/* ----------------------------------------------------------------------
|
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
*
|
* $Date: 19. March 2015
|
* $Revision: V.1.4.5
|
*
|
* Project: CMSIS DSP Library
|
* Title: arm_fir_q15.c
|
*
|
* Description: Q15 FIR filter processing function.
|
*
|
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
*
|
* Redistribution and use in source and binary forms, with or without
|
* modification, are permitted provided that the following conditions
|
* are met:
|
* - Redistributions of source code must retain the above copyright
|
* notice, this list of conditions and the following disclaimer.
|
* - Redistributions in binary form must reproduce the above copyright
|
* notice, this list of conditions and the following disclaimer in
|
* the documentation and/or other materials provided with the
|
* distribution.
|
* - Neither the name of ARM LIMITED nor the names of its contributors
|
* may be used to endorse or promote products derived from this
|
* software without specific prior written permission.
|
*
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
* POSSIBILITY OF SUCH DAMAGE.
|
* -------------------------------------------------------------------- */
|
|
#include "arm_math.h"
|
|
/**
|
* @ingroup groupFilters
|
*/
|
|
/**
|
* @addtogroup FIR
|
* @{
|
*/
|
|
/**
|
* @brief Processing function for the Q15 FIR filter.
|
* @param[in] *S points to an instance of the Q15 FIR structure.
|
* @param[in] *pSrc points to the block of input data.
|
* @param[out] *pDst points to the block of output data.
|
* @param[in] blockSize number of samples to process per call.
|
* @return none.
|
*
|
*
|
* \par Restrictions
|
* If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
|
* In this case input, output, state buffers should be aligned by 32-bit
|
*
|
* <b>Scaling and Overflow Behavior:</b>
|
* \par
|
* The function is implemented using a 64-bit internal accumulator.
|
* Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
|
* The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
|
* There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
|
* After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
|
* Lastly, the accumulator is saturated to yield a result in 1.15 format.
|
*
|
* \par
|
* Refer to the function <code>arm_fir_fast_q15()</code> for a faster but less precise implementation of this function.
|
*/
|
|
#ifndef ARM_MATH_CM0_FAMILY
|
|
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
|
#ifndef UNALIGNED_SUPPORT_DISABLE
|
|
|
void arm_fir_q15(
|
const arm_fir_instance_q15 * S,
|
q15_t * pSrc,
|
q15_t * pDst,
|
uint32_t blockSize)
|
{
|
q15_t *pState = S->pState; /* State pointer */
|
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
|
q15_t *pStateCurnt; /* Points to the current sample of the state */
|
q15_t *px1; /* Temporary q15 pointer for state buffer */
|
q15_t *pb; /* Temporary pointer for coefficient buffer */
|
q31_t x0, x1, x2, x3, c0; /* Temporary variables to hold SIMD state and coefficient values */
|
q63_t acc0, acc1, acc2, acc3; /* Accumulators */
|
uint32_t numTaps = S->numTaps; /* Number of taps in the filter */
|
uint32_t tapCnt, blkCnt; /* Loop counters */
|
|
|
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
|
/* pStateCurnt points to the location where the new input data should be written */
|
pStateCurnt = &(S->pState[(numTaps - 1u)]);
|
|
/* Apply loop unrolling and compute 4 output values simultaneously.
|
* The variables acc0 ... acc3 hold output values that are being computed:
|
*
|
* acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
|
* acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
|
* acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
|
* acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
|
*/
|
|
blkCnt = blockSize >> 2;
|
|
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
** a second loop below computes the remaining 1 to 3 samples. */
|
while(blkCnt > 0u)
|
{
|
/* Copy four new input samples into the state buffer.
|
** Use 32-bit SIMD to move the 16-bit data. Only requires two copies. */
|
*__SIMD32(pStateCurnt)++ = *__SIMD32(pSrc)++;
|
*__SIMD32(pStateCurnt)++ = *__SIMD32(pSrc)++;
|
|
/* Set all accumulators to zero */
|
acc0 = 0;
|
acc1 = 0;
|
acc2 = 0;
|
acc3 = 0;
|
|
/* Initialize state pointer of type q15 */
|
px1 = pState;
|
|
/* Initialize coeff pointer of type q31 */
|
pb = pCoeffs;
|
|
/* Read the first two samples from the state buffer: x[n-N], x[n-N-1] */
|
x0 = _SIMD32_OFFSET(px1);
|
|
/* Read the third and forth samples from the state buffer: x[n-N-1], x[n-N-2] */
|
x1 = _SIMD32_OFFSET(px1 + 1u);
|
|
px1 += 2u;
|
|
/* Loop over the number of taps. Unroll by a factor of 4.
