/* ----------------------------------------------------------------------
|
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
*
|
* $Date: 19. March 2015
|
* $Revision: V.1.4.5
|
*
|
* Project: CMSIS DSP Library
|
* Title: arm_cfft_f32.c
|
*
|
* Description: Combined Radix Decimation in Frequency CFFT Floating point processing function
|
*
|
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
*
|
* Redistribution and use in source and binary forms, with or without
|
* modification, are permitted provided that the following conditions
|
* are met:
|
* - Redistributions of source code must retain the above copyright
|
* notice, this list of conditions and the following disclaimer.
|
* - Redistributions in binary form must reproduce the above copyright
|
* notice, this list of conditions and the following disclaimer in
|
* the documentation and/or other materials provided with the
|
* distribution.
|
* - Neither the name of ARM LIMITED nor the names of its contributors
|
* may be used to endorse or promote products derived from this
|
* software without specific prior written permission.
|
*
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
* POSSIBILITY OF SUCH DAMAGE.
|
* -------------------------------------------------------------------- */
|
|
#include "arm_math.h"
|
#include "arm_common_tables.h"
|
|
extern void arm_radix8_butterfly_f32(
|
float32_t * pSrc,
|
uint16_t fftLen,
|
const float32_t * pCoef,
|
uint16_t twidCoefModifier);
|
|
extern void arm_bitreversal_32(
|
uint32_t * pSrc,
|
const uint16_t bitRevLen,
|
const uint16_t * pBitRevTable);
|
|
/**
|
* @ingroup groupTransforms
|
*/
|
|
/**
|
* @defgroup ComplexFFT Complex FFT Functions
|
*
|
* \par
|
* The Fast Fourier Transform (FFT) is an efficient algorithm for computing the
|
* Discrete Fourier Transform (DFT). The FFT can be orders of magnitude faster
|
* than the DFT, especially for long lengths.
|
* The algorithms described in this section
|
* operate on complex data. A separate set of functions is devoted to handling
|
* of real sequences.
|
* \par
|
* There are separate algorithms for handling floating-point, Q15, and Q31 data
|
* types. The algorithms available for each data type are described next.
|
* \par
|
* The FFT functions operate in-place. That is, the array holding the input data
|
* will also be used to hold the corresponding result. The input data is complex
|
* and contains <code>2*fftLen</code> interleaved values as shown below.
|
* <pre> {real[0], imag[0], real[1], imag[1],..} </pre>
|
* The FFT result will be contained in the same array and the frequency domain
|
* values will have the same interleaving.
|
*
|
* \par Floating-point
|
* The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-8
|
* stages are performed along with a single radix-2 or radix-4 stage, as needed.
|
* The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
|
* a different twiddle factor table.
|
* \par
|
* The function uses the standard FFT definition and output values may grow by a
|
* factor of <code>fftLen</code> when computing the forward transform. The
|
* inverse transform includes a scale of <code>1/fftLen</code> as part of the
|
* calculation and this matches the textbook definition of the inverse FFT.
|
* \par
|
* Pre-initialized data structures containing twiddle factors and bit reversal
|
* tables are provided and defined in <code>arm_const_structs.h</code>. Include
|
* this header in your function and then pass one of the constant structures as
|
* an argument to arm_cfft_f32. For example:
|
* \par
|
* <code>arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)</code>
|
* \par
|
* computes a 64-point inverse complex FFT including bit reversal.
|
* The data structures are treated as constant data and not modified during the
|
* calculation. The same data structure can be reused for multiple transforms
|
* including mixing forward and inverse transforms.
|
* \par
|
* Earlier releases of the library provided separate radix-2 and radix-4
|
* algorithms that operated on floating-point data. These functions are still
|
* provided but are deprecated. The older functions are slower and less general
|
* than the new functions.
|
* \par
|
* An example of initialization of the constants for the arm_cfft_f32 function follows:
|
* \code
|
* const static arm_cfft_instance_f32 *S;
|
* ...
|
* switch (length) {
|
* case 16:
|
* S = &arm_cfft_sR_f32_len16;
|
* break;
|
* case 32:
|
* S = &arm_cfft_sR_f32_len32;
|
* break;
|
* case 64:
|
* S = &arm_cfft_sR_f32_len64;
|
* break;
|
* case 128:
|
* S = &arm_cfft_sR_f32_len128;
|
* break;
|
* case 256:
|
* S = &arm_cfft_sR_f32_len256;
|
* break;
|
* case 512:
|
* S = &arm_cfft_sR_f32_len512;
|
* break;
|
* case 1024:
|
* S = &arm_cfft_sR_f32_len1024;
|
* break;
|
* case 2048:
|
* S = &arm_cfft_sR_f32_len2048;
|
* break;
|
* case 4096:
|
* S = &arm_cfft_sR_f32_len4096;
|
* break;
|
* }
|
* \endcode
|
* \par Q15 and Q31
|
* The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-4
|
* stages are performed along with a single radix-2 stage, as needed.
