/* ----------------------------------------------------------------------
|
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
*
|
* $Date: 19. March 2015
|
* $Revision: V.1.4.5
|
*
|
* Project: CMSIS DSP Library
|
* Title: arm_mat_cmplx_mult_f32.c
|
*
|
* Description: Floating-point matrix multiplication.
|
*
|
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
*
|
* Redistribution and use in source and binary forms, with or without
|
* modification, are permitted provided that the following conditions
|
* are met:
|
* - Redistributions of source code must retain the above copyright
|
* notice, this list of conditions and the following disclaimer.
|
* - Redistributions in binary form must reproduce the above copyright
|
* notice, this list of conditions and the following disclaimer in
|
* the documentation and/or other materials provided with the
|
* distribution.
|
* - Neither the name of ARM LIMITED nor the names of its contributors
|
* may be used to endorse or promote products derived from this
|
* software without specific prior written permission.
|
*
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
* POSSIBILITY OF SUCH DAMAGE.
|
* -------------------------------------------------------------------- */
|
#include "arm_math.h"
|
|
/**
|
* @ingroup groupMatrix
|
*/
|
|
/**
|
* @defgroup CmplxMatrixMult Complex Matrix Multiplication
|
*
|
* Complex Matrix multiplication is only defined if the number of columns of the
|
* first matrix equals the number of rows of the second matrix.
|
* Multiplying an <code>M x N</code> matrix with an <code>N x P</code> matrix results
|
* in an <code>M x P</code> matrix.
|
* When matrix size checking is enabled, the functions check: (1) that the inner dimensions of
|
* <code>pSrcA</code> and <code>pSrcB</code> are equal; and (2) that the size of the output
|
* matrix equals the outer dimensions of <code>pSrcA</code> and <code>pSrcB</code>.
|
*/
|
|
|
/**
|
* @addtogroup CmplxMatrixMult
|
* @{
|
*/
|
|
/**
|
* @brief Floating-point Complex matrix multiplication.
|
* @param[in] *pSrcA points to the first input complex matrix structure
|
* @param[in] *pSrcB points to the second input complex matrix structure
|
* @param[out] *pDst points to output complex matrix structure
|
* @return The function returns either
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
*/
|
|
arm_status arm_mat_cmplx_mult_f32(
|
const arm_matrix_instance_f32 * pSrcA,
|
const arm_matrix_instance_f32 * pSrcB,
|
arm_matrix_instance_f32 * pDst)
|
{
|
float32_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
|
float32_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
|
float32_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
float32_t *pOut = pDst->pData; /* output data matrix pointer */
|
float32_t *px; /* Temporary output data matrix pointer */
|
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
|
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
|
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
|
float32_t sumReal1, sumImag1; /* accumulator */
|
float32_t a0, b0, c0, d0;
|
float32_t a1, b1, c1, d1;
|
float32_t sumReal2, sumImag2; /* accumulator */
|
|
|
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
|
uint16_t col, i = 0u, j, row = numRowsA, colCnt; /* loop counters */
|
arm_status status; /* status of matrix multiplication */
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
|
/* Check for matrix mismatch condition */
|
if((pSrcA->numCols != pSrcB->numRows) ||