|
** Repeat until we've computed numTaps-4 coefficients. */
|
tapCnt = numTaps >> 2;
|
|
while(tapCnt > 0u)
|
{
|
/* Read the first two coefficients using SIMD: b[N] and b[N-1] coefficients */
|
c0 = *__SIMD32(pb)++;
|
|
/* acc0 += b[N] * x[n-N] + b[N-1] * x[n-N-1] */
|
acc0 = __SMLALD(x0, c0, acc0);
|
|
/* acc1 += b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */
|
acc1 = __SMLALD(x1, c0, acc1);
|
|
/* Read state x[n-N-2], x[n-N-3] */
|
x2 = _SIMD32_OFFSET(px1);
|
|
/* Read state x[n-N-3], x[n-N-4] */
|
x3 = _SIMD32_OFFSET(px1 + 1u);
|
|
/* acc2 += b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */
|
acc2 = __SMLALD(x2, c0, acc2);
|
|
/* acc3 += b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */
|
acc3 = __SMLALD(x3, c0, acc3);
|
|
/* Read coefficients b[N-2], b[N-3] */
|
c0 = *__SIMD32(pb)++;
|
|
/* acc0 += b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */
|
acc0 = __SMLALD(x2, c0, acc0);
|
|
/* acc1 += b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */
|
acc1 = __SMLALD(x3, c0, acc1);
|
|
/* Read state x[n-N-4], x[n-N-5] */
|
x0 = _SIMD32_OFFSET(px1 + 2u);
|
|
/* Read state x[n-N-5], x[n-N-6] */
|
x1 = _SIMD32_OFFSET(px1 + 3u);
|
|
/* acc2 += b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */
|
acc2 = __SMLALD(x0, c0, acc2);
|
|
/* acc3 += b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */
|
acc3 = __SMLALD(x1, c0, acc3);
|
|
px1 += 4u;
|
|
tapCnt--;
|
|
}
|
|
|
/* If the filter length is not a multiple of 4, compute the remaining filter taps.
|
** This is always be 2 taps since the filter length is even. */
|
if((numTaps & 0x3u) != 0u)
|
{
|
/* Read 2 coefficients */
|
c0 = *__SIMD32(pb)++;
|
|
/* Fetch 4 state variables */
|
x2 = _SIMD32_OFFSET(px1);
|
|
x3 = _SIMD32_OFFSET(px1 + 1u);
|
|
/* Perform the multiply-accumulates */
|
acc0 = __SMLALD(x0, c0, acc0);
|
|
px1 += 2u;
|
|
acc1 = __SMLALD(x1, c0, acc1);
|
acc2 = __SMLALD(x2, c0, acc2);
|
acc3 = __SMLALD(x3, c0, acc3);
|
}
|
|
/* The results in the 4 accumulators are in 2.30 format. Convert to 1.15 with saturation.
|
** Then store the 4 outputs in the destination buffer. */
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
*__SIMD32(pDst)++ =
|
__PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
|
*__SIMD32(pDst)++ =
|
__PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
|
|
#else
|
|
*__SIMD32(pDst)++ =
|
__PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
|
*__SIMD32(pDst)++ =
|
__PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
|
|
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
|
|
/* Advance the state pointer by 4 to process the next group of 4 samples */
|
pState = pState + 4;
|
|
/* Decrement the loop counter */
|
blkCnt--;
|
}
|
|
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
** No loop unrolling is used. */
|
blkCnt = blockSize % 0x4u;
|
while(blkCnt > 0u)
|
{
|
/* Copy two samples into state buffer */
|
*pStateCurnt++ = *pSrc++;
|
|
/* Set the accumulator to zero */
|
acc0 = 0;
|
|
/* Initialize state pointer of type q15 */
|
px1 = pState;
|
|
/* Initialize coeff pointer of type q31 */
|
pb = pCoeffs;
|
|
tapCnt = numTaps >> 1;
|
|
do
|
{
|
|
c0 = *__SIMD32(pb)++;
|
x0 = *__SIMD32(px1)++;
|
|
acc0 = __SMLALD(x0, c0, acc0);
|
tapCnt--;
|
}
|
while(tapCnt > 0u);
|
|
/* The result is in 2.30 format. Convert to 1.15 with saturation.
