/* ----------------------------------------------------------------------
|
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
*
|
* $Date: 19. March 2015
|
* $Revision: V.1.4.5
|
*
|
* Project: CMSIS DSP Library
|
* Title: arm_rfft_q15.c
|
*
|
* Description: RFFT & RIFFT Q15 process function
|
*
|
*
|
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
*
|
* Redistribution and use in source and binary forms, with or without
|
* modification, are permitted provided that the following conditions
|
* are met:
|
* - Redistributions of source code must retain the above copyright
|
* notice, this list of conditions and the following disclaimer.
|
* - Redistributions in binary form must reproduce the above copyright
|
* notice, this list of conditions and the following disclaimer in
|
* the documentation and/or other materials provided with the
|
* distribution.
|
* - Neither the name of ARM LIMITED nor the names of its contributors
|
* may be used to endorse or promote products derived from this
|
* software without specific prior written permission.
|
*
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
* POSSIBILITY OF SUCH DAMAGE.
|
* -------------------------------------------------------------------- */
|
|
#include "arm_math.h"
|
|
/*--------------------------------------------------------------------
|
* Internal functions prototypes
|
--------------------------------------------------------------------*/
|
|
void arm_split_rfft_q15(
|
q15_t * pSrc,
|
uint32_t fftLen,
|
q15_t * pATable,
|
q15_t * pBTable,
|
q15_t * pDst,
|
uint32_t modifier);
|
|
void arm_split_rifft_q15(
|
q15_t * pSrc,
|
uint32_t fftLen,
|
q15_t * pATable,
|
q15_t * pBTable,
|
q15_t * pDst,
|
uint32_t modifier);
|
|
/**
|
* @addtogroup RealFFT
|
* @{
|
*/
|
|
/**
|
* @brief Processing function for the Q15 RFFT/RIFFT.
|
* @param[in] *S points to an instance of the Q15 RFFT/RIFFT structure.
|
* @param[in] *pSrc points to the input buffer.
|
* @param[out] *pDst points to the output buffer.
|
* @return none.
|
*
|
* \par Input an output formats:
|
* \par
|
* Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process.
|
* Hence the output format is different for different RFFT sizes.
|
* The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT:
|
* \par
|
* \image html RFFTQ15.gif "Input and Output Formats for Q15 RFFT"
|
* \par
|
* \image html RIFFTQ15.gif "Input and Output Formats for Q15 RIFFT"
|
*/
|
|
void arm_rfft_q15(
|
const arm_rfft_instance_q15 * S,
|
q15_t * pSrc,
|
q15_t * pDst)
|
{
|
const arm_cfft_instance_q15 *S_CFFT = S->pCfft;
|
uint32_t i;
|
uint32_t L2 = S->fftLenReal >> 1;
|
|
/* Calculation of RIFFT of input */
|
if(S->ifftFlagR == 1u)
|
{
|
/* Real IFFT core process */
|
arm_split_rifft_q15(pSrc, L2, S->pTwiddleAReal,
|
S->pTwiddleBReal, pDst, S->twidCoefRModifier);
|
|
/* Complex IFFT process */
|
arm_cfft_q15(S_CFFT, pDst, S->ifftFlagR, S->bitReverseFlagR);
|
|
for(i=0;i<S->fftLenReal;i++)
|
{
|
pDst[i] = pDst[i] << 1;
|
}
|
}
|
else
|
{
|
/* Calculation of RFFT of input */
|
|
/* Complex FFT process */
|
arm_cfft_q15(S_CFFT, pSrc, S->ifftFlagR, S->bitReverseFlagR);
|
|
/* Real FFT core process */
|
arm_split_rfft_q15(pSrc, L2, S->pTwiddleAReal,
|
S->pTwiddleBReal, pDst, S->twidCoefRModifier);
|
}
|
}
|
|
/**
|
* @} end of RealFFT group
|
*/
|
|
/**
|
* @brief Core Real FFT process
|
* @param *pSrc points to the input buffer.
|
* @param fftLen length of FFT.
|
* @param *pATable points to the A twiddle Coef buffer.
|
* @param *pBTable points to the B twiddle Coef buffer.
|
* @param *pDst points to the output buffer.
|
* @param modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
|
* @return none.
