/* ----------------------------------------------------------------------
|
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
*
|
* $Date: 19. March 2015
|
* $Revision: V.1.4.5
|
*
|
* Project: CMSIS DSP Library
|
* Title: arm_cfft_radix2_q15.c
|
*
|
* Description: Radix-2 Decimation in Frequency CFFT & CIFFT Fixed point processing function
|
*
|
*
|
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
*
|
* Redistribution and use in source and binary forms, with or without
|
* modification, are permitted provided that the following conditions
|
* are met:
|
* - Redistributions of source code must retain the above copyright
|
* notice, this list of conditions and the following disclaimer.
|
* - Redistributions in binary form must reproduce the above copyright
|
* notice, this list of conditions and the following disclaimer in
|
* the documentation and/or other materials provided with the
|
* distribution.
|
* - Neither the name of ARM LIMITED nor the names of its contributors
|
* may be used to endorse or promote products derived from this
|
* software without specific prior written permission.
|
*
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
* POSSIBILITY OF SUCH DAMAGE.
|
* -------------------------------------------------------------------- */
|
|
#include "arm_math.h"
|
|
void arm_radix2_butterfly_q15(
|
q15_t * pSrc,
|
uint32_t fftLen,
|
q15_t * pCoef,
|
uint16_t twidCoefModifier);
|
|
void arm_radix2_butterfly_inverse_q15(
|
q15_t * pSrc,
|
uint32_t fftLen,
|
q15_t * pCoef,
|
uint16_t twidCoefModifier);
|
|
void arm_bitreversal_q15(
|
q15_t * pSrc,
|
uint32_t fftLen,
|
uint16_t bitRevFactor,
|
uint16_t * pBitRevTab);
|
|
/**
|
* @ingroup groupTransforms
|
*/
|
|
/**
|
* @addtogroup ComplexFFT
|
* @{
|
*/
|
|
/**
|
* @details
|
* @brief Processing function for the fixed-point CFFT/CIFFT.
|
* @deprecated Do not use this function. It has been superseded by \ref arm_cfft_q15 and will be removed
|
* @param[in] *S points to an instance of the fixed-point CFFT/CIFFT structure.
|
* @param[in, out] *pSrc points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.
|
* @return none.
|
*/
|
|
void arm_cfft_radix2_q15(
|
const arm_cfft_radix2_instance_q15 * S,
|
q15_t * pSrc)
|
{
|
|
if(S->ifftFlag == 1u)
|
{
|
arm_radix2_butterfly_inverse_q15(pSrc, S->fftLen,
|
S->pTwiddle, S->twidCoefModifier);
|
}
|
else
|
{
|
arm_radix2_butterfly_q15(pSrc, S->fftLen,
|
S->pTwiddle, S->twidCoefModifier);
|
}
|
|
arm_bitreversal_q15(pSrc, S->fftLen, S->bitRevFactor, S->pBitRevTable);
|
}
|
|
/**
|
* @} end of ComplexFFT group
|
*/
|
|
void arm_radix2_butterfly_q15(
|
q15_t * pSrc,
|
uint32_t fftLen,
|
q15_t * pCoef,
|
uint16_t twidCoefModifier)
|
{
|
#ifndef ARM_MATH_CM0_FAMILY
|
|
unsigned i, j, k, l;
|
unsigned n1, n2, ia;
|
q15_t in;
|
q31_t T, S, R;
|
q31_t coeff, out1, out2;
|
|
//N = fftLen;
|
n2 = fftLen;
|
|
n1 = n2;
|
n2 = n2 >> 1;
|
ia = 0;
|
|
// loop for groups
|
for (i = 0; i < n2; i++)
|
{
|
coeff = _SIMD32_OFFSET(pCoef + (ia * 2u));
|
|
ia = ia + twidCoefModifier;
|
|
l = i + n2;
|
|
