QuakeGod
2024-02-25 95322c84888cbe2e92024d4d65698f59b016cb52
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
/**
  ******************************************************************************
  * @file    stm32f0xx_hal_rcc_ex.c
  * @author  MCD Application Team
  * @brief   Extended RCC HAL module driver.
  *          This file provides firmware functions to manage the following 
  *          functionalities RCC extension peripheral:
  *           + Extended Peripheral Control functions
  *           + Extended Clock Recovery System Control functions
  *
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************  
  */ 
 
/* Includes ------------------------------------------------------------------*/
#include "stm32f0xx_hal.h"
 
/** @addtogroup STM32F0xx_HAL_Driver
  * @{
  */
 
#ifdef HAL_RCC_MODULE_ENABLED
 
/** @defgroup RCCEx RCCEx
  * @brief RCC Extension HAL module driver.
  * @{
  */
 
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#if defined(CRS)
/** @defgroup RCCEx_Private_Constants RCCEx Private Constants
  * @{
  */
/* Bit position in register */
#define CRS_CFGR_FELIM_BITNUMBER    16
#define CRS_CR_TRIM_BITNUMBER       8
#define CRS_ISR_FECAP_BITNUMBER     16
/**
  * @}
  */
#endif /* CRS */
  
/* Private macro -------------------------------------------------------------*/
/** @defgroup RCCEx_Private_Macros RCCEx Private Macros
  * @{
  */
/**
  * @}
  */
 
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
 
/** @defgroup RCCEx_Exported_Functions RCCEx Exported Functions
  * @{
  */
 
/** @defgroup RCCEx_Exported_Functions_Group1 Extended Peripheral Control functions 
  * @brief    Extended Peripheral Control functions
 *
@verbatim
 ===============================================================================
                ##### Extended Peripheral Control functions  #####
 ===============================================================================  
    [..]
    This subsection provides a set of functions allowing to control the RCC Clocks 
    frequencies.
    [..] 
    (@) Important note: Care must be taken when HAL_RCCEx_PeriphCLKConfig() is used to
        select the RTC clock source; in this case the Backup domain will be reset in  
        order to modify the RTC Clock source, as consequence RTC registers (including 
        the backup registers) are set to their reset values.
      
@endverbatim
  * @{
  */
 
/**
  * @brief  Initializes the RCC extended peripherals clocks according to the specified
  *         parameters in the RCC_PeriphCLKInitTypeDef.
  * @param  PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that
  *         contains the configuration information for the Extended Peripherals clocks
  *         (USART, RTC, I2C, CEC and USB).
  *
  * @note   Care must be taken when @ref HAL_RCCEx_PeriphCLKConfig() is used to select 
  *         the RTC clock source; in this case the Backup domain will be reset in  
  *         order to modify the RTC Clock source, as consequence RTC registers (including 
  *         the backup registers) and RCC_BDCR register are set to their reset values.
  *
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RCCEx_PeriphCLKConfig(RCC_PeriphCLKInitTypeDef  *PeriphClkInit)
{
  uint32_t tickstart = 0U;
  uint32_t temp_reg = 0U;
 
  /* Check the parameters */
  assert_param(IS_RCC_PERIPHCLOCK(PeriphClkInit->PeriphClockSelection));
  
  /*---------------------------- RTC configuration -------------------------------*/
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_RTC) == (RCC_PERIPHCLK_RTC))
  {
    /* check for RTC Parameters used to output RTCCLK */
    assert_param(IS_RCC_RTCCLKSOURCE(PeriphClkInit->RTCClockSelection));
    
    FlagStatus       pwrclkchanged = RESET;
 
    /* As soon as function is called to change RTC clock source, activation of the 
       power domain is done. */
    /* Requires to enable write access to Backup Domain of necessary */
    if(__HAL_RCC_PWR_IS_CLK_DISABLED())
    {
    __HAL_RCC_PWR_CLK_ENABLE();
      pwrclkchanged = SET;
    }
    
    if(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
    {
      /* Enable write access to Backup domain */
      SET_BIT(PWR->CR, PWR_CR_DBP);
      
      /* Wait for Backup domain Write protection disable */
      tickstart = HAL_GetTick();
      
      while(HAL_IS_BIT_CLR(PWR->CR, PWR_CR_DBP))
      {
        if((HAL_GetTick() - tickstart) > RCC_DBP_TIMEOUT_VALUE)
        {
          return HAL_TIMEOUT;
        }
      }
    }
    
    /* Reset the Backup domain only if the RTC Clock source selection is modified from reset value */ 
    temp_reg = (RCC->BDCR & RCC_BDCR_RTCSEL);
    if((temp_reg != 0x00000000U) && (temp_reg != (PeriphClkInit->RTCClockSelection & RCC_BDCR_RTCSEL)))
    {
      /* Store the content of BDCR register before the reset of Backup Domain */
      temp_reg = (RCC->BDCR & ~(RCC_BDCR_RTCSEL));
      /* RTC Clock selection can be changed only if the Backup Domain is reset */
      __HAL_RCC_BACKUPRESET_FORCE();
      __HAL_RCC_BACKUPRESET_RELEASE();
      /* Restore the Content of BDCR register */
      RCC->BDCR = temp_reg;
      
