/**
|
******************************************************************************
|
* @file stm32f0xx_hal_adc.c
|
* @author MCD Application Team
|
* @brief This file provides firmware functions to manage the following
|
* functionalities of the Analog to Digital Convertor (ADC)
|
* peripheral:
|
* + Initialization and de-initialization functions
|
* ++ Initialization and Configuration of ADC
|
* + Operation functions
|
* ++ Start, stop, get result of conversions of regular
|
* group, using 3 possible modes: polling, interruption or DMA.
|
* + Control functions
|
* ++ Channels configuration on regular group
|
* ++ Analog Watchdog configuration
|
* + State functions
|
* ++ ADC state machine management
|
* ++ Interrupts and flags management
|
* Other functions (extended functions) are available in file
|
* "stm32f0xx_hal_adc_ex.c".
|
*
|
@verbatim
|
==============================================================================
|
##### ADC peripheral features #####
|
==============================================================================
|
[..]
|
(+) 12-bit, 10-bit, 8-bit or 6-bit configurable resolution
|
|
(+) Interrupt generation at the end of regular conversion and in case of
|
analog watchdog or overrun events.
|
|
(+) Single and continuous conversion modes.
|
|
(+) Scan mode for conversion of several channels sequentially.
|
|
(+) Data alignment with in-built data coherency.
|
|
(+) Programmable sampling time (common for all channels)
|
|
(+) ADC conversion of regular group.
|
|
(+) External trigger (timer or EXTI) with configurable polarity
|
|
(+) DMA request generation for transfer of conversions data of regular group.
|
|
(+) ADC calibration
|
|
(+) ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at
|
slower speed.
|
|
(+) ADC input range: from Vref- (connected to Vssa) to Vref+ (connected to
|
Vdda or to an external voltage reference).
|
|
|
##### How to use this driver #####
|
==============================================================================
|
[..]
|
|
*** Configuration of top level parameters related to ADC ***
|
============================================================
|
[..]
|
|
(#) Enable the ADC interface
|
(++) As prerequisite, ADC clock must be configured at RCC top level.
|
Caution: On STM32F0, ADC clock frequency max is 14MHz (refer
|
to device datasheet).
|
Therefore, ADC clock prescaler must be configured in
|
function of ADC clock source frequency to remain below
|
this maximum frequency.
|
|
(++) Two clock settings are mandatory:
|
(+++) ADC clock (core clock, also possibly conversion clock).
|
|
(+++) ADC clock (conversions clock).
|
Two possible clock sources: synchronous clock derived from APB clock
|
or asynchronous clock derived from ADC dedicated HSI RC oscillator
|
14MHz.
|
If asynchronous clock is selected, parameter "HSI14State" must be set either:
|
- to "...HSI14State = RCC_HSI14_ADC_CONTROL" to let the ADC control
|
the HSI14 oscillator enable/disable (if not used to supply the main
|
system clock): feature used if ADC mode LowPowerAutoPowerOff is
|
enabled.
|
- to "...HSI14State = RCC_HSI14_ON" to maintain the HSI14 oscillator
|
always enabled: can be used to supply the main system clock.
|
|
(+++) Example:
|
Into HAL_ADC_MspInit() (recommended code location) or with
|
other device clock parameters configuration:
|
(+++) __HAL_RCC_ADC1_CLK_ENABLE(); (mandatory)
|
|
HI14 enable or let under control of ADC: (optional: if asynchronous clock selected)
|
(+++) RCC_OscInitTypeDef RCC_OscInitStructure;
|
(+++) RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI14;
|
(+++) RCC_OscInitStructure.HSI14CalibrationValue = RCC_HSI14CALIBRATION_DEFAULT;
|
(+++) RCC_OscInitStructure.HSI14State = RCC_HSI14_ADC_CONTROL;
|
(+++) RCC_OscInitStructure.PLL... (optional if used for system clock)
|
(+++) HAL_RCC_OscConfig(&RCC_OscInitStructure);
|
|
(++) ADC clock source and clock prescaler are configured at ADC level with
|
parameter "ClockPrescaler" using function HAL_ADC_Init().
|
|
(#) ADC pins configuration
|
(++) Enable the clock for the ADC GPIOs
|
using macro __HAL_RCC_GPIOx_CLK_ENABLE()
|
(++) Configure these ADC pins in analog mode
|
using function HAL_GPIO_Init()
|
|
(#) Optionally, in case of usage of ADC with interruptions:
|
(++) Configure the NVIC for ADC
|
using function HAL_NVIC_EnableIRQ(ADCx_IRQn)
|
(++) Insert the ADC interruption handler function HAL_ADC_IRQHandler()
|
into the function of corresponding ADC interruption vector
|
ADCx_IRQHandler().
|
|
(#) Optionally, in case of usage of DMA:
|
(++) Configure the DMA (DMA channel, mode normal or circular, ...)
|
using function HAL_DMA_Init().
|
(++) Configure the NVIC for DMA
|
using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn)
|
(++) Insert the ADC interruption handler function HAL_ADC_IRQHandler()
|
into the function of corresponding DMA interruption vector
|
DMAx_Channelx_IRQHandler().
|
|
*** Configuration of ADC, group regular, channels parameters ***
|
================================================================
|
[..]
|
|
(#) Configure the ADC parameters (resolution, data alignment, ...)
|
and regular group parameters (conversion trigger, sequencer, ...)
|
using function HAL_ADC_Init().
|
|
(#) Configure the channels for regular group parameters (channel number,
|
channel rank into sequencer, ..., into regular group)
|
using function HAL_ADC_ConfigChannel().
|
|
(#) Optionally, configure the analog watchdog parameters (channels
|
monitored, thresholds, ...)
|
using function HAL_ADC_AnalogWDGConfig().
|
|
*** Execution of ADC conversions ***
|
====================================
|
[..]
|
|
(#) Optionally, perform an automatic ADC calibration to improve the
|
conversion accuracy
|
using function HAL_ADCEx_Calibration_Start().
|
|
(#) ADC driver can be used among three modes: polling, interruption,
|
transfer by DMA.
|
|
(++) ADC conversion by polling:
|
(+++) Activate the ADC peripheral and start conversions
|
using function HAL_ADC_Start()
|
(+++) Wait for ADC conversion completion
|
using function HAL_ADC_PollForConversion()
|
(+++) Retrieve conversion results
|
using function HAL_ADC_GetValue()
|
(+++) Stop conversion and disable the ADC peripheral
|
using function HAL_ADC_Stop()
|
|
(++) ADC conversion by interruption:
|
(+++) Activate the ADC peripheral and start conversions
|
using function HAL_ADC_Start_IT()
|
(+++) Wait for ADC conversion completion by call of function
|
HAL_ADC_ConvCpltCallback()
|
(this function must be implemented in user program)
|
(+++) Retrieve conversion results
|
using function HAL_ADC_GetValue()
|
(+++) Stop conversion and disable the ADC peripheral
|
using function HAL_ADC_Stop_IT()
|
|
(++) ADC conversion with transfer by DMA:
|
(+++) Activate the ADC peripheral and start conversions
|
using function HAL_ADC_Start_DMA()
|
(+++) Wait for ADC conversion completion by call of function
|
HAL_ADC_ConvCpltCallback() or HAL_ADC_ConvHalfCpltCallback()
|
(these functions must be implemented in user program)
|
(+++) Conversion results are automatically transferred by DMA into
|
destination variable address.
|
(+++) Stop conversion and disable the ADC peripheral
|
using function HAL_ADC_Stop_DMA()
|
|
[..]
|
|
(@) Callback functions must be implemented in user program:
|
(+@) HAL_ADC_ErrorCallback()
|
(+@) HAL_ADC_LevelOutOfWindowCallback() (callback of analog watchdog)
|
(+@) HAL_ADC_ConvCpltCallback()
|
(+@) HAL_ADC_ConvHalfCpltCallback
|
|
*** Deinitialization of ADC ***
|
============================================================
|
[..]
|
|
(#) Disable the ADC interface
|
(++) ADC clock can be hard reset and disabled at RCC top level.
|
(++) Hard reset of ADC peripherals
|
using macro __ADCx_FORCE_RESET(), __ADCx_RELEASE_RESET().
|
(++) ADC clock disable
|
using the equivalent macro/functions as configuration step.
|
(+++) Example:
|
Into HAL_ADC_MspDeInit() (recommended code location) or with
|
other device clock parameters configuration:
|
(+++) RCC_OscInitStructure.OscillatorType = RCC_OSCILLATORTYPE_HSI14;
|
(+++) RCC_OscInitStructure.HSI14State = RCC_HSI14_OFF; (if not used for system clock)
|
(+++) HAL_RCC_OscConfig(&RCC_OscInitStructure);
|
|
(#) ADC pins configuration
|
(++) Disable the clock for the ADC GPIOs
|
using macro __HAL_RCC_GPIOx_CLK_DISABLE()
|
|
(#) Optionally, in case of usage of ADC with interruptions:
|
(++) Disable the NVIC for ADC
|
using function HAL_NVIC_EnableIRQ(ADCx_IRQn)
|
|
(#) Optionally, in case of usage of DMA:
|
(++) Deinitialize the DMA
|
using function HAL_DMA_Init().
|
(++) Disable the NVIC for DMA
|
using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn)
|
|
[..]
|
|
@endverbatim
|
******************************************************************************
|
* @attention
|
*
|
* <h2><center>© COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
|
*
|
* Redistribution and use in source and binary forms, with or without modification,
|
* are permitted provided that the following conditions are met:
|
* 1. Redistributions of source code must retain the above copyright notice,
|
* this list of conditions and the following disclaimer.
