/* ----------------------------------------------------------------------
|
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
*
|
* $Date: 19. March 2015
|
* $Revision: V.1.4.5
|
*
|
* Project: CMSIS DSP Library
|
* Title: arm_cfft_radix2_q31.c
|
*
|
* Description: Radix-2 Decimation in Frequency CFFT & CIFFT Fixed point processing function
|
*
|
*
|
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
*
|
* Redistribution and use in source and binary forms, with or without
|
* modification, are permitted provided that the following conditions
|
* are met:
|
* - Redistributions of source code must retain the above copyright
|
* notice, this list of conditions and the following disclaimer.
|
* - Redistributions in binary form must reproduce the above copyright
|
* notice, this list of conditions and the following disclaimer in
|
* the documentation and/or other materials provided with the
|
* distribution.
|
* - Neither the name of ARM LIMITED nor the names of its contributors
|
* may be used to endorse or promote products derived from this
|
* software without specific prior written permission.
|
*
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
* POSSIBILITY OF SUCH DAMAGE.
|
* -------------------------------------------------------------------- */
|
|
#include "arm_math.h"
|
|
void arm_radix2_butterfly_q31(
|
q31_t * pSrc,
|
uint32_t fftLen,
|
q31_t * pCoef,
|
uint16_t twidCoefModifier);
|
|
void arm_radix2_butterfly_inverse_q31(
|
q31_t * pSrc,
|
uint32_t fftLen,
|
q31_t * pCoef,
|
uint16_t twidCoefModifier);
|
|
void arm_bitreversal_q31(
|
q31_t * pSrc,
|
uint32_t fftLen,
|
uint16_t bitRevFactor,
|
uint16_t * pBitRevTab);
|
|
/**
|
* @ingroup groupTransforms
|
*/
|
|
/**
|
* @addtogroup ComplexFFT
|
* @{
|
*/
|
|
/**
|
* @details
|
* @brief Processing function for the fixed-point CFFT/CIFFT.
|
* @deprecated Do not use this function. It has been superseded by \ref arm_cfft_q31 and will be removed
|
* @param[in] *S points to an instance of the fixed-point CFFT/CIFFT structure.
|
* @param[in, out] *pSrc points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.
|
* @return none.
|
*/
|
|
void arm_cfft_radix2_q31(
|
const arm_cfft_radix2_instance_q31 * S,
|
q31_t * pSrc)
|
{
|
|
if(S->ifftFlag == 1u)
|
{
|
arm_radix2_butterfly_inverse_q31(pSrc, S->fftLen,
|
S->pTwiddle, S->twidCoefModifier);
|
}
|
else
|
{
|
arm_radix2_butterfly_q31(pSrc, S->fftLen,
|
S->pTwiddle, S->twidCoefModifier);
|
}
|
|
arm_bitreversal_q31(pSrc, S->fftLen, S->bitRevFactor, S->pBitRevTable);
|
}
|
|
/**
|
* @} end of ComplexFFT group
|
*/
|
|
void arm_radix2_butterfly_q31(
|
q31_t * pSrc,
|
uint32_t fftLen,
|
q31_t * pCoef,
|
uint16_t twidCoefModifier)
|
{
|
|
unsigned i, j, k, l, m;
|
unsigned n1, n2, ia;
|
q31_t xt, yt, cosVal, sinVal;
|
q31_t p0, p1;
|
|
//N = fftLen;
|
n2 = fftLen;
|
|
n1 = n2;
|
n2 = n2 >> 1;
|
ia = 0;
|
|
// loop for groups
|
for (i = 0; i < n2; i++)
|
{
|
cosVal = pCoef[ia * 2];
|
sinVal = pCoef[(ia * 2) + 1];
|
ia = ia + twidCoefModifier;
|
|
l = i + n2;
|
xt = (pSrc[2 * i] >> 1u) - (pSrc[2 * l] >> 1u);
|
pSrc[2 * i] = ((pSrc[2 * i] >> 1u) + (pSrc[2 * l] >> 1u)) >> 1u;
|
|
yt = (pSrc[2 * i + 1] >> 1u) - (pSrc[2 * l + 1] >> 1u);
|
pSrc[2 * i + 1] =
|
((pSrc[2 * l + 1] >> 1u) + (pSrc[2 * i + 1] >> 1u)) >> 1u;
|
|
mult_32x32_keep32_R(p0, xt, cosVal);
|
mult_32x32_keep32_R(p1, yt, cosVal);
|
multAcc_32x32_keep32_R(p0, yt, sinVal);
|
multSub_32x32_keep32_R(p1, xt, sinVal);
|
|
pSrc[2u * l] = p0;
|
pSrc[2u * l + 1u] = p1;
|
|
} // groups loop end
|
|
twidCoefModifier <<= 1u;
|
|
// loop for stage
|
for (k = fftLen / 2; k > 2; k = k >> 1)
|
{
|
n1 = n2;
|
n2 = n2 >> 1;
|
ia = 0;
|
|
// loop for groups
|
for (j = 0; j < n2; j++)
|
{
|
cosVal = pCoef[ia * 2];
|
sinVal = pCoef[(ia * 2) + 1];
|
ia = ia + twidCoefModifier;
|
|
// loop for butterfly
|
i = j;
|
m = fftLen / n1;
|
do
|
{
|
l = i + n2;
|
xt = pSrc[2 * i] - pSrc[2 * l];
|
pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) >> 1u;