      /* Wait for LSERDY if LSE was enabled */
      if (HAL_IS_BIT_SET(temp_reg, RCC_BDCR_LSEON))
      {
        /* Get Start Tick */
        tickstart = HAL_GetTick();
        
        /* Wait till LSE is ready */  
        while(__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY) == RESET)
        {
          if((HAL_GetTick() - tickstart) > RCC_LSE_TIMEOUT_VALUE)
          {
            return HAL_TIMEOUT;
          }
        }
      }
    }
    __HAL_RCC_RTC_CONFIG(PeriphClkInit->RTCClockSelection);
 
    /* Require to disable power clock if necessary */
    if(pwrclkchanged == SET)
    {
      __HAL_RCC_PWR_CLK_DISABLE();
    }
  }
 
  /*------------------------------- USART1 Configuration ------------------------*/ 
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART1) == RCC_PERIPHCLK_USART1)
  {
    /* Check the parameters */
    assert_param(IS_RCC_USART1CLKSOURCE(PeriphClkInit->Usart1ClockSelection));
    
    /* Configure the USART1 clock source */
    __HAL_RCC_USART1_CONFIG(PeriphClkInit->Usart1ClockSelection);
  }
  
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)\
 || defined(STM32F091xC) || defined(STM32F098xx)
  /*----------------------------- USART2 Configuration --------------------------*/ 
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART2) == RCC_PERIPHCLK_USART2)
  {
    /* Check the parameters */
    assert_param(IS_RCC_USART2CLKSOURCE(PeriphClkInit->Usart2ClockSelection));
    
    /* Configure the USART2 clock source */
    __HAL_RCC_USART2_CONFIG(PeriphClkInit->Usart2ClockSelection);
  }
#endif /* STM32F071xB || STM32F072xB || STM32F078xx || */
       /* STM32F091xC || STM32F098xx */
 
#if defined(STM32F091xC) || defined(STM32F098xx)
  /*----------------------------- USART3 Configuration --------------------------*/ 
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USART3) == RCC_PERIPHCLK_USART3)
  {
    /* Check the parameters */
    assert_param(IS_RCC_USART3CLKSOURCE(PeriphClkInit->Usart3ClockSelection));
    
    /* Configure the USART3 clock source */
    __HAL_RCC_USART3_CONFIG(PeriphClkInit->Usart3ClockSelection);
  }
#endif /* STM32F091xC || STM32F098xx */  
 
  /*------------------------------ I2C1 Configuration ------------------------*/ 
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_I2C1) == RCC_PERIPHCLK_I2C1)
  {
    /* Check the parameters */
    assert_param(IS_RCC_I2C1CLKSOURCE(PeriphClkInit->I2c1ClockSelection));
    
    /* Configure the I2C1 clock source */
    __HAL_RCC_I2C1_CONFIG(PeriphClkInit->I2c1ClockSelection);
  }
 
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F070xB) || defined(STM32F070x6)
  /*------------------------------ USB Configuration ------------------------*/ 
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_USB) == RCC_PERIPHCLK_USB)
  {
    /* Check the parameters */
    assert_param(IS_RCC_USBCLKSOURCE(PeriphClkInit->UsbClockSelection));
    
    /* Configure the USB clock source */
    __HAL_RCC_USB_CONFIG(PeriphClkInit->UsbClockSelection);
  }
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || STM32F070xB || STM32F070x6 */
 
#if defined(STM32F042x6) || defined(STM32F048xx)\
 || defined(STM32F051x8) || defined(STM32F058xx)\
 || defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)\
 || defined(STM32F091xC) || defined(STM32F098xx)
  /*------------------------------ CEC clock Configuration -------------------*/ 
  if(((PeriphClkInit->PeriphClockSelection) & RCC_PERIPHCLK_CEC) == RCC_PERIPHCLK_CEC)
  {
    /* Check the parameters */
    assert_param(IS_RCC_CECCLKSOURCE(PeriphClkInit->CecClockSelection));
    
