/* ----------------------------------------------------------------------
|
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
*
|
* $Date: 19. March 2015
|
* $Revision: V.1.4.5
|
*
|
* Project: CMSIS DSP Library
|
* Title: arm_cmplx_mat_mult_q15.c
|
*
|
* Description: Q15 complex matrix multiplication.
|
*
|
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
*
|
* Redistribution and use in source and binary forms, with or without
|
* modification, are permitted provided that the following conditions
|
* are met:
|
* - Redistributions of source code must retain the above copyright
|
* notice, this list of conditions and the following disclaimer.
|
* - Redistributions in binary form must reproduce the above copyright
|
* notice, this list of conditions and the following disclaimer in
|
* the documentation and/or other materials provided with the
|
* distribution.
|
* - Neither the name of ARM LIMITED nor the names of its contributors
|
* may be used to endorse or promote products derived from this
|
* software without specific prior written permission.
|
*
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
* POSSIBILITY OF SUCH DAMAGE.
|
* -------------------------------------------------------------------- */
|
#include "arm_math.h"
|
|
/**
|
* @ingroup groupMatrix
|
*/
|
|
/**
|
* @addtogroup CmplxMatrixMult
|
* @{
|
*/
|
|
|
/**
|
* @brief Q15 Complex matrix multiplication
|
* @param[in] *pSrcA points to the first input complex matrix structure
|
* @param[in] *pSrcB points to the second input complex matrix structure
|
* @param[out] *pDst points to output complex matrix structure
|
* @param[in] *pScratch points to the array for storing intermediate results
|
* @return The function returns either
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
*
|
* \par Conditions for optimum performance
|
* Input, output and state buffers should be aligned by 32-bit
|
*
|
* \par Restrictions
|
* If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
|
* In this case input, output, scratch buffers should be aligned by 32-bit
|
*
|
* @details
|
* <b>Scaling and Overflow Behavior:</b>
|
*
|
* \par
|
* The function is implemented using a 64-bit internal accumulator. The inputs to the
|
* multiplications are in 1.15 format and multiplications yield a 2.30 result.
|
* The 2.30 intermediate
|
* results are accumulated in a 64-bit accumulator in 34.30 format. This approach
|
* provides 33 guard bits and there is no risk of overflow. The 34.30 result is then
|
* truncated to 34.15 format by discarding the low 15 bits and then saturated to
|
* 1.15 format.
|
*
|
* \par
|
* Refer to <code>arm_mat_mult_fast_q15()</code> for a faster but less precise version of this function.
|
*
|
*/
|
|
|
|
|
arm_status arm_mat_cmplx_mult_q15(
|
const arm_matrix_instance_q15 * pSrcA,
|
const arm_matrix_instance_q15 * pSrcB,
|
arm_matrix_instance_q15 * pDst,
|
q15_t * pScratch)
|
{
|
/* accumulator */
|
q15_t *pSrcBT = pScratch; /* input data matrix pointer for transpose */
|
q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */
|
q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */
|
q15_t *px; /* Temporary output data matrix pointer */
|
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
|
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
|
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
|
uint16_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */
|
uint16_t col, i = 0u, row = numRowsB, colCnt; /* loop counters */
|