|
|
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
|
pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) >> 1u;
|
|
mult_32x32_keep32_R(p0, xt, cosVal);
|
mult_32x32_keep32_R(p1, yt, cosVal);
|
multAcc_32x32_keep32_R(p0, yt, sinVal);
|
multSub_32x32_keep32_R(p1, xt, sinVal);
|
|
pSrc[2u * l] = p0;
|
pSrc[2u * l + 1u] = p1;
|
i += n1;
|
m--;
|
} while( m > 0); // butterfly loop end
|
|
} // groups loop end
|
|
twidCoefModifier <<= 1u;
|
} // stages loop end
|
|
n1 = n2;
|
n2 = n2 >> 1;
|
ia = 0;
|
|
cosVal = pCoef[ia * 2];
|
sinVal = pCoef[(ia * 2) + 1];
|
ia = ia + twidCoefModifier;
|
|
// loop for butterfly
|
for (i = 0; i < fftLen; i += n1)
|
{
|
l = i + n2;
|
xt = pSrc[2 * i] - pSrc[2 * l];
|
pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]);
|
|
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
|
pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]);
|
|
pSrc[2u * l] = xt;
|
|
pSrc[2u * l + 1u] = yt;
|
|
i += n1;
|
l = i + n2;
|
|
xt = pSrc[2 * i] - pSrc[2 * l];
|
pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]);
|
|
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
|
pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]);
|
|
pSrc[2u * l] = xt;
|
|
pSrc[2u * l + 1u] = yt;
|
|
} // butterfly loop end
|
|
}
|
|
|
void arm_radix2_butterfly_inverse_q31(
|
q31_t * pSrc,
|
uint32_t fftLen,
|
q31_t * pCoef,
|
uint16_t twidCoefModifier)
|
{
|
|
unsigned i, j, k, l;
|
unsigned n1, n2, ia;
|
q31_t xt, yt, cosVal, sinVal;
|
q31_t p0, p1;
|
|
//N = fftLen;
|
n2 = fftLen;
|
|
n1 = n2;
|
n2 = n2 >> 1;
|
ia = 0;
|
|
// loop for groups
|
for (i = 0; i < n2; i++)
|
{
|
cosVal = pCoef[ia * 2];
|
sinVal = pCoef[(ia * 2) + 1];
|
ia = ia + twidCoefModifier;
|
|
l = i + n2;
|
xt = (pSrc[2 * i] >> 1u) - (pSrc[2 * l] >> 1u);
|
pSrc[2 * i] = ((pSrc[2 * i] >> 1u) + (pSrc[2 * l] >> 1u)) >> 1u;
|
|
yt = (pSrc[2 * i + 1] >> 1u) - (pSrc[2 * l + 1] >> 1u);
|
pSrc[2 * i + 1] =
|
((pSrc[2 * l + 1] >> 1u) + (pSrc[2 * i + 1] >> 1u)) >> 1u;
|
|
mult_32x32_keep32_R(p0, xt, cosVal);
|
mult_32x32_keep32_R(p1, yt, cosVal);
|
multSub_32x32_keep32_R(p0, yt, sinVal);
|
multAcc_32x32_keep32_R(p1, xt, sinVal);
|
|
pSrc[2u * l] = p0;
|
pSrc[2u * l + 1u] = p1;
|
} // groups loop end
|
|
twidCoefModifier = twidCoefModifier << 1u;
|
|
// loop for stage
|
for (k = fftLen / 2; k > 2; k = k >> 1)
|
{
|
n1 = n2;
|
n2 = n2 >> 1;
|
ia = 0;
|
|
// loop for groups
|
for (j = 0; j < n2; j++)
|
{
|
cosVal = pCoef[ia * 2];
|
sinVal = pCoef[(ia * 2) + 1];
|
ia = ia + twidCoefModifier;
|
|
// loop for butterfly
|
for (i = j; i < fftLen; i += n1)
|
{
|
l = i + n2;
|
xt = pSrc[2 * i] - pSrc[2 * l];
|
pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) >> 1u;
|
|
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
|
pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) >> 1u;
|
|
mult_32x32_keep32_R(p0, xt, cosVal);
|
mult_32x32_keep32_R(p1, yt, cosVal);
|
multSub_32x32_keep32_R(p0, yt, sinVal);
|
multAcc_32x32_keep32_R(p1, xt, sinVal);
|
|
pSrc[2u * l] = p0;
|
pSrc[2u * l + 1u] = p1;
|
} // butterfly loop end
|
|
} // groups loop end
|
|
twidCoefModifier = twidCoefModifier << 1u;
|
} // stages loop end
|
|
n1 = n2;
|
n2 = n2 >> 1;
|
ia = 0;
|
|
cosVal = pCoef[ia * 2];
|
sinVal = pCoef[(ia * 2) + 1];
|
ia = ia + twidCoefModifier;
|
|
// loop for butterfly
|
for (i = 0; i < fftLen; i += n1)
|
{
|
l = i + n2;
|
xt = pSrc[2 * i] - pSrc[2 * l];
|
pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]);
|
|
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
|
pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]);
|
|
pSrc[2u * l] = xt;
|
|
pSrc[2u * l + 1u] = yt;
|
|
i += n1;
|
l = i + n2;
|
|
xt = pSrc[2 * i] - pSrc[2 * l];
|
pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]);
|
|
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
|
pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]);
|
|
pSrc[2u * l] = xt;
|
|
pSrc[2u * l + 1u] = yt;
|
|
} // butterfly loop end
|
|
}
|