/* ----------------------------------------------------------------------
|
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
*
|
* $Date: 19. March 2015
|
* $Revision: V.1.4.5
|
*
|
* Project: CMSIS DSP Library
|
* Title: arm_cmplx_mult_cmplx_q31.c
|
*
|
* Description: Q31 complex-by-complex multiplication
|
*
|
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
*
|
* Redistribution and use in source and binary forms, with or without
|
* modification, are permitted provided that the following conditions
|
* are met:
|
* - Redistributions of source code must retain the above copyright
|
* notice, this list of conditions and the following disclaimer.
|
* - Redistributions in binary form must reproduce the above copyright
|
* notice, this list of conditions and the following disclaimer in
|
* the documentation and/or other materials provided with the
|
* distribution.
|
* - Neither the name of ARM LIMITED nor the names of its contributors
|
* may be used to endorse or promote products derived from this
|
* software without specific prior written permission.
|
*
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
* POSSIBILITY OF SUCH DAMAGE.
|
* -------------------------------------------------------------------- */
|
|
#include "arm_math.h"
|
|
/**
|
* @ingroup groupCmplxMath
|
*/
|
|
/**
|
* @addtogroup CmplxByCmplxMult
|
* @{
|
*/
|
|
|
/**
|
* @brief Q31 complex-by-complex multiplication
|
* @param[in] *pSrcA points to the first input vector
|
* @param[in] *pSrcB points to the second input vector
|
* @param[out] *pDst points to the output vector
|
* @param[in] numSamples number of complex samples in each vector
|
* @return none.
|
*
|
* <b>Scaling and Overflow Behavior:</b>
|
* \par
|
* The function implements 1.31 by 1.31 multiplications and finally output is converted into 3.29 format.
|
* Input down scaling is not required.
|
*/
|
|
void arm_cmplx_mult_cmplx_q31(
|
q31_t * pSrcA,
|
q31_t * pSrcB,
|
q31_t * pDst,
|
uint32_t numSamples)
|
{
|
q31_t a, b, c, d; /* Temporary variables to store real and imaginary values */
|
uint32_t blkCnt; /* loop counters */
|
q31_t mul1, mul2, mul3, mul4;
|
q31_t out1, out2;
|
|
#ifndef ARM_MATH_CM0_FAMILY
|
|
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
|
/* loop Unrolling */
|
blkCnt = numSamples >> 2u;
|
|
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
** a second loop below computes the remaining 1 to 3 samples. */
|
while(blkCnt > 0u)
|
{
|
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
|
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
|
a = *pSrcA++;
|
b = *pSrcA++;
|
c = *pSrcB++;
|
d = *pSrcB++;
|
|
mul1 = (q31_t) (((q63_t) a * c) >> 32);
|
mul2 = (q31_t) (((q63_t) b * d) >> 32);
|
mul3 = (q31_t) (((q63_t) a * d) >> 32);
|
mul4 = (q31_t) (((q63_t) b * c) >> 32);
|
|
mul1 = (mul1 >> 1);
|
mul2 = (mul2 >> 1);
|
mul3 = (mul3 >> 1);
|
mul4 = (mul4 >> 1);
|
|
out1 = mul1 - mul2;
|
out2 = mul3 + mul4;
|
|
/* store the real result in 3.29 format in the destination buffer. */
|
*pDst++ = out1;
|
/* store the imag result in 3.29 format in the destination buffer. */
|
*pDst++ = out2;
|
|
a = *pSrcA++;
|
b = *pSrcA++;
|
c = *pSrcB++;
|
d = *pSrcB++;
|
|
mul1 = (q31_t) (((q63_t) a * c) >> 32);
|
mul2 = (q31_t) (((q63_t) b * d) >> 32);
|
mul3 = (q31_t) (((q63_t) a * d) >> 32);
|
mul4 = (q31_t) (((q63_t) b * c) >> 32);
|
|
mul1 = (mul1 >> 1);
|
mul2 = (mul2 >> 1);
|
mul3 = (mul3 >> 1);
|
mul4 = (mul4 >> 1);
|
|
out1 = mul1 - mul2;
|
out2 = mul3 + mul4;
|
|
/* store the real result in 3.29 format in the destination buffer. */
|
*pDst++ = out1;
|
/* store the imag result in 3.29 format in the destination buffer. */
|
*pDst++ = out2;
|
|
a = *pSrcA++;
|
b = *pSrcA++;
|
c = *pSrcB++;
|
d = *pSrcB++;
|
|
mul1 = (q31_t) (((q63_t) a * c) >> 32);
|
mul2 = (q31_t) (((q63_t) b * d) >> 32);
|
mul3 = (q31_t) (((q63_t) a * d) >> 32);
|
mul4 = (q31_t) (((q63_t) b * c) >> 32);
|
|
mul1 = (mul1 >> 1);
|
mul2 = (mul2 >> 1);
|
mul3 = (mul3 >> 1);
|
mul4 = (mul4 >> 1);
|
|
out1 = mul1 - mul2;
|
out2 = mul3 + mul4;
|
|
/* store the real result in 3.29 format in the destination buffer. */
|
*pDst++ = out1;
|
