QuakeGod
2024-02-24 8b51c78f1b88d94a89bb8c37ae38a54f523cb597
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
/* ----------------------------------------------------------------------    
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
*    
* $Date:        19. March 2015 
* $Revision:     V.1.4.5  
*    
* Project:         CMSIS DSP Library    
* Title:        arm_dct4_f32.c    
*    
* Description:    Processing function of DCT4 & IDCT4 F32.    
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.      
* -------------------------------------------------------------------- */
 
#include "arm_math.h"
 
/**    
 * @ingroup groupTransforms    
 */
 
/**    
 * @defgroup DCT4_IDCT4 DCT Type IV Functions    
 * Representation of signals by minimum number of values is important for storage and transmission.    
 * The possibility of large discontinuity between the beginning and end of a period of a signal    
 * in DFT can be avoided by extending the signal so that it is even-symmetric.    
 * Discrete Cosine Transform (DCT) is constructed such that its energy is heavily concentrated in the lower part of the    
 * spectrum and is very widely used in signal and image coding applications.    
 * The family of DCTs (DCT type- 1,2,3,4) is the outcome of different combinations of homogeneous boundary conditions.    
 * DCT has an excellent energy-packing capability, hence has many applications and in data compression in particular.    
 *    
 * DCT is essentially the Discrete Fourier Transform(DFT) of an even-extended real signal.    
 * Reordering of the input data makes the computation of DCT just a problem of    
 * computing the DFT of a real signal with a few additional operations.    
 * This approach provides regular, simple, and very efficient DCT algorithms for practical hardware and software implementations.    
 *     
 * DCT type-II can be implemented using Fast fourier transform (FFT) internally, as the transform is applied on real values, Real FFT can be used.    
 * DCT4 is implemented using DCT2 as their implementations are similar except with some added pre-processing and post-processing.    
 * DCT2 implementation can be described in the following steps:    
 * - Re-ordering input    
 * - Calculating Real FFT    
 * - Multiplication of weights and Real FFT output and getting real part from the product.    
 *    
 * This process is explained by the block diagram below:    
 * \image html DCT4.gif "Discrete Cosine Transform - type-IV"    
 *    
 * \par Algorithm:    
 * The N-point type-IV DCT is defined as a real, linear transformation by the formula:    
 * \image html DCT4Equation.gif    
 * where <code>k = 0,1,2,.....N-1</code>    
 *\par    
 * Its inverse is defined as follows:    
 * \image html IDCT4Equation.gif    
 * where <code>n = 0,1,2,.....N-1</code>    
 *\par    
 * The DCT4 matrices become involutory (i.e. they are self-inverse) by multiplying with an overall scale factor of sqrt(2/N).    
 * The symmetry of the transform matrix indicates that the fast algorithms for the forward    
 * and inverse transform computation are identical.    
 * Note that the implementation of Inverse DCT4 and DCT4 is same, hence same process function can be used for both.    
 *    
 * \par Lengths supported by the transform:    
 *  As DCT4 internally uses Real FFT, it supports all the lengths supported by arm_rfft_f32().    
 * The library provides separate functions for Q15, Q31, and floating-point data types.    
 * \par Instance Structure    
 * The instances for Real FFT and FFT, cosine values table and twiddle factor table are stored in an instance data structure.    
 * A separate instance structure must be defined for each transform.    
 * There are separate instance structure declarations for each of the 3 supported data types.    
 *    
 * \par Initialization Functions    
 * There is also an associated initialization function for each data type.    
 * The initialization function performs the following operations:    
 * - Sets the values of the internal structure fields.    
 * - Initializes Real FFT as its process function is used internally in DCT4, by calling arm_rfft_init_f32().    
 * \par    
 * Use of the initialization function is optional.    
 * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.    
 * To place an instance structure into a const data section, the instance structure must be manually initialized.    
 * Manually initialize the instance structure as follows:    
 * <pre>    
 *arm_dct4_instance_f32 S = {N, Nby2, normalize, pTwiddle, pCosFactor, pRfft, pCfft};    
 *arm_dct4_instance_q31 S = {N, Nby2, normalize, pTwiddle, pCosFactor, pRfft, pCfft};   
 *arm_dct4_instance_q15 S = {N, Nby2, normalize, pTwiddle, pCosFactor, pRfft, pCfft};   
 * </pre>   
 * where \c N is the length of the DCT4; \c Nby2 is half of the length of the DCT4;   
 * \c normalize is normalizing factor used and is equal to <code>sqrt(2/N)</code>;    
 * \c pTwiddle points to the twiddle factor table;   
 * \c pCosFactor points to the cosFactor table;   
 * \c pRfft points to the real FFT instance;   
 * \c pCfft points to the complex FFT instance;   
 * The CFFT and RFFT structures also needs to be initialized, refer to arm_cfft_radix4_f32()   
 * and arm_rfft_f32() respectively for details regarding static initialization.   
 *   
 * \par Fixed-Point Behavior    
 * Care must be taken when using the fixed-point versions of the DCT4 transform functions.    
 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.    
 * Refer to the function specific documentation below for usage guidelines.    
 */
 