|
** Then store the output in the destination buffer. */
|
*pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
|
|
/* Advance state pointer by 1 for the next sample */
|
pState = pState + 1;
|
|
/* Decrement the loop counter */
|
blkCnt--;
|
}
|
|
/* Processing is complete.
|
** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
|
** This prepares the state buffer for the next function call. */
|
|
/* Points to the start of the state buffer */
|
pStateCurnt = S->pState;
|
|
/* Calculation of count for copying integer writes */
|
tapCnt = (numTaps - 1u) >> 2;
|
|
while(tapCnt > 0u)
|
{
|
|
/* Copy state values to start of state buffer */
|
*__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
|
*__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
|
|
tapCnt--;
|
|
}
|
|
/* Calculation of count for remaining q15_t data */
|
tapCnt = (numTaps - 1u) % 0x4u;
|
|
/* copy remaining data */
|
while(tapCnt > 0u)
|
{
|
*pStateCurnt++ = *pState++;
|
|
/* Decrement the loop counter */
|
tapCnt--;
|
}
|
}
|
|
#else /* UNALIGNED_SUPPORT_DISABLE */
|
|
void arm_fir_q15(
|
const arm_fir_instance_q15 * S,
|
q15_t * pSrc,
|
q15_t * pDst,
|
uint32_t blockSize)
|
{
|
q15_t *pState = S->pState; /* State pointer */
|
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
|
q15_t *pStateCurnt; /* Points to the current sample of the state */
|
q63_t acc0, acc1, acc2, acc3; /* Accumulators */
|
q15_t *pb; /* Temporary pointer for coefficient buffer */
|
q15_t *px; /* Temporary q31 pointer for SIMD state buffer accesses */
|
q31_t x0, x1, x2, c0; /* Temporary variables to hold SIMD state and coefficient values */
|
uint32_t numTaps = S->numTaps; /* Number of taps in the filter */
|
uint32_t tapCnt, blkCnt; /* Loop counters */
|
|
|
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
|
/* pStateCurnt points to the location where the new input data should be written */
|
pStateCurnt = &(S->pState[(numTaps - 1u)]);
|
|
/* Apply loop unrolling and compute 4 output values simultaneously.
|
* The variables acc0 ... acc3 hold output values that are being computed:
|
*
|
* acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
|
* acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
|
* acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
|
* acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
|
*/
|
|
blkCnt = blockSize >> 2;
|
|
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
** a second loop below computes the remaining 1 to 3 samples. */
|
while(blkCnt > 0u)
|
{
|
/* Copy four new input samples into the state buffer.
|
** Use 32-bit SIMD to move the 16-bit data. Only requires two copies. */
|
*pStateCurnt++ = *pSrc++;
|
*pStateCurnt++ = *pSrc++;
|
*pStateCurnt++ = *pSrc++;
|
*pStateCurnt++ = *pSrc++;
|
|
|
/* Set all accumulators to zero */
|
acc0 = 0;
|
acc1 = 0;
|
acc2 = 0;
|
acc3 = 0;
|
|
/* Typecast q15_t pointer to q31_t pointer for state reading in q31_t */
|
px = pState;
|
|
/* Typecast q15_t pointer to q31_t pointer for coefficient reading in q31_t */
|
pb = pCoeffs;
|
|
/* Read the first two samples from the state buffer: x[n-N], x[n-N-1] */
|
x0 = *__SIMD32(px)++;
|
|
/* Read the third and forth samples from the state buffer: x[n-N-2], x[n-N-3] */
|
x2 = *__SIMD32(px)++;
|
|
/* Loop over the number of taps. Unroll by a factor of 4.
