QuakeGod
2023-10-08 483170e190a0dd4666b2a63e5d31466052ba0c6a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/* ----------------------------------------------------------------------    
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
*    
* $Date:        19. March 2015
* $Revision:     V.1.4.5
*    
* Project:         CMSIS DSP Library    
* Title:        arm_cmplx_mag_squared_f32.c    
*    
* Description:    Floating-point complex magnitude squared.    
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.  
* ---------------------------------------------------------------------------- */
#include "arm_math.h"
 
/**        
 * @ingroup groupCmplxMath        
 */
 
/**        
 * @defgroup cmplx_mag_squared Complex Magnitude Squared        
 *        
 * Computes the magnitude squared of the elements of a complex data vector.        
 *       
 * The <code>pSrc</code> points to the source data and        
 * <code>pDst</code> points to the where the result should be written.        
 * <code>numSamples</code> specifies the number of complex samples        
 * in the input array and the data is stored in an interleaved fashion        
 * (real, imag, real, imag, ...).        
 * The input array has a total of <code>2*numSamples</code> values;        
 * the output array has a total of <code>numSamples</code> values.        
 *        
 * The underlying algorithm is used:        
 *        
 * <pre>        
 * for(n=0; n<numSamples; n++) {        
 *     pDst[n] = pSrc[(2*n)+0]^2 + pSrc[(2*n)+1]^2;        
 * }        
 * </pre>        
 *        
 * There are separate functions for floating-point, Q15, and Q31 data types.        
 */
 
/**        
 * @addtogroup cmplx_mag_squared        
 * @{        
 */
 
 
/**        
 * @brief  Floating-point complex magnitude squared        
 * @param[in]  *pSrc points to the complex input vector        
 * @param[out]  *pDst points to the real output vector        
 * @param[in]  numSamples number of complex samples in the input vector        
 * @return none.        
 */
 
void arm_cmplx_mag_squared_f32(
  float32_t * pSrc,
  float32_t * pDst,
  uint32_t numSamples)
{
  float32_t real, imag;                          /* Temporary variables to store real and imaginary values */
  uint32_t blkCnt;                               /* loop counter */
 
#ifndef ARM_MATH_CM0_FAMILY
  float32_t real1, real2, real3, real4;          /* Temporary variables to hold real values */
  float32_t imag1, imag2, imag3, imag4;          /* Temporary variables to hold imaginary values */
  float32_t mul1, mul2, mul3, mul4;              /* Temporary variables */
  float32_t mul5, mul6, mul7, mul8;              /* Temporary variables */
  float32_t out1, out2, out3, out4;              /* Temporary variables to hold output values */
 
  /*loop Unrolling */
  blkCnt = numSamples >> 2u;
 
  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.        
   ** a second loop below computes the remaining 1 to 3 samples. */
  while(blkCnt > 0u)
  {
    /* C[0] = (A[0] * A[0] + A[1] * A[1]) */
    /* read real input sample from source buffer */
    real1 = pSrc[0];
    /* read imaginary input sample from source buffer */
    imag1 = pSrc[1];
 
    /* calculate power of real value */
    mul1 = real1 * real1;
 
    /* read real input sample from source buffer */
    real2 = pSrc[2];
 
    /* calculate power of imaginary value */
    mul2 = imag1 * imag1;
 
    /* read imaginary input sample from source buffer */
    imag2 = pSrc[3];
 
    /* calculate power of real value */
    mul3 = real2 * real2;
 
    /* read real input sample from source buffer */
    real3 = pSrc[4];
 
    /* calculate power of imaginary value */
    mul4 = imag2 * imag2;
 
    /* read imaginary input sample from source buffer */
    imag3 = pSrc[5];
 
    /* calculate power of real value */
    mul5 = real3 * real3;
    /* calculate power of imaginary value */
    mul6 = imag3 * imag3;
 
    /* read real input sample from source buffer */
    real4 = pSrc[6];
 
    /* accumulate real and imaginary powers */
    out1 = mul1 + mul2;
 
    /* read imaginary input sample from source buffer */
    imag4 = pSrc[7];
 
    /* accumulate real and imaginary powers */
    out2 = mul3 + mul4;
 
    /* calculate power of real value */
    mul7 = real4 * real4;
    /* calculate power of imaginary value */
    mul8 = imag4 * imag4;
 
    /* store output to destination */
    pDst[0] = out1;
 
    /* accumulate real and imaginary powers */
    out3 = mul5 + mul6;
 
    /* store output to destination */
    pDst[1] = out2;
 
    /* accumulate real and imaginary powers */
    out4 = mul7 + mul8;
 
    /* store output to destination */
    pDst[2] = out3;
 
    /* increment destination pointer by 8 to process next samples */
    pSrc += 8u;
 
    /* store output to destination */
    pDst[3] = out4;
 
    /* increment destination pointer by 4 to process next samples */
    pDst += 4u;
 
    /* Decrement the loop counter */
    blkCnt--;
  }
 
  /* If the numSamples is not a multiple of 4, compute any remaining output samples here.        
   ** No loop unrolling is used. */
  blkCnt = numSamples % 0x4u;
 
#else
 
  /* Run the below code for Cortex-M0 */
 
  blkCnt = numSamples;
 
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
 
  while(blkCnt > 0u)
  {
    /* C[0] = (A[0] * A[0] + A[1] * A[1]) */
    real = *pSrc++;
    imag = *pSrc++;
 
    /* out = (real * real) + (imag * imag) */
    /* store the result in the destination buffer. */
    *pDst++ = (real * real) + (imag * imag);
 
    /* Decrement the loop counter */
    blkCnt--;
  }
}
 
/**        
 * @} end of cmplx_mag_squared group        
 */