 /**    
 * @addtogroup DCT4_IDCT4    
 * @{    
 */
 
/**    
 * @brief Processing function for the floating-point DCT4/IDCT4.   
 * @param[in]       *S             points to an instance of the floating-point DCT4/IDCT4 structure.   
 * @param[in]       *pState        points to state buffer.   
 * @param[in,out]   *pInlineBuffer points to the in-place input and output buffer.   
 * @return none.   
 */
 
void arm_dct4_f32(
  const arm_dct4_instance_f32 * S,
  float32_t * pState,
  float32_t * pInlineBuffer)
{
  uint32_t i;                                    /* Loop counter */
  float32_t *weights = S->pTwiddle;              /* Pointer to the Weights table */
  float32_t *cosFact = S->pCosFactor;            /* Pointer to the cos factors table */
  float32_t *pS1, *pS2, *pbuff;                  /* Temporary pointers for input buffer and pState buffer */
  float32_t in;                                  /* Temporary variable */
 
 
  /* DCT4 computation involves DCT2 (which is calculated using RFFT)    
   * along with some pre-processing and post-processing.    
   * Computational procedure is explained as follows:    
   * (a) Pre-processing involves multiplying input with cos factor,    
   *     r(n) = 2 * u(n) * cos(pi*(2*n+1)/(4*n))    
   *              where,    
   *                 r(n) -- output of preprocessing    
   *                 u(n) -- input to preprocessing(actual Source buffer)    
   * (b) Calculation of DCT2 using FFT is divided into three steps:    
   *                  Step1: Re-ordering of even and odd elements of input.    
   *                  Step2: Calculating FFT of the re-ordered input.    
   *                  Step3: Taking the real part of the product of FFT output and weights.    
   * (c) Post-processing - DCT4 can be obtained from DCT2 output using the following equation:    
   *                   Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)    
   *                        where,    
   *                           Y4 -- DCT4 output,   Y2 -- DCT2 output    
   * (d) Multiplying the output with the normalizing factor sqrt(2/N).    
   */
 
        /*-------- Pre-processing ------------*/
  /* Multiplying input with cos factor i.e. r(n) = 2 * x(n) * cos(pi*(2*n+1)/(4*n)) */
  arm_scale_f32(pInlineBuffer, 2.0f, pInlineBuffer, S->N);
  arm_mult_f32(pInlineBuffer, cosFact, pInlineBuffer, S->N);
 
  /* ----------------------------------------------------------------    
   * Step1: Re-ordering of even and odd elements as,    
   *             pState[i] =  pInlineBuffer[2*i] and    
   *             pState[N-i-1] = pInlineBuffer[2*i+1] where i = 0 to N/2    
   ---------------------------------------------------------------------*/
 
  /* pS1 initialized to pState */
  pS1 = pState;
 