|
** Repeat until we've computed numTaps-(numTaps%4) coefficients. */
|
tapCnt = numTaps >> 2;
|
|
while(tapCnt > 0)
|
{
|
/* Read the first two coefficients using SIMD: b[N] and b[N-1] coefficients */
|
c0 = *__SIMD32(pb)++;
|
|
/* acc0 += b[N] * x[n-N] + b[N-1] * x[n-N-1] */
|
acc0 = __SMLALD(x0, c0, acc0);
|
|
/* acc2 += b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */
|
acc2 = __SMLALD(x2, c0, acc2);
|
|
/* pack x[n-N-1] and x[n-N-2] */
|
#ifndef ARM_MATH_BIG_ENDIAN
|
x1 = __PKHBT(x2, x0, 0);
|
#else
|
x1 = __PKHBT(x0, x2, 0);
|
#endif
|
|
/* Read state x[n-N-4], x[n-N-5] */
|
x0 = _SIMD32_OFFSET(px);
|
|
/* acc1 += b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */
|
acc1 = __SMLALDX(x1, c0, acc1);
|
|
/* pack x[n-N-3] and x[n-N-4] */
|
#ifndef ARM_MATH_BIG_ENDIAN
|
x1 = __PKHBT(x0, x2, 0);
|
#else
|
x1 = __PKHBT(x2, x0, 0);
|
#endif
|
|
/* acc3 += b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */
|
acc3 = __SMLALDX(x1, c0, acc3);
|
|
/* Read coefficients b[N-2], b[N-3] */
|
c0 = *__SIMD32(pb)++;
|
|
/* acc0 += b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */
|
acc0 = __SMLALD(x2, c0, acc0);
|
|
/* Read state x[n-N-6], x[n-N-7] with offset */
|
x2 = _SIMD32_OFFSET(px + 2u);
|
|
/* acc2 += b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */
|
acc2 = __SMLALD(x0, c0, acc2);
|
|
/* acc1 += b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */
|
acc1 = __SMLALDX(x1, c0, acc1);
|
|
/* pack x[n-N-5] and x[n-N-6] */
|
#ifndef ARM_MATH_BIG_ENDIAN
|
x1 = __PKHBT(x2, x0, 0);
|
#else
|
x1 = __PKHBT(x0, x2, 0);
|
#endif
|
|
/* acc3 += b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */
|
acc3 = __SMLALDX(x1, c0, acc3);
|
|
/* Update state pointer for next state reading */
|
px += 4u;
|
|
/* Decrement tap count */
|
tapCnt--;
|
|
}
|
|
/* If the filter length is not a multiple of 4, compute the remaining filter taps.
|
** This is always be 2 taps since the filter length is even. */
|
if((numTaps & 0x3u) != 0u)
|
{
|
|
/* Read last two coefficients */
|
c0 = *__SIMD32(pb)++;
|
|
/* Perform the multiply-accumulates */
|
acc0 = __SMLALD(x0, c0, acc0);
|
acc2 = __SMLALD(x2, c0, acc2);
|
|
/* pack state variables */
|
#ifndef ARM_MATH_BIG_ENDIAN
|
x1 = __PKHBT(x2, x0, 0);
|
#else
|
x1 = __PKHBT(x0, x2, 0);
|
#endif
|
|
/* Read last state variables */
|
x0 = *__SIMD32(px);
|
|
/* Perform the multiply-accumulates */
|
acc1 = __SMLALDX(x1, c0, acc1);
|
|
/* pack state variables */
|
#ifndef ARM_MATH_BIG_ENDIAN
|
x1 = __PKHBT(x0, x2, 0);
|
#else
|
x1 = __PKHBT(x2, x0, 0);
|
#endif
|
|
/* Perform the multiply-accumulates */
|
acc3 = __SMLALDX(x1, c0, acc3);
|
}
|
|
/* The results in the 4 accumulators are in 2.30 format. Convert to 1.15 with saturation.
|
** Then store the 4 outputs in the destination buffer. */
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
*__SIMD32(pDst)++ =
|
__PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
|
|
*__SIMD32(pDst)++ =
|
__PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);
|
|
#else
|
|
*__SIMD32(pDst)++ =
|
__PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
|
|
*__SIMD32(pDst)++ =
|
__PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);
|
|
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
/* Advance the state pointer by 4 to process the next group of 4 samples */
|
pState = pState + 4;
|
|
/* Decrement the loop counter */
|
blkCnt--;
|
}
|
|
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
** No loop unrolling is used. */
|
blkCnt = blockSize % 0x4u;
|
while(blkCnt > 0u)
|
{
|
/* Copy two samples into state buffer */
|
*pStateCurnt++ = *pSrc++;
|
|
/* Set the accumulator to zero */
|
acc0 = 0;
|
|
/* Use SIMD to hold states and coefficients */
|
px = pState;
|
pb = pCoeffs;
|
|
tapCnt = numTaps >> 1u;
|
|
do
|
{
|
acc0 += (q31_t) * px++ * *pb++;
|
acc0 += (q31_t) * px++ * *pb++;
|
tapCnt--;
|
}
|
while(tapCnt > 0u);
|
|
/* The result is in 2.30 format. Convert to 1.15 with saturation.