|
* The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
|
* a different twiddle factor table.
|
* \par
|
* The function uses the standard FFT definition and output values may grow by a
|
* factor of <code>fftLen</code> when computing the forward transform. The
|
* inverse transform includes a scale of <code>1/fftLen</code> as part of the
|
* calculation and this matches the textbook definition of the inverse FFT.
|
* \par
|
* Pre-initialized data structures containing twiddle factors and bit reversal
|
* tables are provided and defined in <code>arm_const_structs.h</code>. Include
|
* this header in your function and then pass one of the constant structures as
|
* an argument to arm_cfft_q31. For example:
|
* \par
|
* <code>arm_cfft_q31(arm_cfft_sR_q31_len64, pSrc, 1, 1)</code>
|
* \par
|
* computes a 64-point inverse complex FFT including bit reversal.
|
* The data structures are treated as constant data and not modified during the
|
* calculation. The same data structure can be reused for multiple transforms
|
* including mixing forward and inverse transforms.
|
* \par
|
* Earlier releases of the library provided separate radix-2 and radix-4
|
* algorithms that operated on floating-point data. These functions are still
|
* provided but are deprecated. The older functions are slower and less general
|
* than the new functions.
|
* \par
|
* An example of initialization of the constants for the arm_cfft_q31 function follows:
|
* \code
|
* const static arm_cfft_instance_q31 *S;
|
* ...
|
* switch (length) {
|
* case 16:
|
* S = &arm_cfft_sR_q31_len16;
|
* break;
|
* case 32:
|
* S = &arm_cfft_sR_q31_len32;
|
* break;
|
* case 64:
|
* S = &arm_cfft_sR_q31_len64;
|
* break;
|
* case 128:
|
* S = &arm_cfft_sR_q31_len128;
|
* break;
|
* case 256:
|
* S = &arm_cfft_sR_q31_len256;
|
* break;
|
* case 512:
|
* S = &arm_cfft_sR_q31_len512;
|
* break;
|
* case 1024:
|
* S = &arm_cfft_sR_q31_len1024;
|
* break;
|
* case 2048:
|
* S = &arm_cfft_sR_q31_len2048;
|
* break;
|
* case 4096:
|
* S = &arm_cfft_sR_q31_len4096;
|
* break;
|
* }
|
* \endcode
|
*
|
*/
|
|
void arm_cfft_radix8by2_f32( arm_cfft_instance_f32 * S, float32_t * p1)
|
{
|
uint32_t L = S->fftLen;
|
float32_t * pCol1, * pCol2, * pMid1, * pMid2;
|
float32_t * p2 = p1 + L;
|
const float32_t * tw = (float32_t *) S->pTwiddle;
|
float32_t t1[4], t2[4], t3[4], t4[4], twR, twI;
|
float32_t m0, m1, m2, m3;
|
uint32_t l;
|
|
pCol1 = p1;
|
pCol2 = p2;
|
|
// Define new length
|
L >>= 1;
|
// Initialize mid pointers
|
pMid1 = p1 + L;
|
pMid2 = p2 + L;
|
|
// do two dot Fourier transform
|
for ( l = L >> 2; l > 0; l-- )
|
{
|
t1[0] = p1[0];
|
t1[1] = p1[1];
|
t1[2] = p1[2];
|
t1[3] = p1[3];
|
|
t2[0] = p2[0];
|
t2[1] = p2[1];
|