    /* Configure the CEC clock source */
    __HAL_RCC_CEC_CONFIG(PeriphClkInit->CecClockSelection);
  }
#endif /* STM32F042x6 || STM32F048xx ||                */
       /* STM32F051x8 || STM32F058xx ||                */
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
       /* STM32F091xC || STM32F098xx */
  
  return HAL_OK;
}
 
/**
  * @brief  Get the RCC_ClkInitStruct according to the internal
  * RCC configuration registers.
  * @param  PeriphClkInit pointer to an RCC_PeriphCLKInitTypeDef structure that
  *         returns the configuration information for the Extended Peripherals clocks
  *         (USART, RTC, I2C, CEC and USB).
  * @retval None
  */
void HAL_RCCEx_GetPeriphCLKConfig(RCC_PeriphCLKInitTypeDef  *PeriphClkInit)
{
  /* Set all possible values for the extended clock type parameter------------*/
  /* Common part first */
  PeriphClkInit->PeriphClockSelection = RCC_PERIPHCLK_USART1 | RCC_PERIPHCLK_I2C1   | RCC_PERIPHCLK_RTC;  
  /* Get the RTC configuration --------------------------------------------*/
  PeriphClkInit->RTCClockSelection = __HAL_RCC_GET_RTC_SOURCE();
  /* Get the USART1 clock configuration --------------------------------------------*/
  PeriphClkInit->Usart1ClockSelection = __HAL_RCC_GET_USART1_SOURCE();
  /* Get the I2C1 clock source -----------------------------------------------*/
  PeriphClkInit->I2c1ClockSelection = __HAL_RCC_GET_I2C1_SOURCE();
 
#if defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)\
 || defined(STM32F091xC) || defined(STM32F098xx)
  PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USART2;
  /* Get the USART2 clock source ---------------------------------------------*/
  PeriphClkInit->Usart2ClockSelection = __HAL_RCC_GET_USART2_SOURCE();
#endif /* STM32F071xB || STM32F072xB || STM32F078xx || */
       /* STM32F091xC || STM32F098xx */
 
#if defined(STM32F091xC) || defined(STM32F098xx)
  PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USART3;
  /* Get the USART3 clock source ---------------------------------------------*/
  PeriphClkInit->Usart3ClockSelection = __HAL_RCC_GET_USART3_SOURCE();
#endif /* STM32F091xC || STM32F098xx */
 
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F072xB) || defined(STM32F078xx) || defined(STM32F070xB) || defined(STM32F070x6)
  PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_USB;
  /* Get the USB clock source ---------------------------------------------*/
  PeriphClkInit->UsbClockSelection = __HAL_RCC_GET_USB_SOURCE();
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || STM32F070xB || STM32F070x6 */
 
#if defined(STM32F042x6) || defined(STM32F048xx)\
 || defined(STM32F051x8) || defined(STM32F058xx)\
 || defined(STM32F071xB) || defined(STM32F072xB) || defined(STM32F078xx)\
 || defined(STM32F091xC) || defined(STM32F098xx)
  PeriphClkInit->PeriphClockSelection |= RCC_PERIPHCLK_CEC;
  /* Get the CEC clock source ------------------------------------------------*/
  PeriphClkInit->CecClockSelection = __HAL_RCC_GET_CEC_SOURCE();
#endif /* STM32F042x6 || STM32F048xx ||                */
       /* STM32F051x8 || STM32F058xx ||                */
       /* STM32F071xB || STM32F072xB || STM32F078xx || */
       /* STM32F091xC || STM32F098xx */
 
}
 
/**
  * @brief  Returns the peripheral clock frequency
  * @note   Returns 0 if peripheral clock is unknown
  * @param  PeriphClk Peripheral clock identifier
  *         This parameter can be one of the following values:
  *            @arg @ref RCC_PERIPHCLK_RTC     RTC peripheral clock
  *            @arg @ref RCC_PERIPHCLK_USART1  USART1 peripheral clock
  *            @arg @ref RCC_PERIPHCLK_I2C1    I2C1 peripheral clock
  @if STM32F042x6
  *            @arg @ref RCC_PERIPHCLK_USB     USB peripheral clock
  *            @arg @ref RCC_PERIPHCLK_CEC     CEC peripheral clock
  @endif
  @if STM32F048xx
  *            @arg @ref RCC_PERIPHCLK_USB     USB peripheral clock
  *            @arg @ref RCC_PERIPHCLK_CEC     CEC peripheral clock
  @endif
  @if STM32F051x8
  *            @arg @ref RCC_PERIPHCLK_CEC     CEC peripheral clock
  @endif
  @if STM32F058xx
  *            @arg @ref RCC_PERIPHCLK_CEC     CEC peripheral clock
  @endif
  @if STM32F070x6
  *            @arg @ref RCC_PERIPHCLK_USB     USB peripheral clock
  @endif
  @if STM32F070xB
  *            @arg @ref RCC_PERIPHCLK_USB     USB peripheral clock
  @endif
  @if STM32F071xB
  *            @arg @ref RCC_PERIPHCLK_USART2  USART2 peripheral clock
  *            @arg @ref RCC_PERIPHCLK_CEC     CEC peripheral clock
  @endif
  @if STM32F072xB
  *            @arg @ref RCC_PERIPHCLK_USART2  USART2 peripheral clock
  *            @arg @ref RCC_PERIPHCLK_USB     USB peripheral clock
  *            @arg @ref RCC_PERIPHCLK_CEC     CEC peripheral clock
  @endif
  @if STM32F078xx
  *            @arg @ref RCC_PERIPHCLK_USART2  USART2 peripheral clock
  *            @arg @ref RCC_PERIPHCLK_USB     USB peripheral clock
  *            @arg @ref RCC_PERIPHCLK_CEC     CEC peripheral clock
  @endif
  @if STM32F091xC
  *            @arg @ref RCC_PERIPHCLK_USART2  USART2 peripheral clock
  *            @arg @ref RCC_PERIPHCLK_USART3  USART2 peripheral clock
  *            @arg @ref RCC_PERIPHCLK_CEC     CEC peripheral clock
  @endif
  @if STM32F098xx
  *            @arg @ref RCC_PERIPHCLK_USART2  USART2 peripheral clock
  *            @arg @ref RCC_PERIPHCLK_USART3  USART2 peripheral clock
  *            @arg @ref RCC_PERIPHCLK_CEC     CEC peripheral clock
  @endif
  * @retval Frequency in Hz (0: means that no available frequency for the peripheral)
  */
uint32_t HAL_RCCEx_GetPeriphCLKFreq(uint32_t PeriphClk)
{
  /* frequency == 0 : means that no available frequency for the peripheral */
  uint32_t frequency = 0U;
  