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
* this list of conditions and the following disclaimer in the documentation
|
* and/or other materials provided with the distribution.
|
* 3. Neither the name of STMicroelectronics nor the names of its contributors
|
* may be used to endorse or promote products derived from this software
|
* without specific prior written permission.
|
*
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
*
|
******************************************************************************
|
*/
|
|
/* Includes ------------------------------------------------------------------*/
|
#include "stm32f0xx_hal.h"
|
|
/** @addtogroup STM32F0xx_HAL_Driver
|
* @{
|
*/
|
|
/** @defgroup ADC ADC
|
* @brief ADC HAL module driver
|
* @{
|
*/
|
|
#ifdef HAL_ADC_MODULE_ENABLED
|
|
/* Private typedef -----------------------------------------------------------*/
|
/* Private define ------------------------------------------------------------*/
|
/** @defgroup ADC_Private_Constants ADC Private Constants
|
* @{
|
*/
|
|
/* Fixed timeout values for ADC calibration, enable settling time, disable */
|
/* settling time. */
|
/* Values defined to be higher than worst cases: low clock frequency, */
|
/* maximum prescaler. */
|
/* Ex of profile low frequency : Clock source at 0.1 MHz, ADC clock */
|
/* prescaler 4, sampling time 7.5 ADC clock cycles, resolution 12 bits. */
|
/* Unit: ms */
|
#define ADC_ENABLE_TIMEOUT ( 2U)
|
#define ADC_DISABLE_TIMEOUT ( 2U)
|
#define ADC_STOP_CONVERSION_TIMEOUT ( 2U)
|
|
/* Delay for ADC stabilization time. */
|
/* Maximum delay is 1us (refer to device datasheet, parameter tSTAB). */
|
/* Unit: us */
|
#define ADC_STAB_DELAY_US ( 1U)
|
|
/* Delay for temperature sensor stabilization time. */
|
/* Maximum delay is 10us (refer to device datasheet, parameter tSTART). */
|
/* Unit: us */
|
#define ADC_TEMPSENSOR_DELAY_US ( 10U)
|
|
/**
|
* @}
|
*/
|
|
/* Private macro -------------------------------------------------------------*/
|
/* Private variables ---------------------------------------------------------*/
|
/* Private function prototypes -----------------------------------------------*/
|
/** @defgroup ADC_Private_Functions ADC Private Functions
|
* @{
|
*/
|
static HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef* hadc);
|
static HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef* hadc);
|
static HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef* hadc);
|
static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma);
|
static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma);
|
static void ADC_DMAError(DMA_HandleTypeDef *hdma);
|
/**
|
* @}
|
*/
|
|
/* Exported functions ---------------------------------------------------------*/
|
|
/** @defgroup ADC_Exported_Functions ADC Exported Functions
|
* @{
|
*/
|
|
/** @defgroup ADC_Exported_Functions_Group1 Initialization/de-initialization functions
|
* @brief Initialization and Configuration functions
|
*
|
@verbatim
|
===============================================================================
|
##### Initialization and de-initialization functions #####
|
===============================================================================
|
[..] This section provides functions allowing to:
|
(+) Initialize and configure the ADC.
|
(+) De-initialize the ADC
|
@endverbatim
|
* @{
|
*/
|
|
/**
|
* @brief Initializes the ADC peripheral and regular group according to
|
* parameters specified in structure "ADC_InitTypeDef".
|
* @note As prerequisite, ADC clock must be configured at RCC top level
|
* depending on both possible clock sources: APB clock of HSI clock.
|
* See commented example code below that can be copied and uncommented
|
* into HAL_ADC_MspInit().
|
* @note Possibility to update parameters on the fly:
|
* This function initializes the ADC MSP (HAL_ADC_MspInit()) only when
|
* coming from ADC state reset. Following calls to this function can
|
* be used to reconfigure some parameters of ADC_InitTypeDef
|
* structure on the fly, without modifying MSP configuration. If ADC
|
* MSP has to be modified again, HAL_ADC_DeInit() must be called
|
* before HAL_ADC_Init().
|
* The setting of these parameters is conditioned to ADC state.
|
* For parameters constraints, see comments of structure
|
* "ADC_InitTypeDef".
|
* @note This function configures the ADC within 2 scopes: scope of entire
|
* ADC and scope of regular group. For parameters details, see comments
|
* of structure "ADC_InitTypeDef".
|
* @param hadc ADC handle
|
* @retval HAL status
|
*/
|
HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef* hadc)
|
{
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
uint32_t tmpCFGR1 = 0U;
|
|
/* Check ADC handle */
|
if(hadc == NULL)
|
{
|
return HAL_ERROR;
|
}
|
|
/* Check the parameters */
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
assert_param(IS_ADC_CLOCKPRESCALER(hadc->Init.ClockPrescaler));
|
assert_param(IS_ADC_RESOLUTION(hadc->Init.Resolution));
|
assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign));
|
assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode));
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode));
|
assert_param(IS_ADC_EXTTRIG_EDGE(hadc->Init.ExternalTrigConvEdge));
|
assert_param(IS_ADC_EXTTRIG(hadc->Init.ExternalTrigConv));
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DMAContinuousRequests));
|
assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection));
|
assert_param(IS_ADC_OVERRUN(hadc->Init.Overrun));
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoWait));
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.LowPowerAutoPowerOff));
|
|
/* As prerequisite, into HAL_ADC_MspInit(), ADC clock must be configured */
|
/* at RCC top level depending on both possible clock sources: */
|
/* APB clock or HSI clock. */
|
/* Refer to header of this file for more details on clock enabling procedure*/
|
|
/* Actions performed only if ADC is coming from state reset: */
|
/* - Initialization of ADC MSP */
|
/* - ADC voltage regulator enable */
|
if (hadc->State == HAL_ADC_STATE_RESET)
|
{
|
/* Initialize ADC error code */
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
/* Allocate lock resource and initialize it */
|
hadc->Lock = HAL_UNLOCKED;
|
|
/* Init the low level hardware */
|
HAL_ADC_MspInit(hadc);
|
}
|
|
/* Configuration of ADC parameters if previous preliminary actions are */
|
/* correctly completed. */
|
/* and if there is no conversion on going on regular group (ADC can be */
|
/* enabled anyway, in case of call of this function to update a parameter */
|
/* on the fly). */
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL) &&
|
(tmp_hal_status == HAL_OK) &&
|
(ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET) )
|
{
|
/* Set ADC state */
|
ADC_STATE_CLR_SET(hadc->State,
|
HAL_ADC_STATE_REG_BUSY,
|
HAL_ADC_STATE_BUSY_INTERNAL);
|
|
/* Parameters update conditioned to ADC state: */
|
/* Parameters that can be updated only when ADC is disabled: */
|
/* - ADC clock mode */
|
/* - ADC clock prescaler */
|
/* - ADC resolution */
|
if (ADC_IS_ENABLE(hadc) == RESET)
|
{
|
/* Some parameters of this register are not reset, since they are set */
|
/* by other functions and must be kept in case of usage of this */
|
/* function on the fly (update of a parameter of ADC_InitTypeDef */
|
/* without needing to reconfigure all other ADC groups/channels */
|
/* parameters): */
|
/* - internal measurement paths: Vbat, temperature sensor, Vref */
|
/* (set into HAL_ADC_ConfigChannel() ) */
|
|
/* Configuration of ADC resolution */
|
MODIFY_REG(hadc->Instance->CFGR1,
|
ADC_CFGR1_RES ,
|
hadc->Init.Resolution );
|
|
/* Configuration of ADC clock mode: clock source AHB or HSI with */
|
/* selectable prescaler */
|
MODIFY_REG(hadc->Instance->CFGR2 ,
|
ADC_CFGR2_CKMODE ,
|
hadc->Init.ClockPrescaler );
|
}
|
|
/* Configuration of ADC: */
|
/* - discontinuous mode */
|
/* - LowPowerAutoWait mode */
|
/* - LowPowerAutoPowerOff mode */
|
/* - continuous conversion mode */
|
/* - overrun */
|
/* - external trigger to start conversion */
|
/* - external trigger polarity */
|
/* - data alignment */
|
/* - resolution */
|
/* - scan direction */
|