  /* pS2 initialized to pState+N-1, so that it points to the end of the state buffer */
  pS2 = pState + (S->N - 1u);
 
  /* pbuff initialized to input buffer */
  pbuff = pInlineBuffer;
 
#ifndef ARM_MATH_CM0_FAMILY
 
  /* Run the below code for Cortex-M4 and Cortex-M3 */
 
  /* Initializing the loop counter to N/2 >> 2 for loop unrolling by 4 */
  i = (uint32_t) S->Nby2 >> 2u;
 
  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.    
   ** a second loop below computes the remaining 1 to 3 samples. */
  do
  {
    /* Re-ordering of even and odd elements */
    /* pState[i] =  pInlineBuffer[2*i] */
    *pS1++ = *pbuff++;
    /* pState[N-i-1] = pInlineBuffer[2*i+1] */
    *pS2-- = *pbuff++;
 
    *pS1++ = *pbuff++;
    *pS2-- = *pbuff++;
 
    *pS1++ = *pbuff++;
    *pS2-- = *pbuff++;
 
    *pS1++ = *pbuff++;
    *pS2-- = *pbuff++;
 
    /* Decrement the loop counter */
    i--;
  } while(i > 0u);
 
  /* pbuff initialized to input buffer */
  pbuff = pInlineBuffer;
 
  /* pS1 initialized to pState */
  pS1 = pState;
 
  /* Initializing the loop counter to N/4 instead of N for loop unrolling */
  i = (uint32_t) S->N >> 2u;
 
  /* Processing with loop unrolling 4 times as N is always multiple of 4.    
   * Compute 4 outputs at a time */
  do
  {
    /* Writing the re-ordered output back to inplace input buffer */
    *pbuff++ = *pS1++;
    *pbuff++ = *pS1++;
    *pbuff++ = *pS1++;
    *pbuff++ = *pS1++;
 
    /* Decrement the loop counter */
    i--;
  } while(i > 0u);
 
 
  /* ---------------------------------------------------------    
   *     Step2: Calculate RFFT for N-point input    
   * ---------------------------------------------------------- */
  /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */
  arm_rfft_f32(S->pRfft, pInlineBuffer, pState);
 
        /*----------------------------------------------------------------------    
     *  Step3: Multiply the FFT output with the weights.    
     *----------------------------------------------------------------------*/
  arm_cmplx_mult_cmplx_f32(pState, weights, pState, S->N);
 
  /* ----------- Post-processing ---------- */
  /* DCT-IV can be obtained from DCT-II by the equation,    
   *       Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)    
   *       Hence, Y4(0) = Y2(0)/2  */
  /* Getting only real part from the output and Converting to DCT-IV */
 
  /* Initializing the loop counter to N >> 2 for loop unrolling by 4 */
  i = ((uint32_t) S->N - 1u) >> 2u;
 
  /* pbuff initialized to input buffer. */
  pbuff = pInlineBuffer;
 
  /* pS1 initialized to pState */
  pS1 = pState;
 
  /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */
  in = *pS1++ * (float32_t) 0.5;
  /* input buffer acts as inplace, so output values are stored in the input itself. */
  *pbuff++ = in;
 
  /* pState pointer is incremented twice as the real values are located alternatively in the array */
  pS1++;
 
  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.    
   ** a second loop below computes the remaining 1 to 3 samples. */
  do
  {
    /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
    /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
    in = *pS1++ - in;
    *pbuff++ = in;
    /* points to the next real value */
    pS1++;
 
    in = *pS1++ - in;
    *pbuff++ = in;
    pS1++;
 
    in = *pS1++ - in;
    *pbuff++ = in;
    pS1++;
 
    in = *pS1++ - in;
    *pbuff++ = in;
    pS1++;
 
    /* Decrement the loop counter */
    i--;
  } while(i > 0u);
 
  /* If the blockSize is not a multiple of 4, compute any remaining output samples here.    
   ** No loop unrolling is used. */
  i = ((uint32_t) S->N - 1u) % 0x4u;
 
  while(i > 0u)
  {
    /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
    /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
    in = *pS1++ - in;
    *pbuff++ = in;
    /* points to the next real value */
    pS1++;
 