  uint32_t srcclk = 0U;
#if defined(USB)
  uint32_t pllmull = 0U, pllsource = 0U, predivfactor = 0U;
#endif /* USB */
 
  /* Check the parameters */
  assert_param(IS_RCC_PERIPHCLOCK(PeriphClk));
  
  switch (PeriphClk)
  {
  case RCC_PERIPHCLK_RTC:
    {
      /* Get the current RTC source */
      srcclk = __HAL_RCC_GET_RTC_SOURCE();
 
      /* Check if LSE is ready and if RTC clock selection is LSE */
      if ((srcclk == RCC_RTCCLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
      {
        frequency = LSE_VALUE;
      }
      /* Check if LSI is ready and if RTC clock selection is LSI */
      else if ((srcclk == RCC_RTCCLKSOURCE_LSI) && (HAL_IS_BIT_SET(RCC->CSR, RCC_CSR_LSIRDY)))
      {
        frequency = LSI_VALUE;
      }
      /* Check if HSE is ready  and if RTC clock selection is HSI_DIV32*/
      else if ((srcclk == RCC_RTCCLKSOURCE_HSE_DIV32) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSERDY)))
      {
        frequency = HSE_VALUE / 32U;
      }
      break;
    }
  case RCC_PERIPHCLK_USART1:
    {
      /* Get the current USART1 source */
      srcclk = __HAL_RCC_GET_USART1_SOURCE();
 
      /* Check if USART1 clock selection is PCLK1 */
      if (srcclk == RCC_USART1CLKSOURCE_PCLK1)
      {
        frequency = HAL_RCC_GetPCLK1Freq();
      }
      /* Check if HSI is ready and if USART1 clock selection is HSI */
      else if ((srcclk == RCC_USART1CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
      {
        frequency = HSI_VALUE;
      }
      /* Check if USART1 clock selection is SYSCLK */
      else if (srcclk == RCC_USART1CLKSOURCE_SYSCLK)
      {
        frequency = HAL_RCC_GetSysClockFreq();
      }
      /* Check if LSE is ready  and if USART1 clock selection is LSE */
      else if ((srcclk == RCC_USART1CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
      {
        frequency = LSE_VALUE;
      }
      break;
    }
#if defined(RCC_CFGR3_USART2SW)
  case RCC_PERIPHCLK_USART2:
    {
      /* Get the current USART2 source */
      srcclk = __HAL_RCC_GET_USART2_SOURCE();
 
      /* Check if USART2 clock selection is PCLK1 */
      if (srcclk == RCC_USART2CLKSOURCE_PCLK1)
      {
        frequency = HAL_RCC_GetPCLK1Freq();
      }
      /* Check if HSI is ready and if USART2 clock selection is HSI */
      else if ((srcclk == RCC_USART2CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
      {
        frequency = HSI_VALUE;
      }
      /* Check if USART2 clock selection is SYSCLK */
      else if (srcclk == RCC_USART2CLKSOURCE_SYSCLK)
      {
        frequency = HAL_RCC_GetSysClockFreq();
      }
      /* Check if LSE is ready  and if USART2 clock selection is LSE */
      else if ((srcclk == RCC_USART2CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
      {
        frequency = LSE_VALUE;
      }
      break;
    }
#endif /* RCC_CFGR3_USART2SW */
#if defined(RCC_CFGR3_USART3SW)
  case RCC_PERIPHCLK_USART3:
    {
      /* Get the current USART3 source */
      srcclk = __HAL_RCC_GET_USART3_SOURCE();
 