t2[2] = p2[2];
|
t2[3] = p2[3];
|
|
t3[0] = pMid1[0];
|
t3[1] = pMid1[1];
|
t3[2] = pMid1[2];
|
t3[3] = pMid1[3];
|
|
t4[0] = pMid2[0];
|
t4[1] = pMid2[1];
|
t4[2] = pMid2[2];
|
t4[3] = pMid2[3];
|
|
*p1++ = t1[0] + t2[0];
|
*p1++ = t1[1] + t2[1];
|
*p1++ = t1[2] + t2[2];
|
*p1++ = t1[3] + t2[3]; // col 1
|
|
t2[0] = t1[0] - t2[0];
|
t2[1] = t1[1] - t2[1];
|
t2[2] = t1[2] - t2[2];
|
t2[3] = t1[3] - t2[3]; // for col 2
|
|
*pMid1++ = t3[0] + t4[0];
|
*pMid1++ = t3[1] + t4[1];
|
*pMid1++ = t3[2] + t4[2];
|
*pMid1++ = t3[3] + t4[3]; // col 1
|
|
t4[0] = t4[0] - t3[0];
|
t4[1] = t4[1] - t3[1];
|
t4[2] = t4[2] - t3[2];
|
t4[3] = t4[3] - t3[3]; // for col 2
|
|
twR = *tw++;
|
twI = *tw++;
|
|
// multiply by twiddle factors
|
m0 = t2[0] * twR;
|
m1 = t2[1] * twI;
|
m2 = t2[1] * twR;
|
m3 = t2[0] * twI;
|
|
// R = R * Tr - I * Ti
|
*p2++ = m0 + m1;
|
// I = I * Tr + R * Ti
|
*p2++ = m2 - m3;
|
|
// use vertical symmetry
|
// 0.9988 - 0.0491i <==> -0.0491 - 0.9988i
|
m0 = t4[0] * twI;
|
m1 = t4[1] * twR;
|
m2 = t4[1] * twI;
|
m3 = t4[0] * twR;
|
|
*pMid2++ = m0 - m1;
|
*pMid2++ = m2 + m3;
|
|
twR = *tw++;
|
twI = *tw++;
|
|
m0 = t2[2] * twR;
|
m1 = t2[3] * twI;
|
m2 = t2[3] * twR;
|
m3 = t2[2] * twI;
|
|
*p2++ = m0 + m1;
|
*p2++ = m2 - m3;
|
|
m0 = t4[2] * twI;
|
m1 = t4[3] * twR;
|
m2 = t4[3] * twI;
|
m3 = t4[2] * twR;
|
|
*pMid2++ = m0 - m1;
|
*pMid2++ = m2 + m3;
|
}
|
|
// first col
|
arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 2u);
|
// second col
|
arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 2u);
|
}
|
|
void arm_cfft_radix8by4_f32( arm_cfft_instance_f32 * S, float32_t * p1)
|
{
|
uint32_t L = S->fftLen >> 1;
|
float32_t * pCol1, *pCol2, *pCol3, *pCol4, *pEnd1, *pEnd2, *pEnd3, *pEnd4;
|
const float32_t *tw2, *tw3, *tw4;
|
float32_t * p2 = p1 + L;
|
float32_t * p3 = p2 + L;
|
float32_t * p4 = p3 + L;
|
float32_t t2[4], t3[4], t4[4], twR, twI;
|
float32_t p1ap3_0, p1sp3_0, p1ap3_1, p1sp3_1;
|
float32_t m0, m1, m2, m3;
|
uint32_t l, twMod2, twMod3, twMod4;
|
|
pCol1 = p1; // points to real values by default
|
pCol2 = p2;
|
pCol3 = p3;
|
pCol4 = p4;
|
pEnd1 = p2 - 1; // points to imaginary values by default
|
pEnd2 = p3 - 1;
|
pEnd3 = p4 - 1;
|
pEnd4 = pEnd3 + L;
|
|
tw2 = tw3 = tw4 = (float32_t *) S->pTwiddle;
|
|
L >>= 1;
|
|
// do four dot Fourier transform
|
|
twMod2 = 2;
|
twMod3 = 4;
|
twMod4 = 6;
|
|
// TOP
|
p1ap3_0 = p1[0] + p3[0];
|
p1sp3_0 = p1[0] - p3[0];
|
p1ap3_1 = p1[1] + p3[1];
|
p1sp3_1 = p1[1] - p3[1];
|
|
// col 2
|
t2[0] = p1sp3_0 + p2[1] - p4[1];
|
t2[1] = p1sp3_1 - p2[0] + p4[0];
|
// col 3
|
t3[0] = p1ap3_0 - p2[0] - p4[0];
|
t3[1] = p1ap3_1 - p2[1] - p4[1];
|
// col 4
|
t4[0] = p1sp3_0 - p2[1] + p4[1];
|
t4[1] = p1sp3_1 + p2[0] - p4[0];
|
// col 1