/* - DMA continuous request */
|
hadc->Instance->CFGR1 &= ~( ADC_CFGR1_DISCEN |
|
ADC_CFGR1_AUTOFF |
|
ADC_CFGR1_AUTDLY |
|
ADC_CFGR1_CONT |
|
ADC_CFGR1_OVRMOD |
|
ADC_CFGR1_EXTSEL |
|
ADC_CFGR1_EXTEN |
|
ADC_CFGR1_ALIGN |
|
ADC_CFGR1_SCANDIR |
|
ADC_CFGR1_DMACFG );
|
|
tmpCFGR1 |= (ADC_CFGR1_AUTOWAIT(hadc->Init.LowPowerAutoWait) |
|
ADC_CFGR1_AUTOOFF(hadc->Init.LowPowerAutoPowerOff) |
|
ADC_CFGR1_CONTINUOUS(hadc->Init.ContinuousConvMode) |
|
ADC_CFGR1_OVERRUN(hadc->Init.Overrun) |
|
hadc->Init.DataAlign |
|
ADC_SCANDIR(hadc->Init.ScanConvMode) |
|
ADC_CFGR1_DMACONTREQ(hadc->Init.DMAContinuousRequests) );
|
|
/* Enable discontinuous mode only if continuous mode is disabled */
|
if (hadc->Init.DiscontinuousConvMode == ENABLE)
|
{
|
if (hadc->Init.ContinuousConvMode == DISABLE)
|
{
|
/* Enable the selected ADC group regular discontinuous mode */
|
tmpCFGR1 |= ADC_CFGR1_DISCEN;
|
}
|
else
|
{
|
/* ADC regular group discontinuous was intended to be enabled, */
|
/* but ADC regular group modes continuous and sequencer discontinuous */
|
/* cannot be enabled simultaneously. */
|
|
/* Update ADC state machine to error */
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
/* Set ADC error code to ADC IP internal error */
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
}
|
}
|
|
/* Enable external trigger if trigger selection is different of software */
|
/* start. */
|
/* Note: This configuration keeps the hardware feature of parameter */
|
/* ExternalTrigConvEdge "trigger edge none" equivalent to */
|
/* software start. */
|
if (hadc->Init.ExternalTrigConv != ADC_SOFTWARE_START)
|
{
|
tmpCFGR1 |= ( hadc->Init.ExternalTrigConv |
|
hadc->Init.ExternalTrigConvEdge );
|
}
|
|
/* Update ADC configuration register with previous settings */
|
hadc->Instance->CFGR1 |= tmpCFGR1;
|
|
/* Channel sampling time configuration */
|
/* Management of parameters "SamplingTimeCommon" and "SamplingTime" */
|
/* (obsolete): sampling time set in this function if parameter */
|
/* "SamplingTimeCommon" has been set to a valid sampling time. */
|
/* Otherwise, sampling time is set into ADC channel initialization */
|
/* structure with parameter "SamplingTime" (obsolete). */
|
if (IS_ADC_SAMPLE_TIME(hadc->Init.SamplingTimeCommon))
|
{
|
/* Channel sampling time configuration */
|
/* Clear the old sample time */
|
hadc->Instance->SMPR &= ~(ADC_SMPR_SMP);
|
|
/* Set the new sample time */
|
hadc->Instance->SMPR |= ADC_SMPR_SET(hadc->Init.SamplingTimeCommon);
|
}
|
|
/* Check back that ADC registers have effectively been configured to */
|
/* ensure of no potential problem of ADC core IP clocking. */
|
/* Check through register CFGR1 (excluding analog watchdog configuration: */
|
/* set into separate dedicated function, and bits of ADC resolution set */
|
/* out of temporary variable 'tmpCFGR1'). */
|
if ((hadc->Instance->CFGR1 & ~(ADC_CFGR1_AWDCH | ADC_CFGR1_AWDEN | ADC_CFGR1_AWDSGL | ADC_CFGR1_RES))
|
== tmpCFGR1)
|
{
|
/* Set ADC error code to none */
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
/* Set the ADC state */
|
ADC_STATE_CLR_SET(hadc->State,
|
HAL_ADC_STATE_BUSY_INTERNAL,
|
HAL_ADC_STATE_READY);
|
}
|
else
|
{
|
/* Update ADC state machine to error */
|
ADC_STATE_CLR_SET(hadc->State,
|
HAL_ADC_STATE_BUSY_INTERNAL,
|
HAL_ADC_STATE_ERROR_INTERNAL);
|
|
/* Set ADC error code to ADC IP internal error */
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
|
tmp_hal_status = HAL_ERROR;
|
}
|
|
}
|
else
|
{
|
/* Update ADC state machine to error */
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
|
tmp_hal_status = HAL_ERROR;
|
}
|
|
/* Return function status */
|
return tmp_hal_status;
|
}
|
|
|
/**
|
* @brief Deinitialize the ADC peripheral registers to their default reset
|
* values, with deinitialization of the ADC MSP.
|
* @note For devices with several ADCs: reset of ADC common registers is done
|
* only if all ADCs sharing the same common group are disabled.
|
* If this is not the case, reset of these common parameters reset is
|
* bypassed without error reporting: it can be the intended behaviour in
|
* case of reset of a single ADC while the other ADCs sharing the same
|
* common group is still running.
|
* @param hadc ADC handle
|
* @retval HAL status
|
*/
|
HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef* hadc)
|
{
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
/* Check ADC handle */
|
if(hadc == NULL)
|
{
|
return HAL_ERROR;
|
}
|
|
/* Check the parameters */
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
/* Set ADC state */
|
SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL);
|
|
/* Stop potential conversion on going, on regular group */
|
tmp_hal_status = ADC_ConversionStop(hadc);
|
|
/* Disable ADC peripheral if conversions are effectively stopped */
|
if (tmp_hal_status == HAL_OK)
|
{
|
/* Disable the ADC peripheral */
|
tmp_hal_status = ADC_Disable(hadc);
|
|
/* Check if ADC is effectively disabled */
|
if (tmp_hal_status != HAL_ERROR)
|
{
|
/* Change ADC state */
|
hadc->State = HAL_ADC_STATE_READY;
|
}
|
}
|
|
|
/* Configuration of ADC parameters if previous preliminary actions are */
|
/* correctly completed. */
|
if (tmp_hal_status != HAL_ERROR)
|
{
|
|
/* ========== Reset ADC registers ========== */
|
/* Reset register IER */
|
__HAL_ADC_DISABLE_IT(hadc, (ADC_IT_AWD | ADC_IT_OVR |
|
ADC_IT_EOS | ADC_IT_EOC |
|
ADC_IT_EOSMP | ADC_IT_RDY ) );
|
|
/* Reset register ISR */
|
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD | ADC_FLAG_OVR |
|
ADC_FLAG_EOS | ADC_FLAG_EOC |
|
ADC_FLAG_EOSMP | ADC_FLAG_RDY ) );
|
|
/* Reset register CR */
|
/* Bits ADC_CR_ADCAL, ADC_CR_ADSTP, ADC_CR_ADSTART are in access mode */
|
/* "read-set": no direct reset applicable. */
|
|
/* Reset register CFGR1 */
|
hadc->Instance->CFGR1 &= ~(ADC_CFGR1_AWDCH | ADC_CFGR1_AWDEN | ADC_CFGR1_AWDSGL | ADC_CFGR1_DISCEN |
|
ADC_CFGR1_AUTOFF | ADC_CFGR1_WAIT | ADC_CFGR1_CONT | ADC_CFGR1_OVRMOD |
|
ADC_CFGR1_EXTEN | ADC_CFGR1_EXTSEL | ADC_CFGR1_ALIGN | ADC_CFGR1_RES |
|
ADC_CFGR1_SCANDIR | ADC_CFGR1_DMACFG | ADC_CFGR1_DMAEN );
|
|
/* Reset register CFGR2 */
|
/* Note: Update of ADC clock mode is conditioned to ADC state disabled: */
|
/* already done above. */
|
hadc->Instance->CFGR2 &= ~ADC_CFGR2_CKMODE;
|
|
/* Reset register SMPR */
|
hadc->Instance->SMPR &= ~ADC_SMPR_SMP;
|
|
/* Reset register TR1 */
|
hadc->Instance->TR &= ~(ADC_TR_HT | ADC_TR_LT);
|
|
/* Reset register CHSELR */
|
hadc->Instance->CHSELR &= ~(ADC_CHSELR_CHSEL18 | ADC_CHSELR_CHSEL17 | ADC_CHSELR_CHSEL16 |
|
ADC_CHSELR_CHSEL15 | ADC_CHSELR_CHSEL14 | ADC_CHSELR_CHSEL13 | ADC_CHSELR_CHSEL12 |
|
ADC_CHSELR_CHSEL11 | ADC_CHSELR_CHSEL10 | ADC_CHSELR_CHSEL9 | ADC_CHSELR_CHSEL8 |
|
ADC_CHSELR_CHSEL7 | ADC_CHSELR_CHSEL6 | ADC_CHSELR_CHSEL5 | ADC_CHSELR_CHSEL4 |
|
ADC_CHSELR_CHSEL3 | ADC_CHSELR_CHSEL2 | ADC_CHSELR_CHSEL1 | ADC_CHSELR_CHSEL0 );
|
|
/* Reset register DR */
|
/* bits in access mode read only, no direct reset applicable*/
|
|
/* Reset register CCR */
|
ADC->CCR &= ~(ADC_CCR_ALL);
|
|
/* ========== Hard reset ADC peripheral ========== */
|
/* Performs a global reset of the entire ADC peripheral: ADC state is */
|
/* forced to a similar state after device power-on. */
|
/* If needed, copy-paste and uncomment the following reset code into */
|
/* function "void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)": */
|
/* */
|
/* __HAL_RCC_ADC1_FORCE_RESET() */
|
/* __HAL_RCC_ADC1_RELEASE_RESET() */
|
|
/* DeInit the low level hardware */
|
HAL_ADC_MspDeInit(hadc);
|
|
/* Set ADC error code to none */
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
/* Set ADC state */
|
hadc->State = HAL_ADC_STATE_RESET;
|
}
|
|
/* Process unlocked */
|
__HAL_UNLOCK(hadc);
|
|
/* Return function status */
|
return tmp_hal_status;
|
}
|
|
|
/**
|
* @brief Initializes the ADC MSP.
|
* @param hadc ADC handle
|
* @retval None
|
*/
|
__weak void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)
|
{
|
/* Prevent unused argument(s) compilation warning */
|
UNUSED(hadc);
|
|
/* NOTE : This function should not be modified. When the callback is needed,
|
function HAL_ADC_MspInit must be implemented in the user file.
|
*/
|
}
|
|
/**
|
* @brief DeInitializes the ADC MSP.