      /* Check if USART3 clock selection is PCLK1 */
      if (srcclk == RCC_USART3CLKSOURCE_PCLK1)
      {
        frequency = HAL_RCC_GetPCLK1Freq();
      }
      /* Check if HSI is ready and if USART3 clock selection is HSI */
      else if ((srcclk == RCC_USART3CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
      {
        frequency = HSI_VALUE;
      }
      /* Check if USART3 clock selection is SYSCLK */
      else if (srcclk == RCC_USART3CLKSOURCE_SYSCLK)
      {
        frequency = HAL_RCC_GetSysClockFreq();
      }
      /* Check if LSE is ready  and if USART3 clock selection is LSE */
      else if ((srcclk == RCC_USART3CLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
      {
        frequency = LSE_VALUE;
      }
      break;
    }
#endif /* RCC_CFGR3_USART3SW */
  case RCC_PERIPHCLK_I2C1:
    {
      /* Get the current I2C1 source */
      srcclk = __HAL_RCC_GET_I2C1_SOURCE();
 
      /* Check if HSI is ready and if I2C1 clock selection is HSI */
      if ((srcclk == RCC_I2C1CLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
      {
        frequency = HSI_VALUE;
      }
      /* Check if I2C1 clock selection is SYSCLK */
      else if (srcclk == RCC_I2C1CLKSOURCE_SYSCLK)
      {
        frequency = HAL_RCC_GetSysClockFreq();
      }
      break;
    }
#if defined(USB)
  case RCC_PERIPHCLK_USB:
    {
      /* Get the current USB source */
      srcclk = __HAL_RCC_GET_USB_SOURCE();
 
      /* Check if PLL is ready and if USB clock selection is PLL */
      if ((srcclk == RCC_USBCLKSOURCE_PLL) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_PLLRDY)))
      {
        /* Get PLL clock source and multiplication factor ----------------------*/
        pllmull      = RCC->CFGR & RCC_CFGR_PLLMUL;
        pllsource    = RCC->CFGR & RCC_CFGR_PLLSRC;
        pllmull      = (pllmull >> RCC_CFGR_PLLMUL_BITNUMBER) + 2U;
        predivfactor = (RCC->CFGR2 & RCC_CFGR2_PREDIV) + 1U;
 
        if (pllsource == RCC_CFGR_PLLSRC_HSE_PREDIV)
        {
          /* HSE used as PLL clock source : frequency = HSE/PREDIV * PLLMUL */
          frequency = (HSE_VALUE/predivfactor) * pllmull;
        }
#if defined(RCC_CR2_HSI48ON)
        else if (pllsource == RCC_CFGR_PLLSRC_HSI48_PREDIV)
        {
          /* HSI48 used as PLL clock source : frequency = HSI48/PREDIV * PLLMUL */
          frequency = (HSI48_VALUE / predivfactor) * pllmull;
        }
#endif /* RCC_CR2_HSI48ON */
        else
        {
#if defined(STM32F042x6) || defined(STM32F048xx) || defined(STM32F078xx) || defined(STM32F072xB) || defined(STM32F070xB)
          /* HSI used as PLL clock source : frequency = HSI/PREDIV * PLLMUL */
          frequency = (HSI_VALUE / predivfactor) * pllmull;
#else
          /* HSI used as PLL clock source : frequency = HSI/2U * PLLMUL */
          frequency = (HSI_VALUE >> 1U) * pllmull;
#endif /* STM32F042x6 || STM32F048xx || STM32F072xB || STM32F078xx || STM32F070xB */
        }
      }
#if defined(RCC_CR2_HSI48ON)
      /* Check if HSI48 is ready and if USB clock selection is HSI48 */
      else if ((srcclk == RCC_USBCLKSOURCE_HSI48) && (HAL_IS_BIT_SET(RCC->CR2, RCC_CR2_HSI48RDY)))
      {
        frequency = HSI48_VALUE;
      }
#endif /* RCC_CR2_HSI48ON */
      break;
    }
#endif /* USB */
#if defined(CEC)
  case RCC_PERIPHCLK_CEC:
    {
      /* Get the current CEC source */
      srcclk = __HAL_RCC_GET_CEC_SOURCE();
 
      /* Check if HSI is ready and if CEC clock selection is HSI */
      if ((srcclk == RCC_CECCLKSOURCE_HSI) && (HAL_IS_BIT_SET(RCC->CR, RCC_CR_HSIRDY)))
      {
        frequency = HSI_VALUE;
      }
      /* Check if LSE is ready  and if CEC clock selection is LSE */
      else if ((srcclk == RCC_CECCLKSOURCE_LSE) && (HAL_IS_BIT_SET(RCC->BDCR, RCC_BDCR_LSERDY)))
      {
        frequency = LSE_VALUE;
      }
      break;
    }
#endif /* CEC */
  default: 
    {
      break;
    }
  }
  return(frequency);
}
 
/**
  * @}
  */
 
#if defined(CRS)
 
/** @defgroup RCCEx_Exported_Functions_Group3 Extended Clock Recovery System Control functions 
 *  @brief  Extended Clock Recovery System Control functions
 *
@verbatim
 ===============================================================================
                ##### Extended Clock Recovery System Control functions  #####
 ===============================================================================
    [..]
      For devices with Clock Recovery System feature (CRS), RCC Extention HAL driver can be used as follows:
 