|
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
|
{
|
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
status = ARM_MATH_SIZE_MISMATCH;
|
}
|
else
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
{
|
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
|
/* row loop */
|
do
|
{
|
/* Output pointer is set to starting address of the row being processed */
|
px = pOut + 2 * i;
|
|
/* For every row wise process, the column loop counter is to be initiated */
|
col = numColsB;
|
|
/* For every row wise process, the pIn2 pointer is set
|
** to the starting address of the pSrcB data */
|
pIn2 = pSrcB->pData;
|
|
j = 0u;
|
|
/* column loop */
|
do
|
{
|
/* Set the variable sum, that acts as accumulator, to zero */
|
sumReal1 = 0.0f;
|
sumImag1 = 0.0f;
|
|
sumReal2 = 0.0f;
|
sumImag2 = 0.0f;
|
|
/* Initiate the pointer pIn1 to point to the starting address of the column being processed */
|
pIn1 = pInA;
|
|
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
colCnt = numColsA >> 2;
|
|
/* matrix multiplication */
|
while(colCnt > 0u)
|
{
|
|
/* Reading real part of complex matrix A */
|
a0 = *pIn1;
|
|
/* Reading real part of complex matrix B */
|
c0 = *pIn2;
|
|
/* Reading imaginary part of complex matrix A */
|
b0 = *(pIn1 + 1u);
|
|
/* Reading imaginary part of complex matrix B */
|
d0 = *(pIn2 + 1u);
|
|
sumReal1 += a0 * c0;
|
sumImag1 += b0 * c0;
|
|
pIn1 += 2u;
|
pIn2 += 2 * numColsB;
|
|
sumReal2 -= b0 * d0;
|
sumImag2 += a0 * d0;
|
|
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
|
|
a1 = *pIn1;
|
c1 = *pIn2;
|
|
b1 = *(pIn1 + 1u);
|
d1 = *(pIn2 + 1u);
|
|
sumReal1 += a1 * c1;
|
sumImag1 += b1 * c1;
|
|
pIn1 += 2u;
|
pIn2 += 2 * numColsB;
|
|
sumReal2 -= b1 * d1;
|
sumImag2 += a1 * d1;
|
|
a0 = *pIn1;
|
c0 = *pIn2;
|
|
b0 = *(pIn1 + 1u);
|
d0 = *(pIn2 + 1u);
|
|
sumReal1 += a0 * c0;
|
sumImag1 += b0 * c0;
|
|
pIn1 += 2u;
|
pIn2 += 2 * numColsB;
|
|
sumReal2 -= b0 * d0;
|
sumImag2 += a0 * d0;
|
|
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
|
|
a1 = *pIn1;
|
c1 = *pIn2;
|
|
b1 = *(pIn1 + 1u);
|
d1 = *(pIn2 + 1u);
|
|
sumReal1 += a1 * c1;
|
sumImag1 += b1 * c1;
|
|
pIn1 += 2u;
|
pIn2 += 2 * numColsB;
|
|
sumReal2 -= b1 * d1;
|
sumImag2 += a1 * d1;
|
|
/* Decrement the loop count */
|
colCnt--;
|
}
|
|
/* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
|
** No loop unrolling is used. */
|
colCnt = numColsA % 0x4u;
|
|
while(colCnt > 0u)
|
{
|
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
|
a1 = *pIn1;
|
c1 = *pIn2;
|
|
b1 = *(pIn1 + 1u);
|
d1 = *(pIn2 + 1u);
|
|
sumReal1 += a1 * c1;
|
sumImag1 += b1 * c1;
|
|
pIn1 += 2u;
|
pIn2 += 2 * numColsB;
|
|
sumReal2 -= b1 * d1;
|
sumImag2 += a1 * d1;
|
|
/* Decrement the loop counter */
|
colCnt--;
|
}
|
|
sumReal1 += sumReal2;
|
sumImag1 += sumImag2;
|
|
/* Store the result in the destination buffer */
|
*px++ = sumReal1;
|
*px++ = sumImag1;
|
|
/* Update the pointer pIn2 to point to the starting address of the next column */
|
j++;
|
pIn2 = pSrcB->pData + 2u * j;
|
|
/* Decrement the column loop counter */
|
col--;
|
|
} while(col > 0u);
|
|
/* Update the pointer pInA to point to the starting address of the next row */
|
i = i + numColsB;
|
pInA = pInA + 2 * numColsA;
|
|
/* Decrement the row loop counter */
|
row--;
|
|
} while(row > 0u);
|
|
/* Set status as ARM_MATH_SUCCESS */
|
status = ARM_MATH_SUCCESS;
|
}
|
|
/* Return to application */
|
return (status);
|
}
|
|
/**
|
* @} end of MatrixMult group
|
*/
|