|
* @param hadc ADC handle
|
* @retval None
|
*/
|
__weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc)
|
{
|
/* Prevent unused argument(s) compilation warning */
|
UNUSED(hadc);
|
|
/* NOTE : This function should not be modified. When the callback is needed,
|
function HAL_ADC_MspDeInit must be implemented in the user file.
|
*/
|
}
|
|
/**
|
* @}
|
*/
|
|
/** @defgroup ADC_Exported_Functions_Group2 IO operation functions
|
* @brief IO operation functions
|
*
|
@verbatim
|
===============================================================================
|
##### IO operation functions #####
|
===============================================================================
|
[..] This section provides functions allowing to:
|
(+) Start conversion of regular group.
|
(+) Stop conversion of regular group.
|
(+) Poll for conversion complete on regular group.
|
(+) Poll for conversion event.
|
(+) Get result of regular channel conversion.
|
(+) Start conversion of regular group and enable interruptions.
|
(+) Stop conversion of regular group and disable interruptions.
|
(+) Handle ADC interrupt request
|
(+) Start conversion of regular group and enable DMA transfer.
|
(+) Stop conversion of regular group and disable ADC DMA transfer.
|
@endverbatim
|
* @{
|
*/
|
|
/**
|
* @brief Enables ADC, starts conversion of regular group.
|
* Interruptions enabled in this function: None.
|
* @param hadc ADC handle
|
* @retval HAL status
|
*/
|
HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef* hadc)
|
{
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
/* Check the parameters */
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
/* Perform ADC enable and conversion start if no conversion is on going */
|
if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
|
{
|
/* Process locked */
|
__HAL_LOCK(hadc);
|
|
/* Enable the ADC peripheral */
|
/* If low power mode AutoPowerOff is enabled, power-on/off phases are */
|
/* performed automatically by hardware. */
|
if (hadc->Init.LowPowerAutoPowerOff != ENABLE)
|
{
|
tmp_hal_status = ADC_Enable(hadc);
|
}
|
|
/* Start conversion if ADC is effectively enabled */
|
if (tmp_hal_status == HAL_OK)
|
{
|
/* Set ADC state */
|
/* - Clear state bitfield related to regular group conversion results */
|
/* - Set state bitfield related to regular operation */
|
ADC_STATE_CLR_SET(hadc->State,
|
HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
|
HAL_ADC_STATE_REG_BUSY);
|
|
/* Reset ADC all error code fields */
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
/* Process unlocked */
|
/* Unlock before starting ADC conversions: in case of potential */
|
/* interruption, to let the process to ADC IRQ Handler. */
|
__HAL_UNLOCK(hadc);
|
|
/* Clear regular group conversion flag and overrun flag */
|
/* (To ensure of no unknown state from potential previous ADC */
|
/* operations) */
|
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
|
|
/* Enable conversion of regular group. */
|
/* If software start has been selected, conversion starts immediately. */
|
/* If external trigger has been selected, conversion will start at next */
|
/* trigger event. */
|
hadc->Instance->CR |= ADC_CR_ADSTART;
|
}
|
}
|
else
|
{
|
tmp_hal_status = HAL_BUSY;
|
}
|
|
/* Return function status */
|
return tmp_hal_status;
|
}
|
|
/**
|
* @brief Stop ADC conversion of regular group, disable ADC peripheral.
|
* @param hadc ADC handle
|
* @retval HAL status.
|
*/
|
HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef* hadc)
|
{
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
/* Check the parameters */
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
/* Process locked */
|
__HAL_LOCK(hadc);
|
|
/* 1. Stop potential conversion on going, on regular group */
|
tmp_hal_status = ADC_ConversionStop(hadc);
|
|
/* Disable ADC peripheral if conversions are effectively stopped */
|
if (tmp_hal_status == HAL_OK)
|
{
|
/* 2. Disable the ADC peripheral */
|
tmp_hal_status = ADC_Disable(hadc);
|
|
/* Check if ADC is effectively disabled */
|
if (tmp_hal_status == HAL_OK)
|
{
|
/* Set ADC state */
|
ADC_STATE_CLR_SET(hadc->State,
|
HAL_ADC_STATE_REG_BUSY,
|
HAL_ADC_STATE_READY);
|
}
|
}
|
|
/* Process unlocked */
|
__HAL_UNLOCK(hadc);
|
|
/* Return function status */
|
return tmp_hal_status;
|
}
|
|
/**
|
* @brief Wait for regular group conversion to be completed.
|
* @note ADC conversion flags EOS (end of sequence) and EOC (end of
|
* conversion) are cleared by this function, with an exception:
|
* if low power feature "LowPowerAutoWait" is enabled, flags are
|
* not cleared to not interfere with this feature until data register
|
* is read using function HAL_ADC_GetValue().
|
* @note This function cannot be used in a particular setup: ADC configured
|
* in DMA mode and polling for end of each conversion (ADC init
|
* parameter "EOCSelection" set to ADC_EOC_SINGLE_CONV).
|
* In this case, DMA resets the flag EOC and polling cannot be
|
* performed on each conversion. Nevertheless, polling can still
|
* be performed on the complete sequence (ADC init
|
* parameter "EOCSelection" set to ADC_EOC_SEQ_CONV).
|
* @param hadc ADC handle
|
* @param Timeout Timeout value in millisecond.
|
* @retval HAL status
|
*/
|
HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout)
|
{
|
uint32_t tickstart;
|
uint32_t tmp_Flag_EOC;
|
|
/* Check the parameters */
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
/* If end of conversion selected to end of sequence */
|
if (hadc->Init.EOCSelection == ADC_EOC_SEQ_CONV)
|
{
|
tmp_Flag_EOC = ADC_FLAG_EOS;
|
}
|
/* If end of conversion selected to end of each conversion */
|
else /* ADC_EOC_SINGLE_CONV */
|
{
|
/* Verification that ADC configuration is compliant with polling for */
|
/* each conversion: */
|
/* Particular case is ADC configured in DMA mode and ADC sequencer with */
|
/* several ranks and polling for end of each conversion. */
|
/* For code simplicity sake, this particular case is generalized to */
|
/* ADC configured in DMA mode and and polling for end of each conversion. */
|
if (HAL_IS_BIT_SET(hadc->Instance->CFGR1, ADC_CFGR1_DMAEN))
|
{
|
/* Update ADC state machine to error */
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
/* Process unlocked */
|
__HAL_UNLOCK(hadc);
|
|
return HAL_ERROR;
|
}
|
else
|
{
|
tmp_Flag_EOC = (ADC_FLAG_EOC | ADC_FLAG_EOS);
|
}
|
}
|
|
/* Get tick count */
|
tickstart = HAL_GetTick();
|
|
/* Wait until End of Conversion flag is raised */
|
while(HAL_IS_BIT_CLR(hadc->Instance->ISR, tmp_Flag_EOC))
|
{
|
/* Check if timeout is disabled (set to infinite wait) */
|
if(Timeout != HAL_MAX_DELAY)
|
{
|
if((Timeout == 0) || ((HAL_GetTick()-tickstart) > Timeout))
|
{
|
/* Update ADC state machine to timeout */
|
SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
|
|
/* Process unlocked */
|
__HAL_UNLOCK(hadc);
|
|
return HAL_TIMEOUT;
|
}
|
}
|
}
|
|
/* Update ADC state machine */
|
SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
|
|
/* Determine whether any further conversion upcoming on group regular */
|
/* by external trigger, continuous mode or scan sequence on going. */
|
if(ADC_IS_SOFTWARE_START_REGULAR(hadc) &&
|
(hadc->Init.ContinuousConvMode == DISABLE) )
|
{
|
/* If End of Sequence is reached, disable interrupts */
|
if( __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) )
|
{
|
/* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */
|
/* ADSTART==0 (no conversion on going) */
|
if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
|
{
|
/* Disable ADC end of single conversion interrupt on group regular */
|
/* Note: Overrun interrupt was enabled with EOC interrupt in */
|
/* HAL_Start_IT(), but is not disabled here because can be used */
|
/* by overrun IRQ process below. */
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS);
|
|
/* Set ADC state */
|
ADC_STATE_CLR_SET(hadc->State,
|
HAL_ADC_STATE_REG_BUSY,
|
HAL_ADC_STATE_READY);
|
}
|
else
|
{
|
/* Change ADC state to error state */
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
/* Set ADC error code to ADC IP internal error */
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
}
|
}
|
}
|
|
/* Clear end of conversion flag of regular group if low power feature */
|
/* "LowPowerAutoWait " is disabled, to not interfere with this feature */
|
/* until data register is read using function HAL_ADC_GetValue(). */
|
if (hadc->Init.LowPowerAutoWait == DISABLE)
|
{
|
/* Clear regular group conversion flag */
|
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS));
|
}
|
|
/* Return ADC state */
|
return HAL_OK;
|
}
|
|
/**
|
* @brief Poll for conversion event.
|
* @param hadc ADC handle
|
* @param EventType the ADC event type.
|
* This parameter can be one of the following values:
|
* @arg ADC_AWD_EVENT: ADC Analog watchdog event
|
* @arg ADC_OVR_EVENT: ADC Overrun event
|
* @param Timeout Timeout value in millisecond.