      (#) In System clock config, HSI48 needs to be enabled
 
      (#) Enable CRS clock in IP MSP init which will use CRS functions
 
      (#) Call CRS functions as follows:
          (##) Prepare synchronization configuration necessary for HSI48 calibration
              (+++) Default values can be set for frequency Error Measurement (reload and error limit)
                        and also HSI48 oscillator smooth trimming.
              (+++) Macro @ref __HAL_RCC_CRS_RELOADVALUE_CALCULATE can be also used to calculate 
                        directly reload value with target and synchronization frequencies values
          (##) Call function @ref HAL_RCCEx_CRSConfig which
              (+++) Reset CRS registers to their default values.
              (+++) Configure CRS registers with synchronization configuration 
              (+++) Enable automatic calibration and frequency error counter feature
           Note: When using USB LPM (Link Power Management) and the device is in Sleep mode, the
           periodic USB SOF will not be generated by the host. No SYNC signal will therefore be
           provided to the CRS to calibrate the HSI48 on the run. To guarantee the required clock
           precision after waking up from Sleep mode, the LSE or reference clock on the GPIOs
           should be used as SYNC signal.
 
          (##) A polling function is provided to wait for complete synchronization
              (+++) Call function @ref HAL_RCCEx_CRSWaitSynchronization()
              (+++) According to CRS status, user can decide to adjust again the calibration or continue
                        application if synchronization is OK
              
      (#) User can retrieve information related to synchronization in calling function
            @ref HAL_RCCEx_CRSGetSynchronizationInfo()
 
      (#) Regarding synchronization status and synchronization information, user can try a new calibration
           in changing synchronization configuration and call again HAL_RCCEx_CRSConfig.
           Note: When the SYNC event is detected during the downcounting phase (before reaching the zero value), 
           it means that the actual frequency is lower than the target (and so, that the TRIM value should be 
           incremented), while when it is detected during the upcounting phase it means that the actual frequency 
           is higher (and that the TRIM value should be decremented).
 
      (#) In interrupt mode, user can resort to the available macros (__HAL_RCC_CRS_XXX_IT). Interrupts will go 
          through CRS Handler (RCC_IRQn/RCC_IRQHandler)
              (++) Call function @ref HAL_RCCEx_CRSConfig()
              (++) Enable RCC_IRQn (thanks to NVIC functions)
              (++) Enable CRS interrupt (@ref __HAL_RCC_CRS_ENABLE_IT)
              (++) Implement CRS status management in the following user callbacks called from 
                   HAL_RCCEx_CRS_IRQHandler():
                   (+++) @ref HAL_RCCEx_CRS_SyncOkCallback()
                   (+++) @ref HAL_RCCEx_CRS_SyncWarnCallback()
                   (+++) @ref HAL_RCCEx_CRS_ExpectedSyncCallback()
                   (+++) @ref HAL_RCCEx_CRS_ErrorCallback()
 
      (#) To force a SYNC EVENT, user can use the function @ref HAL_RCCEx_CRSSoftwareSynchronizationGenerate().
          This function can be called before calling @ref HAL_RCCEx_CRSConfig (for instance in Systick handler)
            
@endverbatim
 * @{
 */
 
/**
  * @brief  Start automatic synchronization for polling mode
  * @param  pInit Pointer on RCC_CRSInitTypeDef structure
  * @retval None
  */
void HAL_RCCEx_CRSConfig(RCC_CRSInitTypeDef *pInit)
{
  uint32_t value = 0U;
  
  /* Check the parameters */
  assert_param(IS_RCC_CRS_SYNC_DIV(pInit->Prescaler));
  assert_param(IS_RCC_CRS_SYNC_SOURCE(pInit->Source));
  assert_param(IS_RCC_CRS_SYNC_POLARITY(pInit->Polarity));
  assert_param(IS_RCC_CRS_RELOADVALUE(pInit->ReloadValue));
  assert_param(IS_RCC_CRS_ERRORLIMIT(pInit->ErrorLimitValue));
  assert_param(IS_RCC_CRS_HSI48CALIBRATION(pInit->HSI48CalibrationValue));
 
  /* CONFIGURATION */
 
  /* Before configuration, reset CRS registers to their default values*/
  __HAL_RCC_CRS_FORCE_RESET();
  __HAL_RCC_CRS_RELEASE_RESET();
 
  /* Set the SYNCDIV[2:0] bits according to Prescaler value */
  /* Set the SYNCSRC[1:0] bits according to Source value */
  /* Set the SYNCSPOL bit according to Polarity value */
  value = (pInit->Prescaler | pInit->Source | pInit->Polarity);
  /* Set the RELOAD[15:0] bits according to ReloadValue value */
  value |= pInit->ReloadValue;
  /* Set the FELIM[7:0] bits according to ErrorLimitValue value */
  value |= (pInit->ErrorLimitValue << CRS_CFGR_FELIM_BITNUMBER);
  WRITE_REG(CRS->CFGR, value);
 