/* store the imag result in 3.29 format in the destination buffer. */
|
*pDst++ = out2;
|
|
a = *pSrcA++;
|
b = *pSrcA++;
|
c = *pSrcB++;
|
d = *pSrcB++;
|
|
mul1 = (q31_t) (((q63_t) a * c) >> 32);
|
mul2 = (q31_t) (((q63_t) b * d) >> 32);
|
mul3 = (q31_t) (((q63_t) a * d) >> 32);
|
mul4 = (q31_t) (((q63_t) b * c) >> 32);
|
|
mul1 = (mul1 >> 1);
|
mul2 = (mul2 >> 1);
|
mul3 = (mul3 >> 1);
|
mul4 = (mul4 >> 1);
|
|
out1 = mul1 - mul2;
|
out2 = mul3 + mul4;
|
|
/* store the real result in 3.29 format in the destination buffer. */
|
*pDst++ = out1;
|
/* store the imag result in 3.29 format in the destination buffer. */
|
*pDst++ = out2;
|
|
/* Decrement the blockSize loop counter */
|
blkCnt--;
|
}
|
|
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
** No loop unrolling is used. */
|
blkCnt = numSamples % 0x4u;
|
|
while(blkCnt > 0u)
|
{
|
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
|
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
|
a = *pSrcA++;
|
b = *pSrcA++;
|
c = *pSrcB++;
|
d = *pSrcB++;
|
|
mul1 = (q31_t) (((q63_t) a * c) >> 32);
|
mul2 = (q31_t) (((q63_t) b * d) >> 32);
|
mul3 = (q31_t) (((q63_t) a * d) >> 32);
|
mul4 = (q31_t) (((q63_t) b * c) >> 32);
|
|
mul1 = (mul1 >> 1);
|
mul2 = (mul2 >> 1);
|
mul3 = (mul3 >> 1);
|
mul4 = (mul4 >> 1);
|
|
out1 = mul1 - mul2;
|
out2 = mul3 + mul4;
|
|
/* store the real result in 3.29 format in the destination buffer. */
|
*pDst++ = out1;
|
/* store the imag result in 3.29 format in the destination buffer. */
|
*pDst++ = out2;
|
|
/* Decrement the blockSize loop counter */
|
blkCnt--;
|
}
|
|
#else
|
|
/* Run the below code for Cortex-M0 */
|
|
/* loop Unrolling */
|
blkCnt = numSamples >> 1u;
|
|
/* First part of the processing with loop unrolling. Compute 2 outputs at a time.
|
** a second loop below computes the remaining 1 sample. */
|
while(blkCnt > 0u)
|
{
|
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
|
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
|
a = *pSrcA++;
|
b = *pSrcA++;
|
c = *pSrcB++;
|
d = *pSrcB++;
|
|
mul1 = (q31_t) (((q63_t) a * c) >> 32);
|
mul2 = (q31_t) (((q63_t) b * d) >> 32);
|
mul3 = (q31_t) (((q63_t) a * d) >> 32);
|
mul4 = (q31_t) (((q63_t) b * c) >> 32);
|
|
mul1 = (mul1 >> 1);
|
mul2 = (mul2 >> 1);
|
mul3 = (mul3 >> 1);
|
mul4 = (mul4 >> 1);
|
|
out1 = mul1 - mul2;
|
out2 = mul3 + mul4;
|
|
/* store the real result in 3.29 format in the destination buffer. */
|
*pDst++ = out1;
|
/* store the imag result in 3.29 format in the destination buffer. */
|
*pDst++ = out2;
|
|
a = *pSrcA++;
|
b = *pSrcA++;
|
c = *pSrcB++;
|
d = *pSrcB++;
|
|
mul1 = (q31_t) (((q63_t) a * c) >> 32);
|
mul2 = (q31_t) (((q63_t) b * d) >> 32);
|
mul3 = (q31_t) (((q63_t) a * d) >> 32);
|
mul4 = (q31_t) (((q63_t) b * c) >> 32);
|
|
mul1 = (mul1 >> 1);
|
mul2 = (mul2 >> 1);
|
mul3 = (mul3 >> 1);
|
mul4 = (mul4 >> 1);
|
|
out1 = mul1 - mul2;
|
out2 = mul3 + mul4;
|
|
/* store the real result in 3.29 format in the destination buffer. */
|
*pDst++ = out1;
|
/* store the imag result in 3.29 format in the destination buffer. */
|
*pDst++ = out2;
|
|
/* Decrement the blockSize loop counter */
|
blkCnt--;
|
}
|
|
/* If the blockSize is not a multiple of 2, compute any remaining output samples here.
|
** No loop unrolling is used. */
|
blkCnt = numSamples % 0x2u;
|
|
while(blkCnt > 0u)
|
{
|
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
|
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
|
a = *pSrcA++;
|
b = *pSrcA++;
|
c = *pSrcB++;
|
d = *pSrcB++;
|
|
mul1 = (q31_t) (((q63_t) a * c) >> 32);
|
mul2 = (q31_t) (((q63_t) b * d) >> 32);
|
mul3 = (q31_t) (((q63_t) a * d) >> 32);
|
mul4 = (q31_t) (((q63_t) b * c) >> 32);
|
|
mul1 = (mul1 >> 1);
|
mul2 = (mul2 >> 1);
|
mul3 = (mul3 >> 1);
|
mul4 = (mul4 >> 1);
|
|
out1 = mul1 - mul2;
|
out2 = mul3 + mul4;
|
|
/* store the real result in 3.29 format in the destination buffer. */
|
*pDst++ = out1;
|
/* store the imag result in 3.29 format in the destination buffer. */
|
*pDst++ = out2;
|
|
/* Decrement the blockSize loop counter */
|
blkCnt--;
|
}
|
|
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
|
|
}
|
|
/**
|
* @} end of CmplxByCmplxMult group
|
*/
|