/* ----------------------------------------------------------------------
|
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
*
|
* $Date: 19. March 2015
|
* $Revision: V.1.4.5
|
*
|
* Project: CMSIS DSP Library
|
* Title: arm_cfft_q31.c
|
*
|
* Description: Combined Radix Decimation in Frequency CFFT fixed point processing function
|
*
|
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
*
|
* Redistribution and use in source and binary forms, with or without
|
* modification, are permitted provided that the following conditions
|
* are met:
|
* - Redistributions of source code must retain the above copyright
|
* notice, this list of conditions and the following disclaimer.
|
* - Redistributions in binary form must reproduce the above copyright
|
* notice, this list of conditions and the following disclaimer in
|
* the documentation and/or other materials provided with the
|
* distribution.
|
* - Neither the name of ARM LIMITED nor the names of its contributors
|
* may be used to endorse or promote products derived from this
|
* software without specific prior written permission.
|
*
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
* POSSIBILITY OF SUCH DAMAGE.
|
* -------------------------------------------------------------------- */
|
|
#include "arm_math.h"
|
|
extern void arm_radix4_butterfly_q31(
|
q31_t * pSrc,
|
uint32_t fftLen,
|
q31_t * pCoef,
|
uint32_t twidCoefModifier);
|
|
extern void arm_radix4_butterfly_inverse_q31(
|
q31_t * pSrc,
|
uint32_t fftLen,
|
q31_t * pCoef,
|
uint32_t twidCoefModifier);
|
|
extern void arm_bitreversal_32(
|
uint32_t * pSrc,
|
const uint16_t bitRevLen,
|
const uint16_t * pBitRevTable);
|
|
void arm_cfft_radix4by2_q31(
|
q31_t * pSrc,
|
uint32_t fftLen,
|
const q31_t * pCoef);
|
|
void arm_cfft_radix4by2_inverse_q31(
|
q31_t * pSrc,
|
uint32_t fftLen,
|
const q31_t * pCoef);
|
|
/**
|
* @ingroup groupTransforms
|
*/
|
|
/**
|
* @addtogroup ComplexFFT
|
* @{
|
*/
|
|
/**
|
* @details
|
* @brief Processing function for the fixed-point complex FFT in Q31 format.
|
* @param[in] *S points to an instance of the fixed-point CFFT structure.
|
* @param[in, out] *p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.
|
* @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
|
* @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
|
* @return none.
|
*/
|
|
void arm_cfft_q31(
|
const arm_cfft_instance_q31 * S,
|
q31_t * p1,
|
uint8_t ifftFlag,
|
uint8_t bitReverseFlag)
|
{
|
uint32_t L = S->fftLen;
|
|
if(ifftFlag == 1u)
|
{
|
switch (L)
|
{
|
case 16:
|
case 64:
|
case 256:
|
case 1024:
|
case 4096:
|
arm_radix4_butterfly_inverse_q31 ( p1, L, (q31_t*)S->pTwiddle, 1 );
|
break;
|
|
case 32:
|
case 128:
|
case 512:
|
case 2048:
|
arm_cfft_radix4by2_inverse_q31 ( p1, L, S->pTwiddle );
|
break;
|
}
|
}
|
else
|
{
|
switch (L)