|
** Then store the output in the destination buffer. */
|
*pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));
|
|
/* Advance state pointer by 1 for the next sample */
|
pState = pState + 1u;
|
|
/* Decrement the loop counter */
|
blkCnt--;
|
}
|
|
/* Processing is complete.
|
** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
|
** This prepares the state buffer for the next function call. */
|
|
/* Points to the start of the state buffer */
|
pStateCurnt = S->pState;
|
|
/* Calculation of count for copying integer writes */
|
tapCnt = (numTaps - 1u) >> 2;
|
|
while(tapCnt > 0u)
|
{
|
*pStateCurnt++ = *pState++;
|
*pStateCurnt++ = *pState++;
|
*pStateCurnt++ = *pState++;
|
*pStateCurnt++ = *pState++;
|
|
tapCnt--;
|
|
}
|
|
/* Calculation of count for remaining q15_t data */
|
tapCnt = (numTaps - 1u) % 0x4u;
|
|
/* copy remaining data */
|
while(tapCnt > 0u)
|
{
|
*pStateCurnt++ = *pState++;
|
|
/* Decrement the loop counter */
|
tapCnt--;
|
}
|
}
|
|
|
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
|
|
#else /* ARM_MATH_CM0_FAMILY */
|
|
|
/* Run the below code for Cortex-M0 */
|
|
void arm_fir_q15(
|
const arm_fir_instance_q15 * S,
|
q15_t * pSrc,
|
q15_t * pDst,
|
uint32_t blockSize)
|
{
|
q15_t *pState = S->pState; /* State pointer */
|
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
|
q15_t *pStateCurnt; /* Points to the current sample of the state */
|
|
|
|
q15_t *px; /* Temporary pointer for state buffer */
|
q15_t *pb; /* Temporary pointer for coefficient buffer */
|
q63_t acc; /* Accumulator */
|
uint32_t numTaps = S->numTaps; /* Number of nTaps in the filter */
|
uint32_t tapCnt, blkCnt; /* Loop counters */
|
|
/* S->pState buffer contains previous frame (numTaps - 1) samples */
|
/* pStateCurnt points to the location where the new input data should be written */
|
pStateCurnt = &(S->pState[(numTaps - 1u)]);
|
|
/* Initialize blkCnt with blockSize */
|
blkCnt = blockSize;
|
|
while(blkCnt > 0u)
|
{
|
/* Copy one sample at a time into state buffer */
|
*pStateCurnt++ = *pSrc++;
|
|
/* Set the accumulator to zero */
|
acc = 0;
|
|
/* Initialize state pointer */
|
px = pState;
|
|
/* Initialize Coefficient pointer */
|
pb = pCoeffs;
|
|
tapCnt = numTaps;
|
|
/* Perform the multiply-accumulates */
|
do
|
{
|
/* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
|
acc += (q31_t) * px++ * *pb++;
|
tapCnt--;
|
} while(tapCnt > 0u);
|
|
/* The result is in 2.30 format. Convert to 1.15
|
** Then store the output in the destination buffer. */
|
*pDst++ = (q15_t) __SSAT((acc >> 15u), 16);
|
|
/* Advance state pointer by 1 for the next sample */
|
pState = pState + 1;
|
|
/* Decrement the samples loop counter */
|
blkCnt--;
|
}
|
|
/* Processing is complete.
|
** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
|
** This prepares the state buffer for the next function call. */
|
|
/* Points to the start of the state buffer */
|
pStateCurnt = S->pState;
|
|
/* Copy numTaps number of values */
|
tapCnt = (numTaps - 1u);
|
|
/* copy data */
|
while(tapCnt > 0u)
|
{
|
*pStateCurnt++ = *pState++;
|
|
/* Decrement the loop counter */
|
tapCnt--;
|
}
|
|
}
|
|
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
|
|
|
|
|
/**
|
* @} end of FIR group
|
*/
|