/* ----------------------------------------------------------------------
|
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
*
|
* $Date: 19. March 2015
|
* $Revision: V.1.4.5
|
*
|
* Project: CMSIS DSP Library
|
* Title: arm_mat_mult_q15.c
|
*
|
* Description: Q15 matrix multiplication.
|
*
|
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
*
|
* Redistribution and use in source and binary forms, with or without
|
* modification, are permitted provided that the following conditions
|
* are met:
|
* - Redistributions of source code must retain the above copyright
|
* notice, this list of conditions and the following disclaimer.
|
* - Redistributions in binary form must reproduce the above copyright
|
* notice, this list of conditions and the following disclaimer in
|
* the documentation and/or other materials provided with the
|
* distribution.
|
* - Neither the name of ARM LIMITED nor the names of its contributors
|
* may be used to endorse or promote products derived from this
|
* software without specific prior written permission.
|
*
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
* POSSIBILITY OF SUCH DAMAGE.
|
* -------------------------------------------------------------------- */
|
|
#include "arm_math.h"
|
|
/**
|
* @ingroup groupMatrix
|
*/
|
|
/**
|
* @addtogroup MatrixMult
|
* @{
|
*/
|
|
|
/**
|
* @brief Q15 matrix multiplication
|
* @param[in] *pSrcA points to the first input matrix structure
|
* @param[in] *pSrcB points to the second input matrix structure
|
* @param[out] *pDst points to output matrix structure
|
* @param[in] *pState points to the array for storing intermediate results (Unused)
|
* @return The function returns either
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
*
|
* @details
|
* <b>Scaling and Overflow Behavior:</b>
|
*
|
* \par
|
* The function is implemented using a 64-bit internal accumulator. The inputs to the
|
* multiplications are in 1.15 format and multiplications yield a 2.30 result.
|
* The 2.30 intermediate
|
* results are accumulated in a 64-bit accumulator in 34.30 format. This approach
|
* provides 33 guard bits and there is no risk of overflow. The 34.30 result is then
|
* truncated to 34.15 format by discarding the low 15 bits and then saturated to
|
* 1.15 format.
|
*
|
* \par
|
* Refer to <code>arm_mat_mult_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.
|
*
|
*/
|
|
arm_status arm_mat_mult_q15(
|
const arm_matrix_instance_q15 * pSrcA,
|
const arm_matrix_instance_q15 * pSrcB,
|
arm_matrix_instance_q15 * pDst,
|
q15_t * pState CMSIS_UNUSED)
|
{
|
q63_t sum; /* accumulator */
|
|
#ifndef ARM_MATH_CM0_FAMILY
|
|
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
|
q15_t *pSrcBT = pState; /* input data matrix pointer for transpose */
|
q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */
|
q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */
|
q15_t *px; /* Temporary output data matrix pointer */
|
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
|
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
|
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
|
uint16_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */
|
uint16_t col, i = 0u, row = numRowsB, colCnt; /* loop counters */
|
arm_status status; /* status of matrix multiplication */
|
|
#ifndef UNALIGNED_SUPPORT_DISABLE
|
|
q31_t in; /* Temporary variable to hold the input value */
|
q31_t pSourceA1, pSourceB1, pSourceA2, pSourceB2;
|
|
#else
|
|
q15_t in; /* Temporary variable to hold the input value */
|
q15_t inA1, inB1, inA2, inB2;
|
|
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
/* Check for matrix mismatch condition */
|
if((pSrcA->numCols != pSrcB->numRows) ||
|
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
|
{
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
status = ARM_MATH_SIZE_MISMATCH;
|
}
|
else
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
{
|
/* Matrix transpose */
|
do
|
{
|
/* Apply loop unrolling and exchange the columns with row elements */
|
col = numColsB >> 2;
|
|
/* The pointer px is set to starting address of the column being processed */
|
px = pSrcBT + i;
|
|
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
** a second loop below computes the remaining 1 to 3 samples. */
|
while(col > 0u)
|
{
|
#ifndef UNALIGNED_SUPPORT_DISABLE
|
|
/* Read two elements from the row */
|
in = *__SIMD32(pInB)++;
|
|
/* Unpack and store one element in the destination */
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
*px = (q15_t) in;
|
|
#else
|
|
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
|
|
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB;
|
|
/* Unpack and store the second element in the destination */
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
|
|
#else
|
|
*px = (q15_t) in;
|
|
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB;
|
|
/* Read two elements from the row */
|
in = *__SIMD32(pInB)++;
|
|
/* Unpack and store one element in the destination */
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
*px = (q15_t) in;
|
|
#else
|
|
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
|
|
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB;
|
|
/* Unpack and store the second element in the destination */
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
|
|
#else
|
|
*px = (q15_t) in;
|
|
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB;
|
|
#else
|
|
/* Read one element from the row */
|
in = *pInB++;
|
|
/* Store one element in the destination */
|
*px = in;
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB;
|
|
/* Read one element from the row */
|
in = *pInB++;
|
|
/* Store one element in the destination */
|
*px = in;
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB;
|
|
/* Read one element from the row */
|
in = *pInB++;
|
|
/* Store one element in the destination */
|
*px = in;
