCCEx_CRS_ExpectedSyncCallback(void)
|
{
|
/* NOTE : This function should not be modified, when the callback is needed,
|
the @ref HAL_RCCEx_CRS_ExpectedSyncCallback should be implemented in the user file
|
*/
|
}
|
|
/**
|
* @brief RCCEx Clock Recovery System Error interrupt callback.
|
* @param Error Combination of Error status.
|
* This parameter can be a combination of the following values:
|
* @arg @ref RCC_CRS_SYNCERR
|
* @arg @ref RCC_CRS_SYNCMISS
|
* @arg @ref RCC_CRS_TRIMOVF
|
* @retval none
|
*/
|
__weak void HAL_RCCEx_CRS_ErrorCallback(uint32_t Error)
|
{
|
/* Prevent unused argument(s) compilation warning */
|
UNUSED(Error);
|
|
/* NOTE : This function should not be modified, when the callback is needed,
|
the @ref HAL_RCCEx_CRS_ErrorCallback should be implemented in the user file
|
*/
|
}
|
|
/**
|
* @}
|
*/
|
|
#endif /* CRS */
|
|
/**
|
* @}
|
*/
|
|
/**
|
* @}
|
*/
|
|
/**
|
* @}
|
*/
|
|
#endif /* HAL_RCC_MODULE_ENABLED */
|
|
/**
|
* @}
|
*/
|
|
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|