arm_status status; /* status of matrix multiplication */
|
q63_t sumReal, sumImag;
|
|
#ifdef UNALIGNED_SUPPORT_DISABLE
|
q15_t in; /* Temporary variable to hold the input value */
|
q15_t a, b, c, d;
|
#else
|
q31_t in; /* Temporary variable to hold the input value */
|
q31_t prod1, prod2;
|
q31_t pSourceA, pSourceB;
|
#endif
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
/* Check for matrix mismatch condition */
|
if((pSrcA->numCols != pSrcB->numRows) ||
|
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
|
{
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
status = ARM_MATH_SIZE_MISMATCH;
|
}
|
else
|
#endif
|
{
|
/* Matrix transpose */
|
do
|
{
|
/* Apply loop unrolling and exchange the columns with row elements */
|
col = numColsB >> 2;
|
|
/* The pointer px is set to starting address of the column being processed */
|
px = pSrcBT + i;
|
|
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
** a second loop below computes the remaining 1 to 3 samples. */
|
while(col > 0u)
|
{
|
#ifdef UNALIGNED_SUPPORT_DISABLE
|
/* Read two elements from the row */
|
in = *pInB++;
|
*px = in;
|
in = *pInB++;
|
px[1] = in;
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB * 2;
|
|
/* Read two elements from the row */
|
in = *pInB++;
|
*px = in;
|
in = *pInB++;
|
px[1] = in;
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB * 2;
|
|
/* Read two elements from the row */
|
in = *pInB++;
|
*px = in;
|
in = *pInB++;
|
px[1] = in;
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB * 2;
|
|
/* Read two elements from the row */
|
in = *pInB++;
|
*px = in;
|
in = *pInB++;
|
px[1] = in;
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB * 2;
|
|
/* Decrement the column loop counter */
|
col--;
|
}
|
|
/* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
|
** No loop unrolling is used. */
|
col = numColsB % 0x4u;
|
|
while(col > 0u)
|
{
|
/* Read two elements from the row */
|
in = *pInB++;
|
*px = in;
|
in = *pInB++;
|
px[1] = in;
|
#else
|
|
/* Read two elements from the row */
|
in = *__SIMD32(pInB)++;
|
|
*__SIMD32(px) = in;
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB * 2;
|
|
|
/* Read two elements from the row */
|
in = *__SIMD32(pInB)++;
|
|
*__SIMD32(px) = in;
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB * 2;
|
|
/* Read two elements from the row */
|
in = *__SIMD32(pInB)++;
|
|
*__SIMD32(px) = in;
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB * 2;
|
|
/* Read two elements from the row */
|
in = *__SIMD32(pInB)++;
|
|
*__SIMD32(px) = in;
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB * 2;
|
|
/* Decrement the column loop counter */
|
col--;
|
}
|
|
/* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
|
** No loop unrolling is used. */
|
col = numColsB % 0x4u;
|
|
while(col > 0u)
|
{
|
/* Read two elements from the row */
|
in = *__SIMD32(pInB)++;
|
|
*__SIMD32(px) = in;
|
#endif
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB * 2;
|
|
/* Decrement the column loop counter */
|
col--;
|
}
|
|
i = i + 2u;
|
|
/* Decrement the row loop counter */
|
row--;
|
|
} while(row > 0u);
|
|
/* Reset the variables for the usage in the following multiplication process */
|
row = numRowsA;
|
i = 0u;
|
px = pDst->pData;
|
|
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
|
/* row loop */
|
do
|
{
|
/* For every row wise process, the column loop counter is to be initiated */
|
col = numColsB;
|
|
/* For every row wise process, the pIn2 pointer is set
|
** to the starting address of the transposed pSrcB data */
|
