QuakeGod
2023-02-01 6126f6a78b14297cefb02f06ba58806767d424b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
/* ----------------------------------------------------------------------    
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
*    
* $Date:        19. March 2015
* $Revision:     V.1.4.5
*    
* Project:         CMSIS DSP Library    
* Title:        arm_lms_f32.c    
*    
* Description:    Processing function for the floating-point LMS filter.    
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.    
* -------------------------------------------------------------------- */
 
#include "arm_math.h"
 
/**    
 * @ingroup groupFilters    
 */
 
/**    
 * @defgroup LMS Least Mean Square (LMS) Filters    
 *    
 * LMS filters are a class of adaptive filters that are able to "learn" an unknown transfer functions.    
 * LMS filters use a gradient descent method in which the filter coefficients are updated based on the instantaneous error signal.    
 * Adaptive filters are often used in communication systems, equalizers, and noise removal.    
 * The CMSIS DSP Library contains LMS filter functions that operate on Q15, Q31, and floating-point data types.    
 * The library also contains normalized LMS filters in which the filter coefficient adaptation is indepedent of the level of the input signal.    
 *    
 * An LMS filter consists of two components as shown below.    
 * The first component is a standard transversal or FIR filter.    
 * The second component is a coefficient update mechanism.    
 * The LMS filter has two input signals.    
 * The "input" feeds the FIR filter while the "reference input" corresponds to the desired output of the FIR filter.    
 * That is, the FIR filter coefficients are updated so that the output of the FIR filter matches the reference input.    
 * The filter coefficient update mechanism is based on the difference between the FIR filter output and the reference input.    
 * This "error signal" tends towards zero as the filter adapts.    
 * The LMS processing functions accept the input and reference input signals and generate the filter output and error signal.    
 * \image html LMS.gif "Internal structure of the Least Mean Square filter"    
 *    
 * The functions operate on blocks of data and each call to the function processes    
 * <code>blockSize</code> samples through the filter.    
 * <code>pSrc</code> points to input signal, <code>pRef</code> points to reference signal,    
 * <code>pOut</code> points to output signal and <code>pErr</code> points to error signal.    
 * All arrays contain <code>blockSize</code> values.    
 *    
 * The functions operate on a block-by-block basis.    
 * Internally, the filter coefficients <code>b[n]</code> are updated on a sample-by-sample basis.    
 * The convergence of the LMS filter is slower compared to the normalized LMS algorithm.    
 *    
 * \par Algorithm:    
 * The output signal <code>y[n]</code> is computed by a standard FIR filter:    
 * <pre>    
 *     y[n] = b[0] * x[n] + b[1] * x[n-1] + b[2] * x[n-2] + ...+ b[numTaps-1] * x[n-numTaps+1]    
 * </pre>    
 *    
 * \par    
 * The error signal equals the difference between the reference signal <code>d[n]</code> and the filter output:    
 * <pre>    
 *     e[n] = d[n] - y[n].    
 * </pre>    
 *    
 * \par    
 * After each sample of the error signal is computed, the filter coefficients <code>b[k]</code> are updated on a sample-by-sample basis:    
 * <pre>    
 *     b[k] = b[k] + e[n] * mu * x[n-k],  for k=0, 1, ..., numTaps-1    
 * </pre>    
 * where <code>mu</code> is the step size and controls the rate of coefficient convergence.    
 *\par    
 * In the APIs, <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>.    
 * Coefficients are stored in time reversed order.    
 * \par    
 * <pre>    
 *    {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}    
 * </pre>    
 * \par    
 * <code>pState</code> points to a state array of size <code>numTaps + blockSize - 1</code>.    
 * Samples in the state buffer are stored in the order:    
 * \par    
 * <pre>    
 *    {x[n-numTaps+1], x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2]....x[0], x[1], ..., x[blockSize-1]}    
 * </pre>    
 * \par    
 * Note that the length of the state buffer exceeds the length of the coefficient array by <code>blockSize-1</code> samples.    
 * The increased state buffer length allows circular addressing, which is traditionally used in FIR filters,    
 * to be avoided and yields a significant speed improvement.    
 * The state variables are updated after each block of data is processed.    
 * \par Instance Structure    
 * The coefficients and state variables for a filter are stored together in an instance data structure.    
 * A separate instance structure must be defined for each filter and    
 * coefficient and state arrays cannot be shared among instances.    
 * There are separate instance structure declarations for each of the 3 supported data types.    
 *    
 * \par Initialization Functions    
 * There is also an associated initialization function for each data type.    
 * The initialization function performs the following operations:    
 * - Sets the values of the internal structure fields.    
 * - Zeros out the values in the state buffer.    
 * To do this manually without calling the init function, assign the follow subfields of the instance structure:
 * numTaps, pCoeffs, mu, postShift (not for f32), pState. Also set all of the values in pState to zero. 
 *
 * \par    
 * Use of the initialization function is optional.    
 * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.    
 * To place an instance structure into a const data section, the instance structure must be manually initialized.    
 * Set the values in the state buffer to zeros before static initialization.    
 * The code below statically initializes each of the 3 different data type filter instance structures    
 * <pre>    
 *    arm_lms_instance_f32 S = {numTaps, pState, pCoeffs, mu};    
 *    arm_lms_instance_q31 S = {numTaps, pState, pCoeffs, mu, postShift};    
 *    arm_lms_instance_q15 S = {numTaps, pState, pCoeffs, mu, postShift};    
 * </pre>    
 * where <code>numTaps</code> is the number of filter coefficients in the filter; <code>pState</code> is the address of the state buffer;    
 * <code>pCoeffs</code> is the address of the coefficient buffer; <code>mu</code> is the step size parameter; and <code>postShift</code> is the shift applied to coefficients.    
 *    
 * \par Fixed-Point Behavior:    
 * Care must be taken when using the Q15 and Q31 versions of the LMS filter.    
 * The following issues must be considered:    
 * - Scaling of coefficients    
 * - Overflow and saturation    
 *    
 * \par Scaling of Coefficients:    
 * Filter coefficients are represented as fractional values and    
 * coefficients are restricted to lie in the range <code>[-1 +1)</code>.    
 * The fixed-point functions have an additional scaling parameter <code>postShift</code>.    
 * At the output of the filter's accumulator is a shift register which shifts the result by <code>postShift</code> bits.    
 * This essentially scales the filter coefficients by <code>2^postShift</code> and    
 * allows the filter coefficients to exceed the range <code>[+1 -1)</code>.    
 * The value of <code>postShift</code> is set by the user based on the expected gain through the system being modeled.    
 *    
 * \par Overflow and Saturation:    
 * Overflow and saturation behavior of the fixed-point Q15 and Q31 versions are    
 * described separately as part of the function specific documentation below.    
 */
 