|
* @retval HAL status
|
*/
|
HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef* hadc, uint32_t EventType, uint32_t Timeout)
|
{
|
uint32_t tickstart=0;
|
|
/* Check the parameters */
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
assert_param(IS_ADC_EVENT_TYPE(EventType));
|
|
/* Get tick count */
|
tickstart = HAL_GetTick();
|
|
/* Check selected event flag */
|
while(__HAL_ADC_GET_FLAG(hadc, EventType) == RESET)
|
{
|
/* Check if timeout is disabled (set to infinite wait) */
|
if(Timeout != HAL_MAX_DELAY)
|
{
|
if((Timeout == 0U) || ((HAL_GetTick()-tickstart) > Timeout))
|
{
|
/* Update ADC state machine to timeout */
|
SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
|
|
/* Process unlocked */
|
__HAL_UNLOCK(hadc);
|
|
return HAL_TIMEOUT;
|
}
|
}
|
}
|
|
switch(EventType)
|
{
|
/* Analog watchdog (level out of window) event */
|
case ADC_AWD_EVENT:
|
/* Set ADC state */
|
SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
|
|
/* Clear ADC analog watchdog flag */
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD);
|
break;
|
|
/* Overrun event */
|
default: /* Case ADC_OVR_EVENT */
|
/* If overrun is set to overwrite previous data, overrun event is not */
|
/* considered as an error. */
|
/* (cf ref manual "Managing conversions without using the DMA and without */
|
/* overrun ") */
|
if (hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED)
|
{
|
/* Set ADC state */
|
SET_BIT(hadc->State, HAL_ADC_STATE_REG_OVR);
|
|
/* Set ADC error code to overrun */
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
|
}
|
|
/* Clear ADC Overrun flag */
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
|
break;
|
}
|
|
/* Return ADC state */
|
return HAL_OK;
|
}
|
|
/**
|
* @brief Enables ADC, starts conversion of regular group with interruption.
|
* Interruptions enabled in this function:
|
* - EOC (end of conversion of regular group) or EOS (end of
|
* sequence of regular group) depending on ADC initialization
|
* parameter "EOCSelection"
|
* - overrun (if available)
|
* Each of these interruptions has its dedicated callback function.
|
* @param hadc ADC handle
|
* @retval HAL status
|
*/
|
HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc)
|
{
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
/* Check the parameters */
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
/* Perform ADC enable and conversion start if no conversion is on going */
|
if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
|
{
|
/* Process locked */
|
__HAL_LOCK(hadc);
|
|
/* Enable the ADC peripheral */
|
/* If low power mode AutoPowerOff is enabled, power-on/off phases are */
|
/* performed automatically by hardware. */
|
if (hadc->Init.LowPowerAutoPowerOff != ENABLE)
|
{
|
tmp_hal_status = ADC_Enable(hadc);
|
}
|
|
/* Start conversion if ADC is effectively enabled */
|
if (tmp_hal_status == HAL_OK)
|
{
|
/* Set ADC state */
|
/* - Clear state bitfield related to regular group conversion results */
|
/* - Set state bitfield related to regular operation */
|
ADC_STATE_CLR_SET(hadc->State,
|
HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
|
HAL_ADC_STATE_REG_BUSY);
|
|
/* Reset ADC all error code fields */
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
/* Process unlocked */
|
/* Unlock before starting ADC conversions: in case of potential */
|
/* interruption, to let the process to ADC IRQ Handler. */
|
__HAL_UNLOCK(hadc);
|
|
/* Clear regular group conversion flag and overrun flag */
|
/* (To ensure of no unknown state from potential previous ADC */
|
/* operations) */
|
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
|
|
/* Enable ADC end of conversion interrupt */
|
/* Enable ADC overrun interrupt */
|
switch(hadc->Init.EOCSelection)
|
{
|
case ADC_EOC_SEQ_CONV:
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC);
|
__HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOS | ADC_IT_OVR));
|
break;
|
/* case ADC_EOC_SINGLE_CONV */
|
default:
|
__HAL_ADC_ENABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR));
|
break;
|
}
|
|
/* Enable conversion of regular group. */
|
/* If software start has been selected, conversion starts immediately. */
|
/* If external trigger has been selected, conversion will start at next */
|
/* trigger event. */
|
hadc->Instance->CR |= ADC_CR_ADSTART;
|
}
|
}
|
else
|
{
|
tmp_hal_status = HAL_BUSY;
|
}
|
|
/* Return function status */
|
return tmp_hal_status;
|
}
|
|
|
/**
|
* @brief Stop ADC conversion of regular group, disable interruption of
|
* end-of-conversion, disable ADC peripheral.
|
* @param hadc ADC handle
|
* @retval HAL status.
|
*/
|
HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc)
|
{
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
/* Check the parameters */
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
/* Process locked */
|
__HAL_LOCK(hadc);
|
|
/* 1. Stop potential conversion on going, on regular group */
|
tmp_hal_status = ADC_ConversionStop(hadc);
|
|
/* Disable ADC peripheral if conversions are effectively stopped */
|
if (tmp_hal_status == HAL_OK)
|
{
|
/* Disable ADC end of conversion interrupt for regular group */
|
/* Disable ADC overrun interrupt */
|
__HAL_ADC_DISABLE_IT(hadc, (ADC_IT_EOC | ADC_IT_EOS | ADC_IT_OVR));
|
|
/* 2. Disable the ADC peripheral */
|
tmp_hal_status = ADC_Disable(hadc);
|
|
/* Check if ADC is effectively disabled */
|
if (tmp_hal_status == HAL_OK)
|
{
|
/* Set ADC state */
|
ADC_STATE_CLR_SET(hadc->State,
|
HAL_ADC_STATE_REG_BUSY,
|
HAL_ADC_STATE_READY);
|
}
|
}
|
|
/* Process unlocked */
|
__HAL_UNLOCK(hadc);
|
|
/* Return function status */
|
return tmp_hal_status;
|
}
|
|
/**
|
* @brief Enables ADC, starts conversion of regular group and transfers result
|
* through DMA.
|
* Interruptions enabled in this function:
|
* - DMA transfer complete
|
* - DMA half transfer
|
* - overrun
|
* Each of these interruptions has its dedicated callback function.
|
* @param hadc ADC handle
|
* @param pData The destination Buffer address.
|
* @param Length The length of data to be transferred from ADC peripheral to memory.
|
* @retval None
|
*/
|
HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length)
|
{
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
/* Check the parameters */
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
/* Perform ADC enable and conversion start if no conversion is on going */
|
if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
|
{
|
/* Process locked */
|
__HAL_LOCK(hadc);
|
|
/* Enable the ADC peripheral */
|
/* If low power mode AutoPowerOff is enabled, power-on/off phases are */
|
/* performed automatically by hardware. */
|
if (hadc->Init.LowPowerAutoPowerOff != ENABLE)
|
{
|
tmp_hal_status = ADC_Enable(hadc);
|
}
|
|
/* Start conversion if ADC is effectively enabled */
|
if (tmp_hal_status == HAL_OK)
|
{
|
/* Set ADC state */
|
/* - Clear state bitfield related to regular group conversion results */
|
/* - Set state bitfield related to regular operation */
|
ADC_STATE_CLR_SET(hadc->State,
|
HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
|
HAL_ADC_STATE_REG_BUSY);
|
|
/* Reset ADC all error code fields */
|
ADC_CLEAR_ERRORCODE(hadc);
|
|
/* Process unlocked */
|
/* Unlock before starting ADC conversions: in case of potential */
|
/* interruption, to let the process to ADC IRQ Handler. */
|
__HAL_UNLOCK(hadc);
|
|
/* Set the DMA transfer complete callback */
|
hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt;
|
|
/* Set the DMA half transfer complete callback */
|
hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt;
|
|
/* Set the DMA error callback */
|
hadc->DMA_Handle->XferErrorCallback = ADC_DMAError;
|
|
|
/* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC */
|
/* start (in case of SW start): */
|
|
/* Clear regular group conversion flag and overrun flag */
|
/* (To ensure of no unknown state from potential previous ADC */
|
/* operations) */
|
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS | ADC_FLAG_OVR));
|
|
/* Enable ADC overrun interrupt */
|
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_OVR);
|
|
/* Enable ADC DMA mode */
|
hadc->Instance->CFGR1 |= ADC_CFGR1_DMAEN;
|
|
/* Start the DMA channel */
|
HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length);
|
|
/* Enable conversion of regular group. */
|
/* If software start has been selected, conversion starts immediately. */
|
/* If external trigger has been selected, conversion will start at next */
|
/* trigger event. */
|
hadc->Instance->CR |= ADC_CR_ADSTART;
|
}
|
}
|
else
|
{
|
tmp_hal_status = HAL_BUSY;
|
}
|
|
/* Return function status */
|
return tmp_hal_status;
|
}
|
|
/**
|
* @brief Stop ADC conversion of regular group, disable ADC DMA transfer, disable
|
* ADC peripheral.
|
* Each of these interruptions has its dedicated callback function.
|
* @param hadc ADC handle
|
* @retval HAL status.