|
* The function implements a Real FFT
|
*/
|
|
void arm_split_rfft_q15(
|
q15_t * pSrc,
|
uint32_t fftLen,
|
q15_t * pATable,
|
q15_t * pBTable,
|
q15_t * pDst,
|
uint32_t modifier)
|
{
|
uint32_t i; /* Loop Counter */
|
q31_t outR, outI; /* Temporary variables for output */
|
q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
|
q15_t *pSrc1, *pSrc2;
|
#ifndef ARM_MATH_CM0_FAMILY
|
q15_t *pD1, *pD2;
|
#endif
|
|
// pSrc[2u * fftLen] = pSrc[0];
|
// pSrc[(2u * fftLen) + 1u] = pSrc[1];
|
|
pCoefA = &pATable[modifier * 2u];
|
pCoefB = &pBTable[modifier * 2u];
|
|
pSrc1 = &pSrc[2];
|
pSrc2 = &pSrc[(2u * fftLen) - 2u];
|
|
#ifndef ARM_MATH_CM0_FAMILY
|
|
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
i = 1u;
|
pD1 = pDst + 2;
|
pD2 = pDst + (4u * fftLen) - 2;
|
|
for(i = fftLen - 1; i > 0; i--)
|
{
|
/*
|
outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
|
+ pSrc[2 * n - 2 * i] * pBTable[2 * i] +
|
pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
|
*/
|
|
/* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
|
pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
|
pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */
|
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
/* pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] */
|
outR = __SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA));
|
|
#else
|
|
/* -(pSrc[2 * i + 1] * pATable[2 * i + 1] - pSrc[2 * i] * pATable[2 * i]) */
|
outR = -(__SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA)));
|
|
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
/* pSrc[2 * n - 2 * i] * pBTable[2 * i] +
|
pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
|
outR = __SMLAD(*__SIMD32(pSrc2), *__SIMD32(pCoefB), outR) >> 16u;
|
|
/* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
|
pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
outI = __SMUSDX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));
|
|
#else
|
|
outI = __SMUSDX(*__SIMD32(pCoefB), *__SIMD32(pSrc2)--);
|
|
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
/* (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] */
|
outI = __SMLADX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), outI);
|
|
/* write output */
|
*pD1++ = (q15_t) outR;
|
*pD1++ = outI >> 16u;
|
|
/* write complex conjugate output */
|
pD2[0] = (q15_t) outR;
|
pD2[1] = -(outI >> 16u);
|
pD2 -= 2;
|
|
/* update coefficient pointer */
|
pCoefB = pCoefB + (2u * modifier);
|
pCoefA = pCoefA + (2u * modifier);
|
}
|
|
pDst[2u * fftLen] = (pSrc[0] - pSrc[1]) >> 1;
|
pDst[(2u * fftLen) + 1u] = 0;
|
|
pDst[0] = (pSrc[0] + pSrc[1]) >> 1;
|
pDst[1] = 0;
|
|
#else
|
|
/* Run the below code for Cortex-M0 */
|
i = 1u;
|
|
while(i < fftLen)
|
{
|
/*
|
outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
|
+ pSrc[2 * n - 2 * i] * pBTable[2 * i] +
|
pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
|
*/
|
|
outR = *pSrc1 * *pCoefA;
|
outR = outR - (*(pSrc1 + 1) * *(pCoefA + 1));
|
outR = outR + (*pSrc2 * *pCoefB);
|
outR = (outR + (*(pSrc2 + 1) * *(pCoefB + 1))) >> 16;
|
|
|
/* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
|
pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
|
pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
|
*/
|
|
outI = *pSrc2 * *(pCoefB + 1);
|
outI = outI - (*(pSrc2 + 1) * *pCoefB);
|
outI = outI + (*(pSrc1 + 1) * *pCoefA);
|
outI = outI + (*pSrc1 * *(pCoefA + 1));
|
|
/* update input pointers */
|
pSrc1 += 2u;
|
pSrc2 -= 2u;
|
|
/* write output */
|
pDst[2u * i] = (q15_t) outR;
|
pDst[(2u * i) + 1u] = outI >> 16u;
|
|
/* write complex conjugate output */
|
pDst[(4u * fftLen) - (2u * i)] = (q15_t) outR;
|
pDst[((4u * fftLen) - (2u * i)) + 1u] = -(outI >> 16u);
|
|
/* update coefficient pointer */
|
pCoefB = pCoefB + (2u * modifier);
|
pCoefA = pCoefA + (2u * modifier);
|
|
i++;
|
}
|
|
pDst[2u * fftLen] = (pSrc[0] - pSrc[1]) >> 1;
|
pDst[(2u * fftLen) + 1u] = 0;
|
|
pDst[0] = (pSrc[0] + pSrc[1]) >> 1;
|
pDst[1] = 0;
|
|
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
|
}
|
|
|
/**
|
* @brief Core Real IFFT process
|
* @param[in] *pSrc points to the input buffer.