T = _SIMD32_OFFSET(pSrc + (2 * i));
|
in = ((int16_t) (T & 0xFFFF)) >> 1;
|
T = ((T >> 1) & 0xFFFF0000) | (in & 0xFFFF);
|
|
S = _SIMD32_OFFSET(pSrc + (2 * l));
|
in = ((int16_t) (S & 0xFFFF)) >> 1;
|
S = ((S >> 1) & 0xFFFF0000) | (in & 0xFFFF);
|
|
R = __QSUB16(T, S);
|
|
_SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
out1 = __SMUAD(coeff, R) >> 16;
|
out2 = __SMUSDX(coeff, R);
|
|
#else
|
|
out1 = __SMUSDX(R, coeff) >> 16u;
|
out2 = __SMUAD(coeff, R);
|
|
#endif // #ifndef ARM_MATH_BIG_ENDIAN
|
|
_SIMD32_OFFSET(pSrc + (2u * l)) =
|
(q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
|
|
coeff = _SIMD32_OFFSET(pCoef + (ia * 2u));
|
|
ia = ia + twidCoefModifier;
|
|
// loop for butterfly
|
i++;
|
l++;
|
|
T = _SIMD32_OFFSET(pSrc + (2 * i));
|
in = ((int16_t) (T & 0xFFFF)) >> 1;
|
T = ((T >> 1) & 0xFFFF0000) | (in & 0xFFFF);
|
|
S = _SIMD32_OFFSET(pSrc + (2 * l));
|
in = ((int16_t) (S & 0xFFFF)) >> 1;
|
S = ((S >> 1) & 0xFFFF0000) | (in & 0xFFFF);
|
|
R = __QSUB16(T, S);
|
|
_SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
out1 = __SMUAD(coeff, R) >> 16;
|
out2 = __SMUSDX(coeff, R);
|
|
#else
|
|
out1 = __SMUSDX(R, coeff) >> 16u;
|
out2 = __SMUAD(coeff, R);
|
|
#endif // #ifndef ARM_MATH_BIG_ENDIAN
|
|
_SIMD32_OFFSET(pSrc + (2u * l)) =
|
(q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
|
|
} // groups loop end
|
|
twidCoefModifier = twidCoefModifier << 1u;
|
|
// loop for stage
|
for (k = fftLen / 2; k > 2; k = k >> 1)
|
{
|
n1 = n2;
|
n2 = n2 >> 1;
|
ia = 0;
|
|
// loop for groups
|
for (j = 0; j < n2; j++)
|
{
|
coeff = _SIMD32_OFFSET(pCoef + (ia * 2u));
|
|
ia = ia + twidCoefModifier;
|
|
// loop for butterfly
|
for (i = j; i < fftLen; i += n1)
|
{
|
l = i + n2;
|
|
T = _SIMD32_OFFSET(pSrc + (2 * i));
|
|
S = _SIMD32_OFFSET(pSrc + (2 * l));
|
|
R = __QSUB16(T, S);
|
|
_SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
out1 = __SMUAD(coeff, R) >> 16;
|
out2 = __SMUSDX(coeff, R);
|
|
#else
|
|
out1 = __SMUSDX(R, coeff) >> 16u;
|
out2 = __SMUAD(coeff, R);
|
|
#endif // #ifndef ARM_MATH_BIG_ENDIAN
|
|
_SIMD32_OFFSET(pSrc + (2u * l)) =
|
(q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
|
|
i += n1;
|
|
l = i + n2;
|
|
T = _SIMD32_OFFSET(pSrc + (2 * i));
|
|
S = _SIMD32_OFFSET(pSrc + (2 * l));
|
|
R = __QSUB16(T, S);
|
|
_SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
out1 = __SMUAD(coeff, R) >> 16;
|
out2 = __SMUSDX(coeff, R);
|
|
#else
|
|
out1 = __SMUSDX(R, coeff) >> 16u;
|
out2 = __SMUAD(coeff, R);
|
|
#endif // #ifndef ARM_MATH_BIG_ENDIAN
|
|
_SIMD32_OFFSET(pSrc + (2u * l)) =
|
(q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
|
|
} // butterfly loop end
|
|
} // groups loop end
|
|
twidCoefModifier = twidCoefModifier << 1u;
|
} // stages loop end
|
|
n1 = n2;
|
n2 = n2 >> 1;
|
ia = 0;
|
|
coeff = _SIMD32_OFFSET(pCoef + (ia * 2u));
|
|
ia = ia + twidCoefModifier;
|
|
// loop for butterfly
|
for (i = 0; i < fftLen; i += n1)
|
{
|
l = i + n2;
|
|
T = _SIMD32_OFFSET(pSrc + (2 * i));
|
|
S = _SIMD32_OFFSET(pSrc + (2 * l));
|
|
R = __QSUB16(T, S);
|
|
_SIMD32_OFFSET(pSrc + (2 * i)) = __QADD16(T, S);