|
*/
|
HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc)
|
{
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
/* Check the parameters */
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
/* Process locked */
|
__HAL_LOCK(hadc);
|
|
/* 1. Stop potential conversion on going, on regular group */
|
tmp_hal_status = ADC_ConversionStop(hadc);
|
|
/* Disable ADC peripheral if conversions are effectively stopped */
|
if (tmp_hal_status == HAL_OK)
|
{
|
/* Disable ADC DMA (ADC DMA configuration ADC_CFGR_DMACFG is kept) */
|
hadc->Instance->CFGR1 &= ~ADC_CFGR1_DMAEN;
|
|
/* Disable the DMA channel (in case of DMA in circular mode or stop while */
|
/* while DMA transfer is on going) */
|
tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);
|
|
/* Check if DMA channel effectively disabled */
|
if (tmp_hal_status != HAL_OK)
|
{
|
/* Update ADC state machine to error */
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
|
}
|
|
/* Disable ADC overrun interrupt */
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_OVR);
|
|
/* 2. Disable the ADC peripheral */
|
/* Update "tmp_hal_status" only if DMA channel disabling passed, to keep */
|
/* in memory a potential failing status. */
|
if (tmp_hal_status == HAL_OK)
|
{
|
tmp_hal_status = ADC_Disable(hadc);
|
}
|
else
|
{
|
ADC_Disable(hadc);
|
}
|
|
/* Check if ADC is effectively disabled */
|
if (tmp_hal_status == HAL_OK)
|
{
|
/* Set ADC state */
|
ADC_STATE_CLR_SET(hadc->State,
|
HAL_ADC_STATE_REG_BUSY,
|
HAL_ADC_STATE_READY);
|
}
|
|
}
|
|
/* Process unlocked */
|
__HAL_UNLOCK(hadc);
|
|
/* Return function status */
|
return tmp_hal_status;
|
}
|
|
/**
|
* @brief Get ADC regular group conversion result.
|
* @note Reading register DR automatically clears ADC flag EOC
|
* (ADC group regular end of unitary conversion).
|
* @note This function does not clear ADC flag EOS
|
* (ADC group regular end of sequence conversion).
|
* Occurrence of flag EOS rising:
|
* - If sequencer is composed of 1 rank, flag EOS is equivalent
|
* to flag EOC.
|
* - If sequencer is composed of several ranks, during the scan
|
* sequence flag EOC only is raised, at the end of the scan sequence
|
* both flags EOC and EOS are raised.
|
* To clear this flag, either use function:
|
* in programming model IT: @ref HAL_ADC_IRQHandler(), in programming
|
* model polling: @ref HAL_ADC_PollForConversion()
|
* or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_EOS).
|
* @param hadc ADC handle
|
* @retval ADC group regular conversion data
|
*/
|
uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef* hadc)
|
{
|
/* Check the parameters */
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
/* Note: EOC flag is not cleared here by software because automatically */
|
/* cleared by hardware when reading register DR. */
|
|
/* Return ADC converted value */
|
return hadc->Instance->DR;
|
}
|
|
/**
|
* @brief Handles ADC interrupt request.
|
* @param hadc ADC handle
|
* @retval None
|
*/
|
void HAL_ADC_IRQHandler(ADC_HandleTypeDef* hadc)
|
{
|
/* Check the parameters */
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
|
assert_param(IS_ADC_EOC_SELECTION(hadc->Init.EOCSelection));
|
|
/* ========== Check End of Conversion flag for regular group ========== */
|
if( (__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_EOC)) ||
|
(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_EOS)) )
|
{
|
/* Update state machine on conversion status if not in error state */
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
|
{
|
/* Set ADC state */
|
SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
|
}
|
|
/* Determine whether any further conversion upcoming on group regular */
|
/* by external trigger, continuous mode or scan sequence on going. */
|
if(ADC_IS_SOFTWARE_START_REGULAR(hadc) &&
|
(hadc->Init.ContinuousConvMode == DISABLE) )
|
{
|
/* If End of Sequence is reached, disable interrupts */
|
if( __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) )
|
{
|
/* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */
|
/* ADSTART==0 (no conversion on going) */
|
if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
|
{
|
/* Disable ADC end of single conversion interrupt on group regular */
|
/* Note: Overrun interrupt was enabled with EOC interrupt in */
|
/* HAL_Start_IT(), but is not disabled here because can be used */
|
/* by overrun IRQ process below. */
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS);
|
|
/* Set ADC state */
|
ADC_STATE_CLR_SET(hadc->State,
|
HAL_ADC_STATE_REG_BUSY,
|
HAL_ADC_STATE_READY);
|
}
|
else
|
{
|
/* Change ADC state to error state */
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
/* Set ADC error code to ADC IP internal error */
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
}
|
}
|
}
|
|
/* Conversion complete callback */
|
/* Note: into callback, to determine if conversion has been triggered */
|
/* from EOC or EOS, possibility to use: */
|
/* " if( __HAL_ADC_GET_FLAG(&hadc, ADC_FLAG_EOS)) " */
|
HAL_ADC_ConvCpltCallback(hadc);
|
|
|
/* Clear regular group conversion flag */
|
/* Note: in case of overrun set to ADC_OVR_DATA_PRESERVED, end of */
|
/* conversion flags clear induces the release of the preserved data.*/
|
/* Therefore, if the preserved data value is needed, it must be */
|
/* read preliminarily into HAL_ADC_ConvCpltCallback(). */
|
__HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_EOC | ADC_FLAG_EOS) );
|
}
|
|
/* ========== Check Analog watchdog flags ========== */
|
if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_AWD) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_AWD))
|
{
|
/* Set ADC state */
|
SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
|
|
/* Level out of window callback */
|
HAL_ADC_LevelOutOfWindowCallback(hadc);
|
|
/* Clear ADC Analog watchdog flag */
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD);
|
|
}
|
|
|
/* ========== Check Overrun flag ========== */
|
if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_OVR) && __HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_OVR))
|
{
|
/* If overrun is set to overwrite previous data (default setting), */
|
/* overrun event is not considered as an error. */
|
/* (cf ref manual "Managing conversions without using the DMA and without */
|
/* overrun ") */
|
/* Exception for usage with DMA overrun event always considered as an */
|
/* error. */
|
if ((hadc->Init.Overrun == ADC_OVR_DATA_PRESERVED) ||
|
HAL_IS_BIT_SET(hadc->Instance->CFGR1, ADC_CFGR1_DMAEN) )
|
{
|
/* Set ADC error code to overrun */
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_OVR);
|
|
/* Clear ADC overrun flag */
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
|
|
/* Error callback */
|
HAL_ADC_ErrorCallback(hadc);
|
}
|
|
/* Clear the Overrun flag */
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_OVR);
|
}
|
|
}
|
|
|
/**
|
* @brief Conversion complete callback in non blocking mode
|
* @param hadc ADC handle
|
* @retval None
|
*/
|
__weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
|
{
|
/* Prevent unused argument(s) compilation warning */
|
UNUSED(hadc);
|
|
/* NOTE : This function should not be modified. When the callback is needed,
|
function HAL_ADC_ConvCpltCallback must be implemented in the user file.
|
*/
|
}
|
|
/**
|
* @brief Conversion DMA half-transfer callback in non blocking mode
|
* @param hadc ADC handle
|
* @retval None
|
*/
|
__weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc)
|
{
|
/* Prevent unused argument(s) compilation warning */
|
UNUSED(hadc);
|
|
/* NOTE : This function should not be modified. When the callback is needed,
|
function HAL_ADC_ConvHalfCpltCallback must be implemented in the user file.
|
*/
|
}
|
|
/**
|
* @brief Analog watchdog callback in non blocking mode.
|
* @param hadc ADC handle
|
* @retval None
|
*/
|
__weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef* hadc)
|
{
|
/* Prevent unused argument(s) compilation warning */
|
UNUSED(hadc);
|
|
/* NOTE : This function should not be modified. When the callback is needed,
|
function HAL_ADC_LevelOoutOfWindowCallback must be implemented in the user file.
|
*/
|
}
|
|
/**
|
* @brief ADC error callback in non blocking mode
|
* (ADC conversion with interruption or transfer by DMA)
|
* @param hadc ADC handle
|
* @retval None
|
*/
|
__weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc)
|
{
|
/* Prevent unused argument(s) compilation warning */
|
UNUSED(hadc);
|
|
/* NOTE : This function should not be modified. When the callback is needed,
|
function HAL_ADC_ErrorCallback must be implemented in the user file.
|
*/
|
}
|
|
|
/**
|
* @}
|
*/
|
|
/** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions
|
* @brief Peripheral Control functions
|
*
|
@verbatim
|
===============================================================================
|
##### Peripheral Control functions #####
|
===============================================================================
|
[..] This section provides functions allowing to:
|
(+) Configure channels on regular group
|
(+) Configure the analog watchdog
|
|
@endverbatim
|
* @{
|
*/
|
|
/**
|
* @brief Configures the the selected channel to be linked to the regular
|
* group.
|
* @note In case of usage of internal measurement channels:
|
* VrefInt/Vbat/TempSensor.
|
* Sampling time constraints must be respected (sampling time can be
|
* adjusted in function of ADC clock frequency and sampling time
|
* setting).
|
* Refer to device datasheet for timings values, parameters TS_vrefint,
|
* TS_vbat, TS_temp (values rough order: 5us to 17us).
|
* These internal paths can be be disabled using function
|
* HAL_ADC_DeInit().
|
* @note Possibility to update parameters on the fly:
|
* This function initializes channel into regular group, following
|
* calls to this function can be used to reconfigure some parameters
|
* of structure "ADC_ChannelConfTypeDef" on the fly, without reseting
|
* the ADC.
|
* The setting of these parameters is conditioned to ADC state.
|
* For parameters constraints, see comments of structure
|
* "ADC_ChannelConfTypeDef".
|
* @param hadc ADC handle
|
* @param sConfig Structure of ADC channel for regular group.