  /* Adjust HSI48 oscillator smooth trimming */
  /* Set the TRIM[5:0] bits according to RCC_CRS_HSI48CalibrationValue value */
  MODIFY_REG(CRS->CR, CRS_CR_TRIM, (pInit->HSI48CalibrationValue << CRS_CR_TRIM_BITNUMBER));
  
  /* START AUTOMATIC SYNCHRONIZATION*/
  
  /* Enable Automatic trimming & Frequency error counter */
  SET_BIT(CRS->CR, CRS_CR_AUTOTRIMEN | CRS_CR_CEN);
}
 
/**
  * @brief  Generate the software synchronization event
  * @retval None
  */
void HAL_RCCEx_CRSSoftwareSynchronizationGenerate(void)
{
  SET_BIT(CRS->CR, CRS_CR_SWSYNC);
}
 
/**
  * @brief  Return synchronization info 
  * @param  pSynchroInfo Pointer on RCC_CRSSynchroInfoTypeDef structure
  * @retval None
  */
void HAL_RCCEx_CRSGetSynchronizationInfo(RCC_CRSSynchroInfoTypeDef *pSynchroInfo)
{
  /* Check the parameter */
  assert_param(pSynchroInfo != NULL);
  
  /* Get the reload value */
  pSynchroInfo->ReloadValue = (uint32_t)(READ_BIT(CRS->CFGR, CRS_CFGR_RELOAD));
  
  /* Get HSI48 oscillator smooth trimming */
  pSynchroInfo->HSI48CalibrationValue = (uint32_t)(READ_BIT(CRS->CR, CRS_CR_TRIM) >> CRS_CR_TRIM_BITNUMBER);
 
  /* Get Frequency error capture */
  pSynchroInfo->FreqErrorCapture = (uint32_t)(READ_BIT(CRS->ISR, CRS_ISR_FECAP) >> CRS_ISR_FECAP_BITNUMBER);
 
  /* Get Frequency error direction */
  pSynchroInfo->FreqErrorDirection = (uint32_t)(READ_BIT(CRS->ISR, CRS_ISR_FEDIR));
}
 
/**
* @brief Wait for CRS Synchronization status.
* @param Timeout  Duration of the timeout
* @note  Timeout is based on the maximum time to receive a SYNC event based on synchronization
*        frequency.
* @note    If Timeout set to HAL_MAX_DELAY, HAL_TIMEOUT will be never returned.
* @retval Combination of Synchronization status
*          This parameter can be a combination of the following values:
*            @arg @ref RCC_CRS_TIMEOUT
*            @arg @ref RCC_CRS_SYNCOK
*            @arg @ref RCC_CRS_SYNCWARN
*            @arg @ref RCC_CRS_SYNCERR
*            @arg @ref RCC_CRS_SYNCMISS
*            @arg @ref RCC_CRS_TRIMOVF
*/
uint32_t HAL_RCCEx_CRSWaitSynchronization(uint32_t Timeout)
{
  uint32_t crsstatus = RCC_CRS_NONE;
  uint32_t tickstart = 0U;
  
  /* Get timeout */
  tickstart = HAL_GetTick();
  
  /* Wait for CRS flag or timeout detection */
  do
  {
    if(Timeout != HAL_MAX_DELAY)
    {
      if((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
      {
        crsstatus = RCC_CRS_TIMEOUT;
      }
    }
    /* Check CRS SYNCOK flag  */
    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCOK))
    {
      /* CRS SYNC event OK */
      crsstatus |= RCC_CRS_SYNCOK;
    
      /* Clear CRS SYNC event OK bit */
      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCOK);
    }
    
    /* Check CRS SYNCWARN flag  */
    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCWARN))
    {
      /* CRS SYNC warning */
      crsstatus |= RCC_CRS_SYNCWARN;
    
      /* Clear CRS SYNCWARN bit */
      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCWARN);
    }
    
    /* Check CRS TRIM overflow flag  */
    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_TRIMOVF))
    {
      /* CRS SYNC Error */
      crsstatus |= RCC_CRS_TRIMOVF;
    
      /* Clear CRS Error bit */
      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_TRIMOVF);
    }
    
    /* Check CRS Error flag  */
    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCERR))
    {
      /* CRS SYNC Error */
      crsstatus |= RCC_CRS_SYNCERR;
    
      /* Clear CRS Error bit */
      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCERR);
    }
    
    /* Check CRS SYNC Missed flag  */
    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_SYNCMISS))
    {
      /* CRS SYNC Missed */
      crsstatus |= RCC_CRS_SYNCMISS;
    
      /* Clear CRS SYNC Missed bit */
      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_SYNCMISS);
    }
    