|
|
_SIMD32_OFFSET(pSrc + (2u * l)) = R;
|
|
i += n1;
|
l = i + n2;
|
|
T = _SIMD32_OFFSET(pSrc + (2 * i));
|
|
S = _SIMD32_OFFSET(pSrc + (2 * l));
|
|
R = __QSUB16(T, S);
|
|
_SIMD32_OFFSET(pSrc + (2 * i)) = __QADD16(T, S);
|
|
_SIMD32_OFFSET(pSrc + (2u * l)) = R;
|
|
} // groups loop end
|
|
|
#else
|
|
unsigned i, j, k, l;
|
unsigned n1, n2, ia;
|
q15_t xt, yt, cosVal, sinVal;
|
|
|
//N = fftLen;
|
n2 = fftLen;
|
|
n1 = n2;
|
n2 = n2 >> 1;
|
ia = 0;
|
|
// loop for groups
|
for (j = 0; j < n2; j++)
|
{
|
cosVal = pCoef[ia * 2];
|
sinVal = pCoef[(ia * 2) + 1];
|
ia = ia + twidCoefModifier;
|
|
// loop for butterfly
|
for (i = j; i < fftLen; i += n1)
|
{
|
l = i + n2;
|
xt = (pSrc[2 * i] >> 1u) - (pSrc[2 * l] >> 1u);
|
pSrc[2 * i] = ((pSrc[2 * i] >> 1u) + (pSrc[2 * l] >> 1u)) >> 1u;
|
|
yt = (pSrc[2 * i + 1] >> 1u) - (pSrc[2 * l + 1] >> 1u);
|
pSrc[2 * i + 1] =
|
((pSrc[2 * l + 1] >> 1u) + (pSrc[2 * i + 1] >> 1u)) >> 1u;
|
|
pSrc[2u * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) +
|
((int16_t) (((q31_t) yt * sinVal) >> 16)));
|
|
pSrc[2u * l + 1u] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) -
|
((int16_t) (((q31_t) xt * sinVal) >> 16)));
|
|
} // butterfly loop end
|
|
} // groups loop end
|
|
twidCoefModifier = twidCoefModifier << 1u;
|
|
// loop for stage
|
for (k = fftLen / 2; k > 2; k = k >> 1)
|
{
|
n1 = n2;
|
n2 = n2 >> 1;
|
ia = 0;
|
|
// loop for groups
|
for (j = 0; j < n2; j++)
|
{
|
cosVal = pCoef[ia * 2];
|
sinVal = pCoef[(ia * 2) + 1];
|
ia = ia + twidCoefModifier;
|
|
// loop for butterfly
|
for (i = j; i < fftLen; i += n1)
|
{
|
l = i + n2;
|
xt = pSrc[2 * i] - pSrc[2 * l];
|
pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) >> 1u;
|
|
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
|
pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) >> 1u;
|
|
pSrc[2u * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) +
|
((int16_t) (((q31_t) yt * sinVal) >> 16)));
|
|
pSrc[2u * l + 1u] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) -
|
((int16_t) (((q31_t) xt * sinVal) >> 16)));
|
|
} // butterfly loop end
|
|
} // groups loop end
|
|
twidCoefModifier = twidCoefModifier << 1u;
|
} // stages loop end
|
|
n1 = n2;
|
n2 = n2 >> 1;
|
ia = 0;
|
|
// loop for groups
|
for (j = 0; j < n2; j++)
|
{
|
cosVal = pCoef[ia * 2];
|
sinVal = pCoef[(ia * 2) + 1];
|
|
ia = ia + twidCoefModifier;
|
|
// loop for butterfly
|
for (i = j; i < fftLen; i += n1)
|
{
|
l = i + n2;
|
xt = pSrc[2 * i] - pSrc[2 * l];
|
pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]);
|
|
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
|
pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]);
|
|
pSrc[2u * l] = xt;
|
|
pSrc[2u * l + 1u] = yt;
|
|
} // butterfly loop end
|
|
} // groups loop end
|
|
twidCoefModifier = twidCoefModifier << 1u;
|
|
#endif // #ifndef ARM_MATH_CM0_FAMILY
|
|
}
|
|
|
void arm_radix2_butterfly_inverse_q15(
|
q15_t * pSrc,
|
uint32_t fftLen,
|
q15_t * pCoef,
|
uint16_t twidCoefModifier)
|
{
|
#ifndef ARM_MATH_CM0_FAMILY
|
|
unsigned i, j, k, l;