|
{
|
case 16:
|
case 64:
|
case 256:
|
case 1024:
|
case 4096:
|
arm_radix4_butterfly_q31 ( p1, L, (q31_t*)S->pTwiddle, 1 );
|
break;
|
|
case 32:
|
case 128:
|
case 512:
|
case 2048:
|
arm_cfft_radix4by2_q31 ( p1, L, S->pTwiddle );
|
break;
|
}
|
}
|
|
if( bitReverseFlag )
|
arm_bitreversal_32((uint32_t*)p1,S->bitRevLength,S->pBitRevTable);
|
}
|
|
/**
|
* @} end of ComplexFFT group
|
*/
|
|
void arm_cfft_radix4by2_q31(
|
q31_t * pSrc,
|
uint32_t fftLen,
|
const q31_t * pCoef)
|
{
|
uint32_t i, l;
|
uint32_t n2, ia;
|
q31_t xt, yt, cosVal, sinVal;
|
q31_t p0, p1;
|
|
n2 = fftLen >> 1;
|
ia = 0;
|
for (i = 0; i < n2; i++)
|
{
|
cosVal = pCoef[2*ia];
|
sinVal = pCoef[2*ia + 1];
|
ia++;
|
|
l = i + n2;
|
xt = (pSrc[2 * i] >> 2) - (pSrc[2 * l] >> 2);
|
pSrc[2 * i] = (pSrc[2 * i] >> 2) + (pSrc[2 * l] >> 2);
|
|
yt = (pSrc[2 * i + 1] >> 2) - (pSrc[2 * l + 1] >> 2);
|
pSrc[2 * i + 1] = (pSrc[2 * l + 1] >> 2) + (pSrc[2 * i + 1] >> 2);
|
|
mult_32x32_keep32_R(p0, xt, cosVal);
|
mult_32x32_keep32_R(p1, yt, cosVal);
|
multAcc_32x32_keep32_R(p0, yt, sinVal);
|
multSub_32x32_keep32_R(p1, xt, sinVal);
|
|
pSrc[2u * l] = p0 << 1;
|
pSrc[2u * l + 1u] = p1 << 1;
|
|
}
|
|
// first col
|
arm_radix4_butterfly_q31( pSrc, n2, (q31_t*)pCoef, 2u);
|
// second col
|
arm_radix4_butterfly_q31( pSrc + fftLen, n2, (q31_t*)pCoef, 2u);
|
|
for (i = 0; i < fftLen >> 1; i++)
|
{
|
p0 = pSrc[4*i+0];
|
p1 = pSrc[4*i+1];
|
xt = pSrc[4*i+2];
|
yt = pSrc[4*i+3];
|
|
p0 <<= 1;
|
p1 <<= 1;
|
xt <<= 1;
|
yt <<= 1;
|
|
pSrc[4*i+0] = p0;
|
pSrc[4*i+1] = p1;
|
pSrc[4*i+2] = xt;
|
pSrc[4*i+3] = yt;
|
}
|
|
}
|
|
void arm_cfft_radix4by2_inverse_q31(
|
q31_t * pSrc,
|
uint32_t fftLen,
|
const q31_t * pCoef)
|
{
|
uint32_t i, l;
|
uint32_t n2, ia;
|
q31_t xt, yt, cosVal, sinVal;
|
q31_t p0, p1;
|
|
n2 = fftLen >> 1;
|
ia = 0;
|
for (i = 0; i < n2; i++)
|
{
|
cosVal = pCoef[2*ia];
|
sinVal = pCoef[2*ia + 1];
|
ia++;
|
|
l = i + n2;
|
xt = (pSrc[2 * i] >> 2) - (pSrc[2 * l] >> 2);
|
pSrc[2 * i] = (pSrc[2 * i] >> 2) + (pSrc[2 * l] >> 2);
|
|
yt = (pSrc[2 * i + 1] >> 2) - (pSrc[2 * l + 1] >> 2);
|
pSrc[2 * i + 1] = (pSrc[2 * l + 1] >> 2) + (pSrc[2 * i + 1] >> 2);
|
|
mult_32x32_keep32_R(p0, xt, cosVal);
|
mult_32x32_keep32_R(p1, yt, cosVal);
|
multSub_32x32_keep32_R(p0, yt, sinVal);
|
multAcc_32x32_keep32_R(p1, xt, sinVal);
|
|
pSrc[2u * l] = p0 << 1;
|
pSrc[2u * l + 1u] = p1 << 1;
|
|
}
|
|
// first col
|
arm_radix4_butterfly_inverse_q31( pSrc, n2, (q31_t*)pCoef, 2u);
|
// second col
|
arm_radix4_butterfly_inverse_q31( pSrc + fftLen, n2, (q31_t*)pCoef, 2u);
|
|
for (i = 0; i < fftLen >> 1; i++)
|
{
|
p0 = pSrc[4*i+0];
|
p1 = pSrc[4*i+1];
|
xt = pSrc[4*i+2];
|
yt = pSrc[4*i+3];
|
|
p0 <<= 1;
|
p1 <<= 1;
|
xt <<= 1;
|
yt <<= 1;
|
|
pSrc[4*i+0] = p0;
|
pSrc[4*i+1] = p1;
|
pSrc[4*i+2] = xt;
|
pSrc[4*i+3] = yt;
|
}
|
}
|