pInB = pSrcBT;
|
|
/* column loop */
|
do
|
{
|
/* Set the variable sum, that acts as accumulator, to zero */
|
sumReal = 0;
|
sumImag = 0;
|
|
/* Apply loop unrolling and compute 2 MACs simultaneously. */
|
colCnt = numColsA >> 1;
|
|
/* Initiate the pointer pIn1 to point to the starting address of the column being processed */
|
pInA = pSrcA->pData + i * 2;
|
|
|
/* matrix multiplication */
|
while(colCnt > 0u)
|
{
|
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
|
|
#ifdef UNALIGNED_SUPPORT_DISABLE
|
|
/* read real and imag values from pSrcA buffer */
|
a = *pInA;
|
b = *(pInA + 1u);
|
/* read real and imag values from pSrcB buffer */
|
c = *pInB;
|
d = *(pInB + 1u);
|
|
/* Multiply and Accumlates */
|
sumReal += (q31_t) a *c;
|
sumImag += (q31_t) a *d;
|
sumReal -= (q31_t) b *d;
|
sumImag += (q31_t) b *c;
|
|
/* read next real and imag values from pSrcA buffer */
|
a = *(pInA + 2u);
|
b = *(pInA + 3u);
|
/* read next real and imag values from pSrcB buffer */
|
c = *(pInB + 2u);
|
d = *(pInB + 3u);
|
|
/* update pointer */
|
pInA += 4u;
|
|
/* Multiply and Accumlates */
|
sumReal += (q31_t) a *c;
|
sumImag += (q31_t) a *d;
|
sumReal -= (q31_t) b *d;
|
sumImag += (q31_t) b *c;
|
/* update pointer */
|
pInB += 4u;
|
#else
|
/* read real and imag values from pSrcA and pSrcB buffer */
|
pSourceA = *__SIMD32(pInA)++;
|
pSourceB = *__SIMD32(pInB)++;
|
|
/* Multiply and Accumlates */
|
#ifdef ARM_MATH_BIG_ENDIAN
|
prod1 = -__SMUSD(pSourceA, pSourceB);
|
#else
|
prod1 = __SMUSD(pSourceA, pSourceB);
|
#endif
|
prod2 = __SMUADX(pSourceA, pSourceB);
|
sumReal += (q63_t) prod1;
|
sumImag += (q63_t) prod2;
|
|
/* read real and imag values from pSrcA and pSrcB buffer */
|
pSourceA = *__SIMD32(pInA)++;
|
pSourceB = *__SIMD32(pInB)++;
|
|
/* Multiply and Accumlates */
|
#ifdef ARM_MATH_BIG_ENDIAN
|
prod1 = -__SMUSD(pSourceA, pSourceB);
|
#else
|
prod1 = __SMUSD(pSourceA, pSourceB);
|
#endif
|
prod2 = __SMUADX(pSourceA, pSourceB);
|
sumReal += (q63_t) prod1;
|
sumImag += (q63_t) prod2;
|
|
#endif /* #ifdef UNALIGNED_SUPPORT_DISABLE */
|
|
/* Decrement the loop counter */
|
colCnt--;
|
}
|
|
/* process odd column samples */
|
if((numColsA & 0x1u) > 0u)
|
{
|
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
|
|
#ifdef UNALIGNED_SUPPORT_DISABLE
|
|
/* read real and imag values from pSrcA and pSrcB buffer */
|
a = *pInA++;
|
b = *pInA++;
|
c = *pInB++;
|
d = *pInB++;
|
|
/* Multiply and Accumlates */
|
sumReal += (q31_t) a *c;
|
sumImag += (q31_t) a *d;
|
sumReal -= (q31_t) b *d;
|
sumImag += (q31_t) b *c;
|
|
#else
|
/* read real and imag values from pSrcA and pSrcB buffer */
|
pSourceA = *__SIMD32(pInA)++;
|
pSourceB = *__SIMD32(pInB)++;
|
|
/* Multiply and Accumlates */
|
#ifdef ARM_MATH_BIG_ENDIAN
|
prod1 = -__SMUSD(pSourceA, pSourceB);
|
#else
|
prod1 = __SMUSD(pSourceA, pSourceB);
|
#endif
|
prod2 = __SMUADX(pSourceA, pSourceB);
|
sumReal += (q63_t) prod1;
|
sumImag += (q63_t) prod2;
|
|
#endif /* #ifdef UNALIGNED_SUPPORT_DISABLE */
|
|
}
|
|
/* Saturate and store the result in the destination buffer */
|
|
*px++ = (q15_t) (__SSAT(sumReal >> 15, 16));
|
*px++ = (q15_t) (__SSAT(sumImag >> 15, 16));
|
|
/* Decrement the column loop counter */
|
col--;
|
|
} while(col > 0u);
|
|
i = i + numColsA;
|
|
/* Decrement the row loop counter */
|
row--;
|
|
} while(row > 0u);
|
|
/* set status as ARM_MATH_SUCCESS */
|
status = ARM_MATH_SUCCESS;
|
}
|
|
/* Return to application */
|
return (status);
|
}
|
|
/**
|
* @} end of MatrixMult group
|
*/
|