/**    
 * @addtogroup LMS    
 * @{    
 */
 
/**           
 * @details           
 * This function operates on floating-point data types.       
 *    
 * @brief Processing function for floating-point LMS filter.    
 * @param[in]  *S points to an instance of the floating-point LMS filter structure.    
 * @param[in]  *pSrc points to the block of input data.    
 * @param[in]  *pRef points to the block of reference data.    
 * @param[out] *pOut points to the block of output data.    
 * @param[out] *pErr points to the block of error data.    
 * @param[in]  blockSize number of samples to process.    
 * @return     none.    
 */
 
void arm_lms_f32(
  const arm_lms_instance_f32 * S,
  float32_t * pSrc,
  float32_t * pRef,
  float32_t * pOut,
  float32_t * pErr,
  uint32_t blockSize)
{
  float32_t *pState = S->pState;                 /* State pointer */
  float32_t *pCoeffs = S->pCoeffs;               /* Coefficient pointer */
  float32_t *pStateCurnt;                        /* Points to the current sample of the state */
  float32_t *px, *pb;                            /* Temporary pointers for state and coefficient buffers */
  float32_t mu = S->mu;                          /* Adaptive factor */
  uint32_t numTaps = S->numTaps;                 /* Number of filter coefficients in the filter */
  uint32_t tapCnt, blkCnt;                       /* Loop counters */
  float32_t sum, e, d;                           /* accumulator, error, reference data sample */
  float32_t w = 0.0f;                            /* weight factor */
 
  e = 0.0f;
  d = 0.0f;
 
  /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = &(S->pState[(numTaps - 1u)]);
 
  blkCnt = blockSize;
 
 
#ifndef ARM_MATH_CM0_FAMILY
 
  /* Run the below code for Cortex-M4 and Cortex-M3 */
 
  while(blkCnt > 0u)
  {
    /* Copy the new input sample into the state buffer */
    *pStateCurnt++ = *pSrc++;
 
    /* Initialize pState pointer */
    px = pState;
 
    /* Initialize coeff pointer */
    pb = (pCoeffs);
 
    /* Set the accumulator to zero */
    sum = 0.0f;
 
    /* Loop unrolling.  Process 4 taps at a time. */
    tapCnt = numTaps >> 2;
 
    while(tapCnt > 0u)
    {
      /* Perform the multiply-accumulate */
      sum += (*px++) * (*pb++);
      sum += (*px++) * (*pb++);
      sum += (*px++) * (*pb++);
      sum += (*px++) * (*pb++);
 