|
* @retval HAL status
|
*/
|
HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef* hadc, ADC_ChannelConfTypeDef* sConfig)
|
{
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
__IO uint32_t wait_loop_index = 0U;
|
|
/* Check the parameters */
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
assert_param(IS_ADC_CHANNEL(sConfig->Channel));
|
assert_param(IS_ADC_RANK(sConfig->Rank));
|
|
if (! IS_ADC_SAMPLE_TIME(hadc->Init.SamplingTimeCommon))
|
{
|
assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime));
|
}
|
|
/* Process locked */
|
__HAL_LOCK(hadc);
|
|
/* Parameters update conditioned to ADC state: */
|
/* Parameters that can be updated when ADC is disabled or enabled without */
|
/* conversion on going on regular group: */
|
/* - Channel number */
|
/* - Channel sampling time */
|
/* - Management of internal measurement channels: VrefInt/TempSensor/Vbat */
|
if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
|
{
|
/* Configure channel: depending on rank setting, add it or remove it from */
|
/* ADC conversion sequencer. */
|
if (sConfig->Rank != ADC_RANK_NONE)
|
{
|
/* Regular sequence configuration */
|
/* Set the channel selection register from the selected channel */
|
hadc->Instance->CHSELR |= ADC_CHSELR_CHANNEL(sConfig->Channel);
|
|
/* Channel sampling time configuration */
|
/* Management of parameters "SamplingTimeCommon" and "SamplingTime" */
|
/* (obsolete): sampling time set in this function with */
|
/* parameter "SamplingTime" (obsolete) only if not already set into */
|
/* ADC initialization structure with parameter "SamplingTimeCommon". */
|
if (! IS_ADC_SAMPLE_TIME(hadc->Init.SamplingTimeCommon))
|
{
|
/* Modify sampling time if needed (not needed in case of reoccurrence */
|
/* for several channels programmed consecutively into the sequencer) */
|
if (sConfig->SamplingTime != ADC_GET_SAMPLINGTIME(hadc))
|
{
|
/* Channel sampling time configuration */
|
/* Clear the old sample time */
|
hadc->Instance->SMPR &= ~(ADC_SMPR_SMP);
|
|
/* Set the new sample time */
|
hadc->Instance->SMPR |= ADC_SMPR_SET(sConfig->SamplingTime);
|
}
|
}
|
|
/* Management of internal measurement channels: VrefInt/TempSensor/Vbat */
|
/* internal measurement paths enable: If internal channel selected, */
|
/* enable dedicated internal buffers and path. */
|
/* Note: these internal measurement paths can be disabled using */
|
/* HAL_ADC_DeInit() or removing the channel from sequencer with */
|
/* channel configuration parameter "Rank". */
|
if(ADC_IS_CHANNEL_INTERNAL(sConfig->Channel))
|
{
|
/* If Channel_16 is selected, enable Temp. sensor measurement path. */
|
/* If Channel_17 is selected, enable VREFINT measurement path. */
|
/* If Channel_18 is selected, enable VBAT measurement path. */
|
ADC->CCR |= ADC_CHANNEL_INTERNAL_PATH(sConfig->Channel);
|
|
/* If Temp. sensor is selected, wait for stabilization delay */
|
if (sConfig->Channel == ADC_CHANNEL_TEMPSENSOR)
|
{
|
/* Delay for temperature sensor stabilization time */
|
/* Compute number of CPU cycles to wait for */
|
wait_loop_index = (ADC_TEMPSENSOR_DELAY_US * (SystemCoreClock / 1000000U));
|
while(wait_loop_index != 0U)
|
{
|
wait_loop_index--;
|
}
|
}
|
}
|
}
|
else
|
{
|
/* Regular sequence configuration */
|
/* Reset the channel selection register from the selected channel */
|
hadc->Instance->CHSELR &= ~ADC_CHSELR_CHANNEL(sConfig->Channel);
|
|
/* Management of internal measurement channels: VrefInt/TempSensor/Vbat */
|
/* internal measurement paths disable: If internal channel selected, */
|
/* disable dedicated internal buffers and path. */
|
if(ADC_IS_CHANNEL_INTERNAL(sConfig->Channel))
|
{
|
/* If Channel_16 is selected, disable Temp. sensor measurement path. */
|
/* If Channel_17 is selected, disable VREFINT measurement path. */
|
/* If Channel_18 is selected, disable VBAT measurement path. */
|
ADC->CCR &= ~ADC_CHANNEL_INTERNAL_PATH(sConfig->Channel);
|
}
|
}
|
|
}
|
|
/* If a conversion is on going on regular group, no update on regular */
|
/* channel could be done on neither of the channel configuration structure */
|
/* parameters. */
|
else
|
{
|
/* Update ADC state machine to error */
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
tmp_hal_status = HAL_ERROR;
|
}
|
|
/* Process unlocked */
|
__HAL_UNLOCK(hadc);
|
|
/* Return function status */
|
return tmp_hal_status;
|
}
|
|
|
/**
|
* @brief Configures the analog watchdog.
|
* @note Possibility to update parameters on the fly:
|
* This function initializes the selected analog watchdog, following
|
* calls to this function can be used to reconfigure some parameters
|
* of structure "ADC_AnalogWDGConfTypeDef" on the fly, without reseting
|
* the ADC.
|
* The setting of these parameters is conditioned to ADC state.
|
* For parameters constraints, see comments of structure
|
* "ADC_AnalogWDGConfTypeDef".
|
* @param hadc ADC handle
|
* @param AnalogWDGConfig Structure of ADC analog watchdog configuration
|
* @retval HAL status
|
*/
|
HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef* hadc, ADC_AnalogWDGConfTypeDef* AnalogWDGConfig)
|
{
|
HAL_StatusTypeDef tmp_hal_status = HAL_OK;
|
|
uint32_t tmpAWDHighThresholdShifted;
|
uint32_t tmpAWDLowThresholdShifted;
|
|
/* Check the parameters */
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
assert_param(IS_ADC_ANALOG_WATCHDOG_MODE(AnalogWDGConfig->WatchdogMode));
|
assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode));
|
|
/* Verify if threshold is within the selected ADC resolution */
|
assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->HighThreshold));
|
assert_param(IS_ADC_RANGE(ADC_GET_RESOLUTION(hadc), AnalogWDGConfig->LowThreshold));
|
|
if(AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REG)
|
{
|
assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel));
|
}
|
|
/* Process locked */
|
__HAL_LOCK(hadc);
|
|
/* Parameters update conditioned to ADC state: */
|
/* Parameters that can be updated when ADC is disabled or enabled without */
|
/* conversion on going on regular group: */
|
/* - Analog watchdog channels */
|
/* - Analog watchdog thresholds */
|
if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
|
{
|
/* Configuration of analog watchdog: */
|
/* - Set the analog watchdog enable mode: one or overall group of */
|
/* channels. */
|
/* - Set the Analog watchdog channel (is not used if watchdog */
|
/* mode "all channels": ADC_CFGR_AWD1SGL=0). */
|
hadc->Instance->CFGR1 &= ~( ADC_CFGR1_AWDSGL |
|
ADC_CFGR1_AWDEN |
|
ADC_CFGR1_AWDCH );
|
|
hadc->Instance->CFGR1 |= ( AnalogWDGConfig->WatchdogMode |
|
ADC_CFGR_AWDCH(AnalogWDGConfig->Channel) );
|
|
/* Shift the offset in function of the selected ADC resolution: Thresholds*/
|
/* have to be left-aligned on bit 11, the LSB (right bits) are set to 0 */
|
tmpAWDHighThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->HighThreshold);
|
tmpAWDLowThresholdShifted = ADC_AWD1THRESHOLD_SHIFT_RESOLUTION(hadc, AnalogWDGConfig->LowThreshold);
|
|
/* Set the high and low thresholds */
|
hadc->Instance->TR &= ~(ADC_TR_HT | ADC_TR_LT);
|
hadc->Instance->TR |= ( ADC_TRX_HIGHTHRESHOLD (tmpAWDHighThresholdShifted) |
|
tmpAWDLowThresholdShifted );
|
|
/* Clear the ADC Analog watchdog flag (in case of left enabled by */
|
/* previous ADC operations) to be ready to use for HAL_ADC_IRQHandler() */
|
/* or HAL_ADC_PollForEvent(). */
|
__HAL_ADC_CLEAR_FLAG(hadc, ADC_IT_AWD);
|
|
/* Configure ADC Analog watchdog interrupt */
|
if(AnalogWDGConfig->ITMode == ENABLE)
|
{
|
/* Enable the ADC Analog watchdog interrupt */
|
__HAL_ADC_ENABLE_IT(hadc, ADC_IT_AWD);
|
}
|
else
|
{
|
/* Disable the ADC Analog watchdog interrupt */
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_AWD);
|
}
|
|
}
|
/* If a conversion is on going on regular group, no update could be done */
|
/* on neither of the AWD configuration structure parameters. */
|
else
|
{
|
/* Update ADC state machine to error */
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
tmp_hal_status = HAL_ERROR;
|
}
|
|
|
/* Process unlocked */
|
__HAL_UNLOCK(hadc);
|
|
/* Return function status */
|
return tmp_hal_status;
|
}
|
|
|
/**
|
* @}
|
*/
|
|
|
/** @defgroup ADC_Exported_Functions_Group4 Peripheral State functions
|
* @brief Peripheral State functions
|
*
|
@verbatim
|
===============================================================================
|
##### Peripheral State and Errors functions #####
|
===============================================================================
|
[..]
|
This subsection provides functions to get in run-time the status of the
|
peripheral.
|
(+) Check the ADC state
|
(+) Check the ADC error code
|
|
@endverbatim
|
* @{
|
*/
|
|
/**
|
* @brief Return the ADC state
|
* @note ADC state machine is managed by bitfields, ADC status must be
|
* compared with states bits.