|
*p1++ = p1ap3_0 + p2[0] + p4[0];
|
*p1++ = p1ap3_1 + p2[1] + p4[1];
|
|
// Twiddle factors are ones
|
*p2++ = t2[0];
|
*p2++ = t2[1];
|
*p3++ = t3[0];
|
*p3++ = t3[1];
|
*p4++ = t4[0];
|
*p4++ = t4[1];
|
|
tw2 += twMod2;
|
tw3 += twMod3;
|
tw4 += twMod4;
|
|
for (l = (L - 2) >> 1; l > 0; l-- )
|
{
|
// TOP
|
p1ap3_0 = p1[0] + p3[0];
|
p1sp3_0 = p1[0] - p3[0];
|
p1ap3_1 = p1[1] + p3[1];
|
p1sp3_1 = p1[1] - p3[1];
|
// col 2
|
t2[0] = p1sp3_0 + p2[1] - p4[1];
|
t2[1] = p1sp3_1 - p2[0] + p4[0];
|
// col 3
|
t3[0] = p1ap3_0 - p2[0] - p4[0];
|
t3[1] = p1ap3_1 - p2[1] - p4[1];
|
// col 4
|
t4[0] = p1sp3_0 - p2[1] + p4[1];
|
t4[1] = p1sp3_1 + p2[0] - p4[0];
|
// col 1 - top
|
*p1++ = p1ap3_0 + p2[0] + p4[0];
|
*p1++ = p1ap3_1 + p2[1] + p4[1];
|
|
// BOTTOM
|
p1ap3_1 = pEnd1[-1] + pEnd3[-1];
|
p1sp3_1 = pEnd1[-1] - pEnd3[-1];
|
p1ap3_0 = pEnd1[0] + pEnd3[0];
|
p1sp3_0 = pEnd1[0] - pEnd3[0];
|
// col 2
|
t2[2] = pEnd2[0] - pEnd4[0] + p1sp3_1;
|
t2[3] = pEnd1[0] - pEnd3[0] - pEnd2[-1] + pEnd4[-1];
|
// col 3
|
t3[2] = p1ap3_1 - pEnd2[-1] - pEnd4[-1];
|
t3[3] = p1ap3_0 - pEnd2[0] - pEnd4[0];
|
// col 4
|
t4[2] = pEnd2[0] - pEnd4[0] - p1sp3_1;
|
t4[3] = pEnd4[-1] - pEnd2[-1] - p1sp3_0;
|
// col 1 - Bottom
|
*pEnd1-- = p1ap3_0 + pEnd2[0] + pEnd4[0];
|
*pEnd1-- = p1ap3_1 + pEnd2[-1] + pEnd4[-1];
|
|
// COL 2
|
// read twiddle factors
|
twR = *tw2++;
|
twI = *tw2++;
|
// multiply by twiddle factors
|
// let Z1 = a + i(b), Z2 = c + i(d)
|
// => Z1 * Z2 = (a*c - b*d) + i(b*c + a*d)
|
|
// Top
|
m0 = t2[0] * twR;
|
m1 = t2[1] * twI;
|
m2 = t2[1] * twR;
|
m3 = t2[0] * twI;
|
|
*p2++ = m0 + m1;
|
*p2++ = m2 - m3;
|
// use vertical symmetry col 2
|
// 0.9997 - 0.0245i <==> 0.0245 - 0.9997i
|
// Bottom
|
m0 = t2[3] * twI;
|
m1 = t2[2] * twR;
|
m2 = t2[2] * twI;
|
m3 = t2[3] * twR;
|
|
*pEnd2-- = m0 - m1;
|
*pEnd2-- = m2 + m3;
|
|
// COL 3
|
twR = tw3[0];
|
twI = tw3[1];
|
tw3 += twMod3;
|
// Top
|
m0 = t3[0] * twR;
|
m1 = t3[1] * twI;
|
m2 = t3[1] * twR;
|
m3 = t3[0] * twI;
|
|
*p3++ = m0 + m1;
|
*p3++ = m2 - m3;
|
// use vertical symmetry col 3
|
// 0.9988 - 0.0491i <==> -0.9988 - 0.0491i
|
// Bottom
|
m0 = -t3[3] * twR;
|
m1 = t3[2] * twI;
|
m2 = t3[2] * twR;
|
m3 = t3[3] * twI;
|
|
*pEnd3-- = m0 - m1;
|
*pEnd3-- = m3 - m2;
|
|
// COL 4
|
twR = tw4[0];
|
twI = tw4[1];
|
tw4 += twMod4;
|
// Top
|
m0 = t4[0] * twR;
|
m1 = t4[1] * twI;
|
m2 = t4[1] * twR;
|
m3 = t4[0] * twI;
|
|
*p4++ = m0 + m1;
|
*p4++ = m2 - m3;
|
// use vertical symmetry col 4
|
// 0.9973 - 0.0736i <==> -0.0736 + 0.9973i
|
// Bottom
|
m0 = t4[3] * twI;
|
m1 = t4[2] * twR;
|
m2 = t4[2] * twI;
|
m3 = t4[3] * twR;
|
|
*pEnd4-- = m0 - m1;
|
*pEnd4-- = m2 + m3;
|
}
|
|
//MIDDLE
|
// Twiddle factors are
|
// 1.0000 0.7071-0.7071i -1.0000i -0.7071-0.7071i