    /* Check CRS Expected SYNC flag  */
    if(__HAL_RCC_CRS_GET_FLAG(RCC_CRS_FLAG_ESYNC))
    {
      /* frequency error counter reached a zero value */
      __HAL_RCC_CRS_CLEAR_FLAG(RCC_CRS_FLAG_ESYNC);
    }
  } while(RCC_CRS_NONE == crsstatus);
 
  return crsstatus;
}
 
/**
  * @brief Handle the Clock Recovery System interrupt request.
  * @retval None
  */
void HAL_RCCEx_CRS_IRQHandler(void)
{
  uint32_t crserror = RCC_CRS_NONE;
  /* Get current IT flags and IT sources values */
  uint32_t itflags = READ_REG(CRS->ISR);
  uint32_t itsources = READ_REG(CRS->CR);
 
  /* Check CRS SYNCOK flag  */
  if(((itflags & RCC_CRS_FLAG_SYNCOK) != RESET) && ((itsources & RCC_CRS_IT_SYNCOK) != RESET))
  {
    /* Clear CRS SYNC event OK flag */
    WRITE_REG(CRS->ICR, CRS_ICR_SYNCOKC);
 
    /* user callback */
    HAL_RCCEx_CRS_SyncOkCallback();
  }
  /* Check CRS SYNCWARN flag  */
  else if(((itflags & RCC_CRS_FLAG_SYNCWARN) != RESET) && ((itsources & RCC_CRS_IT_SYNCWARN) != RESET))
  {
    /* Clear CRS SYNCWARN flag */
    WRITE_REG(CRS->ICR, CRS_ICR_SYNCWARNC);
 
    /* user callback */
    HAL_RCCEx_CRS_SyncWarnCallback();
  }
  /* Check CRS Expected SYNC flag  */
  else if(((itflags & RCC_CRS_FLAG_ESYNC) != RESET) && ((itsources & RCC_CRS_IT_ESYNC) != RESET))
  {
    /* frequency error counter reached a zero value */
    WRITE_REG(CRS->ICR, CRS_ICR_ESYNCC);
 
    /* user callback */
    HAL_RCCEx_CRS_ExpectedSyncCallback();
  }
  /* Check CRS Error flags  */
  else
  {
    if(((itflags & RCC_CRS_FLAG_ERR) != RESET) && ((itsources & RCC_CRS_IT_ERR) != RESET))
    {
      if((itflags & RCC_CRS_FLAG_SYNCERR) != RESET)
      {
        crserror |= RCC_CRS_SYNCERR;
      }
      if((itflags & RCC_CRS_FLAG_SYNCMISS) != RESET)
      {
        crserror |= RCC_CRS_SYNCMISS;
      }
      if((itflags & RCC_CRS_FLAG_TRIMOVF) != RESET)
      {
        crserror |= RCC_CRS_TRIMOVF;
      }
 
      /* Clear CRS Error flags */
      WRITE_REG(CRS->ICR, CRS_ICR_ERRC);
    
      /* user error callback */
      HAL_RCCEx_CRS_ErrorCallback(crserror);
    }
  }
}
 
/**
  * @brief  RCCEx Clock Recovery System SYNCOK interrupt callback.
  * @retval none
  */
__weak void HAL_RCCEx_CRS_SyncOkCallback(void)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the @ref HAL_RCCEx_CRS_SyncOkCallback should be implemented in the user file
   */
}
 
/**
  * @brief  RCCEx Clock Recovery System SYNCWARN interrupt callback.
  * @retval none
  */
__weak void HAL_RCCEx_CRS_SyncWarnCallback(void)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the @ref HAL_RCCEx_CRS_SyncWarnCallback should be implemented in the user file
   */
}
 
/**
  * @brief  RCCEx Clock Recovery System Expected SYNC interrupt callback.
  * @retval none
  */
__weak void HAL_RCCEx_CRS_ExpectedSyncCallback(void)
{
  /* NOTE : This function should not be modified, when the callback is needed,
            the @ref HAL_RCCEx_CRS_ExpectedSyncCallback should be implemented in the user file
   */
}
 
/**
  * @brief  RCCEx Clock Recovery System Error interrupt callback.
  * @param  Error Combination of Error status. 
  *         This parameter can be a combination of the following values:
  *           @arg @ref RCC_CRS_SYNCERR
  *           @arg @ref RCC_CRS_SYNCMISS
  *           @arg @ref RCC_CRS_TRIMOVF
  * @retval none
  */
__weak void HAL_RCCEx_CRS_ErrorCallback(uint32_t Error)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(Error);
 
  /* NOTE : This function should not be modified, when the callback is needed,
            the @ref HAL_RCCEx_CRS_ErrorCallback should be implemented in the user file
   */
}
 
/**
  * @}
  */
 
#endif /* CRS */
 
/**
  * @}
  */
 
/**
  * @}
  */
 
/**
  * @}
  */
  
#endif /* HAL_RCC_MODULE_ENABLED */
 
/**
  * @}
  */
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/