|
unsigned n1, n2, ia;
|
q15_t in;
|
q31_t T, S, R;
|
q31_t coeff, out1, out2;
|
|
//N = fftLen;
|
n2 = fftLen;
|
|
n1 = n2;
|
n2 = n2 >> 1;
|
ia = 0;
|
|
// loop for groups
|
for (i = 0; i < n2; i++)
|
{
|
coeff = _SIMD32_OFFSET(pCoef + (ia * 2u));
|
|
ia = ia + twidCoefModifier;
|
|
l = i + n2;
|
|
T = _SIMD32_OFFSET(pSrc + (2 * i));
|
in = ((int16_t) (T & 0xFFFF)) >> 1;
|
T = ((T >> 1) & 0xFFFF0000) | (in & 0xFFFF);
|
|
S = _SIMD32_OFFSET(pSrc + (2 * l));
|
in = ((int16_t) (S & 0xFFFF)) >> 1;
|
S = ((S >> 1) & 0xFFFF0000) | (in & 0xFFFF);
|
|
R = __QSUB16(T, S);
|
|
_SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
out1 = __SMUSD(coeff, R) >> 16;
|
out2 = __SMUADX(coeff, R);
|
#else
|
|
out1 = __SMUADX(R, coeff) >> 16u;
|
out2 = __SMUSD(__QSUB(0, coeff), R);
|
|
#endif // #ifndef ARM_MATH_BIG_ENDIAN
|
|
_SIMD32_OFFSET(pSrc + (2u * l)) =
|
(q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
|
|
coeff = _SIMD32_OFFSET(pCoef + (ia * 2u));
|
|
ia = ia + twidCoefModifier;
|
|
// loop for butterfly
|
i++;
|
l++;
|
|
T = _SIMD32_OFFSET(pSrc + (2 * i));
|
in = ((int16_t) (T & 0xFFFF)) >> 1;
|
T = ((T >> 1) & 0xFFFF0000) | (in & 0xFFFF);
|
|
S = _SIMD32_OFFSET(pSrc + (2 * l));
|
in = ((int16_t) (S & 0xFFFF)) >> 1;
|
S = ((S >> 1) & 0xFFFF0000) | (in & 0xFFFF);
|
|
R = __QSUB16(T, S);
|
|
_SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
out1 = __SMUSD(coeff, R) >> 16;
|
out2 = __SMUADX(coeff, R);
|
#else
|
|
out1 = __SMUADX(R, coeff) >> 16u;
|
out2 = __SMUSD(__QSUB(0, coeff), R);
|
|
#endif // #ifndef ARM_MATH_BIG_ENDIAN
|
|
_SIMD32_OFFSET(pSrc + (2u * l)) =
|
(q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
|
|
} // groups loop end
|
|
twidCoefModifier = twidCoefModifier << 1u;
|
|
// loop for stage
|
for (k = fftLen / 2; k > 2; k = k >> 1)
|
{
|
n1 = n2;
|
n2 = n2 >> 1;
|
ia = 0;
|
|
// loop for groups
|
for (j = 0; j < n2; j++)
|
{
|
coeff = _SIMD32_OFFSET(pCoef + (ia * 2u));
|
|
ia = ia + twidCoefModifier;
|
|
// loop for butterfly
|
for (i = j; i < fftLen; i += n1)
|
{
|
l = i + n2;
|
|
T = _SIMD32_OFFSET(pSrc + (2 * i));
|
|
S = _SIMD32_OFFSET(pSrc + (2 * l));
|
|
R = __QSUB16(T, S);
|
|
_SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
out1 = __SMUSD(coeff, R) >> 16;
|
out2 = __SMUADX(coeff, R);
|
|
#else
|
|
out1 = __SMUADX(R, coeff) >> 16u;
|
out2 = __SMUSD(__QSUB(0, coeff), R);
|
|
#endif // #ifndef ARM_MATH_BIG_ENDIAN
|
|
_SIMD32_OFFSET(pSrc + (2u * l)) =
|
(q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
|
|
i += n1;
|
|
l = i + n2;
|
|
T = _SIMD32_OFFSET(pSrc + (2 * i));
|
|
S = _SIMD32_OFFSET(pSrc + (2 * l));
|
|
R = __QSUB16(T, S);
|
|
_SIMD32_OFFSET(pSrc + (2 * i)) = __SHADD16(T, S);
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
out1 = __SMUSD(coeff, R) >> 16;
|
out2 = __SMUADX(coeff, R);
|
#else
|
|
out1 = __SMUADX(R, coeff) >> 16u;
|
out2 = __SMUSD(__QSUB(0, coeff), R);
|
|
#endif // #ifndef ARM_MATH_BIG_ENDIAN
|
|
_SIMD32_OFFSET(pSrc + (2u * l)) =
|
(q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
|
|
} // butterfly loop end
|
|
} // groups loop end