|
p1ap3_0 = p1[0] + p3[0];
|
p1sp3_0 = p1[0] - p3[0];
|
p1ap3_1 = p1[1] + p3[1];
|
p1sp3_1 = p1[1] - p3[1];
|
|
// col 2
|
t2[0] = p1sp3_0 + p2[1] - p4[1];
|
t2[1] = p1sp3_1 - p2[0] + p4[0];
|
// col 3
|
t3[0] = p1ap3_0 - p2[0] - p4[0];
|
t3[1] = p1ap3_1 - p2[1] - p4[1];
|
// col 4
|
t4[0] = p1sp3_0 - p2[1] + p4[1];
|
t4[1] = p1sp3_1 + p2[0] - p4[0];
|
// col 1 - Top
|
*p1++ = p1ap3_0 + p2[0] + p4[0];
|
*p1++ = p1ap3_1 + p2[1] + p4[1];
|
|
// COL 2
|
twR = tw2[0];
|
twI = tw2[1];
|
|
m0 = t2[0] * twR;
|
m1 = t2[1] * twI;
|
m2 = t2[1] * twR;
|
m3 = t2[0] * twI;
|
|
*p2++ = m0 + m1;
|
*p2++ = m2 - m3;
|
// COL 3
|
twR = tw3[0];
|
twI = tw3[1];
|
|
m0 = t3[0] * twR;
|
m1 = t3[1] * twI;
|
m2 = t3[1] * twR;
|
m3 = t3[0] * twI;
|
|
*p3++ = m0 + m1;
|
*p3++ = m2 - m3;
|
// COL 4
|
twR = tw4[0];
|
twI = tw4[1];
|
|
m0 = t4[0] * twR;
|
m1 = t4[1] * twI;
|
m2 = t4[1] * twR;
|
m3 = t4[0] * twI;
|
|
*p4++ = m0 + m1;
|
*p4++ = m2 - m3;
|
|
// first col
|
arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 4u);
|
// second col
|
arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 4u);
|
// third col
|
arm_radix8_butterfly_f32( pCol3, L, (float32_t *) S->pTwiddle, 4u);
|
// fourth col
|
arm_radix8_butterfly_f32( pCol4, L, (float32_t *) S->pTwiddle, 4u);
|
}
|
|
/**
|
* @addtogroup ComplexFFT
|
* @{
|
*/
|
|
/**
|
* @details
|
* @brief Processing function for the floating-point complex FFT.
|
* @param[in] *S points to an instance of the floating-point CFFT structure.
|
* @param[in, out] *p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.
|
* @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
|
* @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
|
* @return none.
|
*/
|
|
void arm_cfft_f32(
|
const arm_cfft_instance_f32 * S,
|
float32_t * p1,
|
uint8_t ifftFlag,
|
uint8_t bitReverseFlag)
|
{
|
uint32_t L = S->fftLen, l;
|
float32_t invL, * pSrc;
|
|
if(ifftFlag == 1u)
|
{
|
/* Conjugate input data */
|
pSrc = p1 + 1;
|
for(l=0; l<L; l++)
|
{
|
*pSrc = -*pSrc;
|
pSrc += 2;
|
}
|
}
|
|
switch (L)
|
{
|
case 16:
|
case 128:
|
case 1024:
|
arm_cfft_radix8by2_f32 ( (arm_cfft_instance_f32 *) S, p1);
|
break;
|
case 32:
|
case 256:
|
case 2048:
|
arm_cfft_radix8by4_f32 ( (arm_cfft_instance_f32 *) S, p1);
|
break;
|
case 64:
|
case 512:
|
case 4096:
|
arm_radix8_butterfly_f32( p1, L, (float32_t *) S->pTwiddle, 1);
|
break;
|
}
|
|
if( bitReverseFlag )
|
arm_bitreversal_32((uint32_t*)p1,S->bitRevLength,S->pBitRevTable);
|
|
if(ifftFlag == 1u)
|
{
|
invL = 1.0f/(float32_t)L;
|
/* Conjugate and scale output data */
|
pSrc = p1;
|
for(l=0; l<L; l++)
|
{
|
*pSrc++ *= invL ;
|
*pSrc = -(*pSrc) * invL;
|
pSrc++;
|
}
|
}
|
}
|
|
/**
|
* @} end of ComplexFFT group
|
*/
|