      /* Decrement the loop counter */
      tapCnt--;
    }
 
    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
    tapCnt = numTaps % 0x4u;
 
    while(tapCnt > 0u)
    {
      /* Perform the multiply-accumulate */
      sum += (*px++) * (*pb++);
 
      /* Decrement the loop counter */
      tapCnt--;
    }
 
    /* The result in the accumulator, store in the destination buffer. */
    *pOut++ = sum;
 
    /* Compute and store error */
    d = (float32_t) (*pRef++);
    e = d - sum;
    *pErr++ = e;
 
    /* Calculation of Weighting factor for the updating filter coefficients */
    w = e * mu;
 
    /* Initialize pState pointer */
    px = pState;
 
    /* Initialize coeff pointer */
    pb = (pCoeffs);
 
    /* Loop unrolling.  Process 4 taps at a time. */
    tapCnt = numTaps >> 2;
 
    /* Update filter coefficients */
    while(tapCnt > 0u)
    {
      /* Perform the multiply-accumulate */
      *pb = *pb + (w * (*px++));
      pb++;
 
      *pb = *pb + (w * (*px++));
      pb++;
 
      *pb = *pb + (w * (*px++));
      pb++;
 
      *pb = *pb + (w * (*px++));
      pb++;
 
      /* Decrement the loop counter */
      tapCnt--;
    }
 
    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
    tapCnt = numTaps % 0x4u;
 
    while(tapCnt > 0u)
    {
      /* Perform the multiply-accumulate */
      *pb = *pb + (w * (*px++));
      pb++;
 
      /* Decrement the loop counter */
      tapCnt--;
    }
 
    /* Advance state pointer by 1 for the next sample */
    pState = pState + 1;
 
    /* Decrement the loop counter */
    blkCnt--;
  }
 
 
  /* Processing is complete. Now copy the last numTaps - 1 samples to the    
     satrt of the state buffer. This prepares the state buffer for the    
     next function call. */
 
  /* Points to the start of the pState buffer */
  pStateCurnt = S->pState;
 
  /* Loop unrolling for (numTaps - 1u) samples copy */
  tapCnt = (numTaps - 1u) >> 2u;
 
  /* copy data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
 
    /* Decrement the loop counter */
    tapCnt--;
  }
 
  /* Calculate remaining number of copies */
  tapCnt = (numTaps - 1u) % 0x4u;
 
  /* Copy the remaining q31_t data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;
 
    /* Decrement the loop counter */
    tapCnt--;
  }
 
#else
 
  /* Run the below code for Cortex-M0 */
 
  while(blkCnt > 0u)
  {
    /* Copy the new input sample into the state buffer */
    *pStateCurnt++ = *pSrc++;
 
    /* Initialize pState pointer */
    px = pState;
 
    /* Initialize pCoeffs pointer */
    pb = pCoeffs;
 
    /* Set the accumulator to zero */
    sum = 0.0f;
 
    /* Loop over numTaps number of values */
    tapCnt = numTaps;
 
    while(tapCnt > 0u)
    {
      /* Perform the multiply-accumulate */
      sum += (*px++) * (*pb++);
 
      /* Decrement the loop counter */
      tapCnt--;
    }
 
    /* The result is stored in the destination buffer. */
    *pOut++ = sum;
 
    /* Compute and store error */
    d = (float32_t) (*pRef++);
    e = d - sum;
    *pErr++ = e;
 
    /* Weighting factor for the LMS version */
    w = e * mu;
 
    /* Initialize pState pointer */
    px = pState;
 
    /* Initialize pCoeffs pointer */
    pb = pCoeffs;
 
    /* Loop over numTaps number of values */
    tapCnt = numTaps;
 
    while(tapCnt > 0u)
    {
      /* Perform the multiply-accumulate */
      *pb = *pb + (w * (*px++));
      pb++;
 
      /* Decrement the loop counter */
      tapCnt--;
    }
 
    /* Advance state pointer by 1 for the next sample */
    pState = pState + 1;
 
    /* Decrement the loop counter */
    blkCnt--;
  }
 
 
  /* Processing is complete. Now copy the last numTaps - 1 samples to the        
   * start of the state buffer. This prepares the state buffer for the        
   * next function call. */
 
  /* Points to the start of the pState buffer */
  pStateCurnt = S->pState;
 
  /*  Copy (numTaps - 1u) samples  */
  tapCnt = (numTaps - 1u);
 
  /* Copy the data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;
 
    /* Decrement the loop counter */
    tapCnt--;
  }
 
#endif /*   #ifndef ARM_MATH_CM0_FAMILY */
 
}
 
/**    
   * @} end of LMS group    
   */