    /* Decrement the loop counter */
    i--;
  }
 
 
        /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/
 
  /* Initializing the loop counter to N/4 instead of N for loop unrolling */
  i = (uint32_t) S->N >> 2u;
 
  /* pbuff initialized to the pInlineBuffer(now contains the output values) */
  pbuff = pInlineBuffer;
 
  /* Processing with loop unrolling 4 times as N is always multiple of 4.  Compute 4 outputs at a time */
  do
  {
    /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */
    in = *pbuff;
    *pbuff++ = in * S->normalize;
 
    in = *pbuff;
    *pbuff++ = in * S->normalize;
 
    in = *pbuff;
    *pbuff++ = in * S->normalize;
 
    in = *pbuff;
    *pbuff++ = in * S->normalize;
 
    /* Decrement the loop counter */
    i--;
  } while(i > 0u);
 
 
#else
 
  /* Run the below code for Cortex-M0 */
 
  /* Initializing the loop counter to N/2 */
  i = (uint32_t) S->Nby2;
 
  do
  {
    /* Re-ordering of even and odd elements */
    /* pState[i] =  pInlineBuffer[2*i] */
    *pS1++ = *pbuff++;
    /* pState[N-i-1] = pInlineBuffer[2*i+1] */
    *pS2-- = *pbuff++;
 
    /* Decrement the loop counter */
    i--;
  } while(i > 0u);
 
  /* pbuff initialized to input buffer */
  pbuff = pInlineBuffer;
 
  /* pS1 initialized to pState */
  pS1 = pState;
 
  /* Initializing the loop counter */
  i = (uint32_t) S->N;
 
  do
  {
    /* Writing the re-ordered output back to inplace input buffer */
    *pbuff++ = *pS1++;
 
    /* Decrement the loop counter */
    i--;
  } while(i > 0u);
 
 
  /* ---------------------------------------------------------    
   *     Step2: Calculate RFFT for N-point input    
   * ---------------------------------------------------------- */
  /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */
  arm_rfft_f32(S->pRfft, pInlineBuffer, pState);
 
        /*----------------------------------------------------------------------    
     *  Step3: Multiply the FFT output with the weights.    
     *----------------------------------------------------------------------*/
  arm_cmplx_mult_cmplx_f32(pState, weights, pState, S->N);
 
  /* ----------- Post-processing ---------- */
  /* DCT-IV can be obtained from DCT-II by the equation,    
   *       Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0)    
   *       Hence, Y4(0) = Y2(0)/2  */
  /* Getting only real part from the output and Converting to DCT-IV */
 
  /* pbuff initialized to input buffer. */
  pbuff = pInlineBuffer;
 
  /* pS1 initialized to pState */
  pS1 = pState;
 
  /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */
  in = *pS1++ * (float32_t) 0.5;
  /* input buffer acts as inplace, so output values are stored in the input itself. */
  *pbuff++ = in;
 
  /* pState pointer is incremented twice as the real values are located alternatively in the array */
  pS1++;
 
  /* Initializing the loop counter */
  i = ((uint32_t) S->N - 1u);
 
  do
  {
    /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */
    /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */
    in = *pS1++ - in;
    *pbuff++ = in;
    /* points to the next real value */
    pS1++;
 
 
    /* Decrement the loop counter */
    i--;
  } while(i > 0u);
 
 
        /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/
 
  /* Initializing the loop counter */
  i = (uint32_t) S->N;
 
  /* pbuff initialized to the pInlineBuffer(now contains the output values) */
  pbuff = pInlineBuffer;
 
  do
  {
    /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */
    in = *pbuff;
    *pbuff++ = in * S->normalize;
 
    /* Decrement the loop counter */
    i--;
  } while(i > 0u);
 
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
 
}
 
/**    
   * @} end of DCT4_IDCT4 group    
   */