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB;
|
|
/* Read one element from the row */
|
in = *pInB++;
|
|
/* Store one element in the destination */
|
*px = in;
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB;
|
|
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
|
|
/* Decrement the column loop counter */
|
col--;
|
}
|
|
/* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
|
** No loop unrolling is used. */
|
col = numColsB % 0x4u;
|
|
while(col > 0u)
|
{
|
/* Read and store the input element in the destination */
|
*px = *pInB++;
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB;
|
|
/* Decrement the column loop counter */
|
col--;
|
}
|
|
i++;
|
|
/* Decrement the row loop counter */
|
row--;
|
|
} while(row > 0u);
|
|
/* Reset the variables for the usage in the following multiplication process */
|
row = numRowsA;
|
i = 0u;
|
px = pDst->pData;
|
|
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
|
/* row loop */
|
do
|
{
|
/* For every row wise process, the column loop counter is to be initiated */
|
col = numColsB;
|
|
/* For every row wise process, the pIn2 pointer is set
|
** to the starting address of the transposed pSrcB data */
|
pInB = pSrcBT;
|
|
/* column loop */
|
do
|
{
|
/* Set the variable sum, that acts as accumulator, to zero */
|
sum = 0;
|
|
/* Apply loop unrolling and compute 2 MACs simultaneously. */
|
colCnt = numColsA >> 2;
|
|
/* Initiate the pointer pIn1 to point to the starting address of the column being processed */
|
pInA = pSrcA->pData + i;
|
|
|
/* matrix multiplication */
|
while(colCnt > 0u)
|
{
|
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
|
#ifndef UNALIGNED_SUPPORT_DISABLE
|
|
/* read real and imag values from pSrcA and pSrcB buffer */
|
pSourceA1 = *__SIMD32(pInA)++;
|
pSourceB1 = *__SIMD32(pInB)++;
|
|
pSourceA2 = *__SIMD32(pInA)++;
|
pSourceB2 = *__SIMD32(pInB)++;
|
|
/* Multiply and Accumlates */
|
sum = __SMLALD(pSourceA1, pSourceB1, sum);
|
sum = __SMLALD(pSourceA2, pSourceB2, sum);
|
|
#else
|
/* read real and imag values from pSrcA and pSrcB buffer */
|
inA1 = *pInA++;
|
inB1 = *pInB++;
|
inA2 = *pInA++;
|
/* Multiply and Accumlates */
|
sum += inA1 * inB1;
|
inB2 = *pInB++;
|
|
inA1 = *pInA++;
|
inB1 = *pInB++;
|
/* Multiply and Accumlates */
|
sum += inA2 * inB2;
|
inA2 = *pInA++;
|
inB2 = *pInB++;
|
|
/* Multiply and Accumlates */
|
sum += inA1 * inB1;
|
sum += inA2 * inB2;
|
|
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
|
|
/* Decrement the loop counter */
|
colCnt--;
|
}
|
|
/* process remaining column samples */
|
colCnt = numColsA & 3u;
|
|
while(colCnt > 0u)
|
{
|
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
|
sum += *pInA++ * *pInB++;
|
|
/* Decrement the loop counter */
|
colCnt--;
|
}
|
|
/* Saturate and store the result in the destination buffer */
|
*px = (q15_t) (__SSAT((sum >> 15), 16));
|
px++;
|
|
/* Decrement the column loop counter */
|
col--;
|
|
} while(col > 0u);
|
|
i = i + numColsA;
|
|
/* Decrement the row loop counter */
|
row--;
|
|
} while(row > 0u);
|
|
#else
|
|
/* Run the below code for Cortex-M0 */
|
|
q15_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
|
q15_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
|
q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */
|
q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */
|
q15_t *pOut = pDst->pData; /* output data matrix pointer */
|
q15_t *px; /* Temporary output data matrix pointer */
|
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
|
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
|
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
|
uint16_t col, i = 0u, row = numRowsA, colCnt; /* loop counters */
|
arm_status status; /* status of matrix multiplication */
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
/* Check for matrix mismatch condition */
|
if((pSrcA->numCols != pSrcB->numRows) ||
|
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
|
{
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
status = ARM_MATH_SIZE_MISMATCH;
|
}
|
else
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
{
|
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
|
/* row loop */
|
do
|
{
|
/* Output pointer is set to starting address of the row being processed */
|
px = pOut + i;
|
|
/* For every row wise process, the column loop counter is to be initiated */
|
col = numColsB;
|
|
/* For every row wise process, the pIn2 pointer is set
|
** to the starting address of the pSrcB data */
|
pIn2 = pSrcB->pData;
|
|
/* column loop */
|
do
|
{
|
/* Set the variable sum, that acts as accumulator, to zero */
|
sum = 0;
|
|
/* Initiate the pointer pIn1 to point to the starting address of pSrcA */
|
pIn1 = pInA;
|
|
/* Matrix A columns number of MAC operations are to be performed */
|
colCnt = numColsA;
|
|
/* matrix multiplication */
|
while(colCnt > 0u)
|
{
|
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
|
/* Perform the multiply-accumulates */
|
sum += (q31_t) * pIn1++ * *pIn2;
|
pIn2 += numColsB;
|
|
/* Decrement the loop counter */
|
colCnt--;
|
}
|
|
/* Convert the result from 34.30 to 1.15 format and store the saturated value in destination buffer */
|
/* Saturate and store the result in the destination buffer */
|
*px++ = (q15_t) __SSAT((sum >> 15), 16);
|
|
/* Decrement the column loop counter */
|
col--;
|
|
/* Update the pointer pIn2 to point to the starting address of the next column */
|
pIn2 = pInB + (numColsB - col);
|
|
} while(col > 0u);
|
|
/* Update the pointer pSrcA to point to the starting address of the next row */
|
i = i + numColsB;
|
pInA = pInA + numColsA;
|
|
/* Decrement the row loop counter */
|
row--;
|
|
} while(row > 0u);
|
|
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
|
/* set status as ARM_MATH_SUCCESS */
|
status = ARM_MATH_SUCCESS;
|
}
|
|
/* Return to application */
|
return (status);
|
}
|
|
/**
|
* @} end of MatrixMult group
|
*/
|