|
|
twidCoefModifier = twidCoefModifier << 1u;
|
} // stages loop end
|
|
n1 = n2;
|
n2 = n2 >> 1;
|
ia = 0;
|
|
// loop for groups
|
for (j = 0; j < n2; j++)
|
{
|
coeff = _SIMD32_OFFSET(pCoef + (ia * 2u));
|
|
ia = ia + twidCoefModifier;
|
|
// loop for butterfly
|
for (i = j; i < fftLen; i += n1)
|
{
|
l = i + n2;
|
|
T = _SIMD32_OFFSET(pSrc + (2 * i));
|
|
S = _SIMD32_OFFSET(pSrc + (2 * l));
|
|
R = __QSUB16(T, S);
|
|
_SIMD32_OFFSET(pSrc + (2 * i)) = __QADD16(T, S);
|
|
_SIMD32_OFFSET(pSrc + (2u * l)) = R;
|
|
} // butterfly loop end
|
|
} // groups loop end
|
|
twidCoefModifier = twidCoefModifier << 1u;
|
|
#else
|
|
|
unsigned i, j, k, l;
|
unsigned n1, n2, ia;
|
q15_t xt, yt, cosVal, sinVal;
|
|
//N = fftLen;
|
n2 = fftLen;
|
|
n1 = n2;
|
n2 = n2 >> 1;
|
ia = 0;
|
|
// loop for groups
|
for (j = 0; j < n2; j++)
|
{
|
cosVal = pCoef[ia * 2];
|
sinVal = pCoef[(ia * 2) + 1];
|
ia = ia + twidCoefModifier;
|
|
// loop for butterfly
|
for (i = j; i < fftLen; i += n1)
|
{
|
l = i + n2;
|
xt = (pSrc[2 * i] >> 1u) - (pSrc[2 * l] >> 1u);
|
pSrc[2 * i] = ((pSrc[2 * i] >> 1u) + (pSrc[2 * l] >> 1u)) >> 1u;
|
|
yt = (pSrc[2 * i + 1] >> 1u) - (pSrc[2 * l + 1] >> 1u);
|
pSrc[2 * i + 1] =
|
((pSrc[2 * l + 1] >> 1u) + (pSrc[2 * i + 1] >> 1u)) >> 1u;
|
|
pSrc[2u * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) -
|
((int16_t) (((q31_t) yt * sinVal) >> 16)));
|
|
pSrc[2u * l + 1u] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) +
|
((int16_t) (((q31_t) xt * sinVal) >> 16)));
|
|
} // butterfly loop end
|
|
} // groups loop end
|
|
twidCoefModifier = twidCoefModifier << 1u;
|
|
// loop for stage
|
for (k = fftLen / 2; k > 2; k = k >> 1)
|
{
|
n1 = n2;
|
n2 = n2 >> 1;
|
ia = 0;
|
|
// loop for groups
|
for (j = 0; j < n2; j++)
|
{
|
cosVal = pCoef[ia * 2];
|
sinVal = pCoef[(ia * 2) + 1];
|
ia = ia + twidCoefModifier;
|
|
// loop for butterfly
|
for (i = j; i < fftLen; i += n1)
|
{
|
l = i + n2;
|
xt = pSrc[2 * i] - pSrc[2 * l];
|
pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) >> 1u;
|
|
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
|
pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) >> 1u;
|
|
pSrc[2u * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) -
|
((int16_t) (((q31_t) yt * sinVal) >> 16)));
|
|
pSrc[2u * l + 1u] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) +
|
((int16_t) (((q31_t) xt * sinVal) >> 16)));
|
|
} // butterfly loop end
|
|
} // groups loop end
|
|
twidCoefModifier = twidCoefModifier << 1u;
|
} // stages loop end
|
|
n1 = n2;
|
n2 = n2 >> 1;
|
ia = 0;
|
|
cosVal = pCoef[ia * 2];
|
sinVal = pCoef[(ia * 2) + 1];
|
|
ia = ia + twidCoefModifier;
|
|
// loop for butterfly
|
for (i = 0; i < fftLen; i += n1)
|
{
|
l = i + n2;
|
xt = pSrc[2 * i] - pSrc[2 * l];
|
pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]);
|
|
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
|
pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]);
|
|
pSrc[2u * l] = xt;
|
|
pSrc[2u * l + 1u] = yt;
|
|
} // groups loop end
|
|
|
#endif // #ifndef ARM_MATH_CM0_FAMILY
|
|
}
|