|
* For example:
|
* " if (HAL_IS_BIT_SET(HAL_ADC_GetState(hadc1), HAL_ADC_STATE_REG_BUSY)) "
|
* " if (HAL_IS_BIT_SET(HAL_ADC_GetState(hadc1), HAL_ADC_STATE_AWD1) ) "
|
* @param hadc ADC handle
|
* @retval HAL state
|
*/
|
uint32_t HAL_ADC_GetState(ADC_HandleTypeDef* hadc)
|
{
|
/* Check the parameters */
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
/* Return ADC state */
|
return hadc->State;
|
}
|
|
/**
|
* @brief Return the ADC error code
|
* @param hadc ADC handle
|
* @retval ADC Error Code
|
*/
|
uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc)
|
{
|
return hadc->ErrorCode;
|
}
|
|
/**
|
* @}
|
*/
|
|
/**
|
* @}
|
*/
|
|
/** @defgroup ADC_Private_Functions ADC Private Functions
|
* @{
|
*/
|
|
/**
|
* @brief Enable the selected ADC.
|
* @note Prerequisite condition to use this function: ADC must be disabled
|
* and voltage regulator must be enabled (done into HAL_ADC_Init()).
|
* @note If low power mode AutoPowerOff is enabled, power-on/off phases are
|
* performed automatically by hardware.
|
* In this mode, this function is useless and must not be called because
|
* flag ADC_FLAG_RDY is not usable.
|
* Therefore, this function must be called under condition of
|
* "if (hadc->Init.LowPowerAutoPowerOff != ENABLE)".
|
* @param hadc ADC handle
|
* @retval HAL status.
|
*/
|
static HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef* hadc)
|
{
|
uint32_t tickstart = 0U;
|
__IO uint32_t wait_loop_index = 0U;
|
|
/* ADC enable and wait for ADC ready (in case of ADC is disabled or */
|
/* enabling phase not yet completed: flag ADC ready not yet set). */
|
/* Timeout implemented to not be stuck if ADC cannot be enabled (possible */
|
/* causes: ADC clock not running, ...). */
|
if (ADC_IS_ENABLE(hadc) == RESET)
|
{
|
/* Check if conditions to enable the ADC are fulfilled */
|
if (ADC_ENABLING_CONDITIONS(hadc) == RESET)
|
{
|
/* Update ADC state machine to error */
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
|
/* Set ADC error code to ADC IP internal error */
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
|
return HAL_ERROR;
|
}
|
|
/* Enable the ADC peripheral */
|
__HAL_ADC_ENABLE(hadc);
|
|
/* Delay for ADC stabilization time */
|
/* Compute number of CPU cycles to wait for */
|
wait_loop_index = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U));
|
while(wait_loop_index != 0U)
|
{
|
wait_loop_index--;
|
}
|
|
/* Get tick count */
|
tickstart = HAL_GetTick();
|
|
/* Wait for ADC effectively enabled */
|
while(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_RDY) == RESET)
|
{
|
if((HAL_GetTick() - tickstart) > ADC_ENABLE_TIMEOUT)
|
{
|
/* Update ADC state machine to error */
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
|
/* Set ADC error code to ADC IP internal error */
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
|
return HAL_ERROR;
|
}
|
}
|
|
}
|
|
/* Return HAL status */
|
return HAL_OK;
|
}
|
|
/**
|
* @brief Disable the selected ADC.
|
* @note Prerequisite condition to use this function: ADC conversions must be
|
* stopped.
|
* @param hadc ADC handle
|
* @retval HAL status.
|
*/
|
static HAL_StatusTypeDef ADC_Disable(ADC_HandleTypeDef* hadc)
|
{
|
uint32_t tickstart = 0U;
|
|
/* Verification if ADC is not already disabled: */
|
/* Note: forbidden to disable ADC (set bit ADC_CR_ADDIS) if ADC is already */
|
/* disabled. */
|
if (ADC_IS_ENABLE(hadc) != RESET)
|
{
|
/* Check if conditions to disable the ADC are fulfilled */
|
if (ADC_DISABLING_CONDITIONS(hadc) != RESET)
|
{
|
/* Disable the ADC peripheral */
|
__HAL_ADC_DISABLE(hadc);
|
}
|
else
|
{
|
/* Update ADC state machine to error */
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
|
/* Set ADC error code to ADC IP internal error */
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
|
return HAL_ERROR;
|
}
|
|
/* Wait for ADC effectively disabled */
|
/* Get tick count */
|
tickstart = HAL_GetTick();
|
|
while(HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADEN))
|
{
|
if((HAL_GetTick() - tickstart) > ADC_DISABLE_TIMEOUT)
|
{
|
/* Update ADC state machine to error */
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
|
/* Set ADC error code to ADC IP internal error */
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
|
return HAL_ERROR;
|
}
|
}
|
}
|
|
/* Return HAL status */
|
return HAL_OK;
|
}
|
|
|
/**
|
* @brief Stop ADC conversion.
|
* @note Prerequisite condition to use this function: ADC conversions must be
|
* stopped to disable the ADC.
|
* @param hadc ADC handle
|
* @retval HAL status.
|
*/
|
static HAL_StatusTypeDef ADC_ConversionStop(ADC_HandleTypeDef* hadc)
|
{
|
uint32_t tickstart = 0U;
|
|
/* Check the parameters */
|
assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
|
|
/* Verification if ADC is not already stopped on regular group to bypass */
|
/* this function if not needed. */
|
if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc))
|
{
|
|
/* Stop potential conversion on going on regular group */
|
/* Software is allowed to set ADSTP only when ADSTART=1 and ADDIS=0 */
|
if (HAL_IS_BIT_SET(hadc->Instance->CR, ADC_CR_ADSTART) &&
|
HAL_IS_BIT_CLR(hadc->Instance->CR, ADC_CR_ADDIS) )
|
{
|
/* Stop conversions on regular group */
|
hadc->Instance->CR |= ADC_CR_ADSTP;
|
}
|
|
/* Wait for conversion effectively stopped */
|
/* Get tick count */
|
tickstart = HAL_GetTick();
|
|
while((hadc->Instance->CR & ADC_CR_ADSTART) != RESET)
|
{
|
if((HAL_GetTick() - tickstart) > ADC_STOP_CONVERSION_TIMEOUT)
|
{
|
/* Update ADC state machine to error */
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
|
|
/* Set ADC error code to ADC IP internal error */
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
|
return HAL_ERROR;
|
}
|
}
|
|
}
|
|
/* Return HAL status */
|
return HAL_OK;
|
}
|
|
|
/**
|
* @brief DMA transfer complete callback.
|
* @param hdma pointer to DMA handle.
|
* @retval None
|
*/
|
static void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma)
|
{
|
/* Retrieve ADC handle corresponding to current DMA handle */
|
ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
|
|
/* Update state machine on conversion status if not in error state */
|
if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA))
|
{
|
/* Set ADC state */
|
SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
|
|
/* Determine whether any further conversion upcoming on group regular */
|
/* by external trigger, continuous mode or scan sequence on going. */
|
if(ADC_IS_SOFTWARE_START_REGULAR(hadc) &&
|
(hadc->Init.ContinuousConvMode == DISABLE) )
|
{
|
/* If End of Sequence is reached, disable interrupts */
|
if( __HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOS) )
|
{
|
/* Allowed to modify bits ADC_IT_EOC/ADC_IT_EOS only if bit */
|
/* ADSTART==0 (no conversion on going) */
|
if (ADC_IS_CONVERSION_ONGOING_REGULAR(hadc) == RESET)
|
{
|
/* Disable ADC end of single conversion interrupt on group regular */
|
/* Note: Overrun interrupt was enabled with EOC interrupt in */
|
/* HAL_Start_IT(), but is not disabled here because can be used */
|
/* by overrun IRQ process below. */
|
__HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC | ADC_IT_EOS);
|
|
/* Set ADC state */
|
ADC_STATE_CLR_SET(hadc->State,
|
HAL_ADC_STATE_REG_BUSY,
|
HAL_ADC_STATE_READY);
|
}
|
else
|
{
|
/* Change ADC state to error state */
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
|
|
/* Set ADC error code to ADC IP internal error */
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
|
}
|
}
|
}
|
|
/* Conversion complete callback */
|
HAL_ADC_ConvCpltCallback(hadc);
|
}
|
else
|
{
|
/* Call DMA error callback */
|
hadc->DMA_Handle->XferErrorCallback(hdma);
|
}
|
|
}
|
|
/**
|
* @brief DMA half transfer complete callback.
|
* @param hdma pointer to DMA handle.
|
* @retval None
|
*/
|
static void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma)
|
{
|
/* Retrieve ADC handle corresponding to current DMA handle */
|
ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
|
|
/* Half conversion callback */
|
HAL_ADC_ConvHalfCpltCallback(hadc);
|
}
|
|
/**
|
* @brief DMA error callback
|
* @param hdma pointer to DMA handle.
|
* @retval None
|
*/
|
static void ADC_DMAError(DMA_HandleTypeDef *hdma)
|
{
|
/* Retrieve ADC handle corresponding to current DMA handle */
|
ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
|
|
/* Set ADC state */
|
SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
|
|
/* Set ADC error code to DMA error */
|
SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_DMA);
|
|
/* Error callback */
|
HAL_ADC_ErrorCallback(hadc);
|
}
|
|
/**
|
* @}
|
*/
|
|
#endif /* HAL_ADC_MODULE_ENABLED */
|
/**
|
* @}
|
*/
|
|
/**
|
* @}
|
*/
|
|
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|