|
* @param[in] fftLen length of FFT.
|
* @param[in] *pATable points to the twiddle Coef A buffer.
|
* @param[in] *pBTable points to the twiddle Coef B buffer.
|
* @param[out] *pDst points to the output buffer.
|
* @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
|
* @return none.
|
* The function implements a Real IFFT
|
*/
|
void arm_split_rifft_q15(
|
q15_t * pSrc,
|
uint32_t fftLen,
|
q15_t * pATable,
|
q15_t * pBTable,
|
q15_t * pDst,
|
uint32_t modifier)
|
{
|
uint32_t i; /* Loop Counter */
|
q31_t outR, outI; /* Temporary variables for output */
|
q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
|
q15_t *pSrc1, *pSrc2;
|
q15_t *pDst1 = &pDst[0];
|
|
pCoefA = &pATable[0];
|
pCoefB = &pBTable[0];
|
|
pSrc1 = &pSrc[0];
|
pSrc2 = &pSrc[2u * fftLen];
|
|
#ifndef ARM_MATH_CM0_FAMILY
|
|
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
i = fftLen;
|
|
while(i > 0u)
|
{
|
/*
|
outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
|
pIn[2 * n - 2 * i] * pBTable[2 * i] -
|
pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
|
|
outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
|
pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
|
pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
|
*/
|
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
/* pIn[2 * n - 2 * i] * pBTable[2 * i] -
|
pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
|
outR = __SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB));
|
|
#else
|
|
/* -(-pIn[2 * n - 2 * i] * pBTable[2 * i] +
|
pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1])) */
|
outR = -(__SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB)));
|
|
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
/* pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
|
pIn[2 * n - 2 * i] * pBTable[2 * i] */
|
outR = __SMLAD(*__SIMD32(pSrc1), *__SIMD32(pCoefA), outR) >> 16u;
|
|
/*
|
-pIn[2 * n - 2 * i] * pBTable[2 * i + 1] +
|
pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
|
outI = __SMUADX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));
|
|
/* pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] */
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
outI = __SMLSDX(*__SIMD32(pCoefA), *__SIMD32(pSrc1)++, -outI);
|
|
#else
|
|
outI = __SMLSDX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), -outI);
|
|
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
/* write output */
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
*__SIMD32(pDst1)++ = __PKHBT(outR, (outI >> 16u), 16);
|
|
#else
|
|
*__SIMD32(pDst1)++ = __PKHBT((outI >> 16u), outR, 16);
|
|
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
/* update coefficient pointer */
|
pCoefB = pCoefB + (2u * modifier);
|
pCoefA = pCoefA + (2u * modifier);
|
|
i--;
|
}
|
#else
|
/* Run the below code for Cortex-M0 */
|
i = fftLen;
|
|
while(i > 0u)
|
{
|
/*
|
outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
|
pIn[2 * n - 2 * i] * pBTable[2 * i] -
|
pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
|
*/
|
|
outR = *pSrc2 * *pCoefB;
|
outR = outR - (*(pSrc2 + 1) * *(pCoefB + 1));
|
outR = outR + (*pSrc1 * *pCoefA);
|
outR = (outR + (*(pSrc1 + 1) * *(pCoefA + 1))) >> 16;
|
|
/*
|
outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
|
pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
|
pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
|
*/
|
|
outI = *(pSrc1 + 1) * *pCoefA;
|
outI = outI - (*pSrc1 * *(pCoefA + 1));
|
outI = outI - (*pSrc2 * *(pCoefB + 1));
|
outI = outI - (*(pSrc2 + 1) * *(pCoefB));
|
|
/* update input pointers */
|
pSrc1 += 2u;
|
pSrc2 -= 2u;
|
|
/* write output */
|
*pDst1++ = (q15_t) outR;
|
*pDst1++ = (q15_t) (outI >> 16);
|
|
/* update coefficient pointer */
|
pCoefB = pCoefB + (2u * modifier);
|
pCoefA = pCoefA + (2u * modifier);
|
|
i--;
|
}
|
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
|
}
|