提交 | 用户 | age
|
bfc108
|
1 |
/* ----------------------------------------------------------------------
|
Q |
2 |
* Copyright (C) 2010-2015 ARM Limited. All rights reserved.
|
|
3 |
*
|
|
4 |
* $Date: 20. October 2015
|
|
5 |
* $Revision: V1.4.5 b
|
|
6 |
*
|
|
7 |
* Project: CMSIS DSP Library
|
|
8 |
* Title: arm_math.h
|
|
9 |
*
|
|
10 |
* Description: Public header file for CMSIS DSP Library
|
|
11 |
*
|
|
12 |
* Target Processor: Cortex-M7/Cortex-M4/Cortex-M3/Cortex-M0
|
|
13 |
*
|
|
14 |
* Redistribution and use in source and binary forms, with or without
|
|
15 |
* modification, are permitted provided that the following conditions
|
|
16 |
* are met:
|
|
17 |
* - Redistributions of source code must retain the above copyright
|
|
18 |
* notice, this list of conditions and the following disclaimer.
|
|
19 |
* - Redistributions in binary form must reproduce the above copyright
|
|
20 |
* notice, this list of conditions and the following disclaimer in
|
|
21 |
* the documentation and/or other materials provided with the
|
|
22 |
* distribution.
|
|
23 |
* - Neither the name of ARM LIMITED nor the names of its contributors
|
|
24 |
* may be used to endorse or promote products derived from this
|
|
25 |
* software without specific prior written permission.
|
|
26 |
*
|
|
27 |
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
28 |
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
29 |
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
30 |
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
31 |
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
32 |
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
33 |
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
34 |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
35 |
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
36 |
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
37 |
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
38 |
* POSSIBILITY OF SUCH DAMAGE.
|
|
39 |
* -------------------------------------------------------------------- */
|
|
40 |
|
|
41 |
/**
|
|
42 |
\mainpage CMSIS DSP Software Library
|
|
43 |
*
|
|
44 |
* Introduction
|
|
45 |
* ------------
|
|
46 |
*
|
|
47 |
* This user manual describes the CMSIS DSP software library,
|
|
48 |
* a suite of common signal processing functions for use on Cortex-M processor based devices.
|
|
49 |
*
|
|
50 |
* The library is divided into a number of functions each covering a specific category:
|
|
51 |
* - Basic math functions
|
|
52 |
* - Fast math functions
|
|
53 |
* - Complex math functions
|
|
54 |
* - Filters
|
|
55 |
* - Matrix functions
|
|
56 |
* - Transforms
|
|
57 |
* - Motor control functions
|
|
58 |
* - Statistical functions
|
|
59 |
* - Support functions
|
|
60 |
* - Interpolation functions
|
|
61 |
*
|
|
62 |
* The library has separate functions for operating on 8-bit integers, 16-bit integers,
|
|
63 |
* 32-bit integer and 32-bit floating-point values.
|
|
64 |
*
|
|
65 |
* Using the Library
|
|
66 |
* ------------
|
|
67 |
*
|
|
68 |
* The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
|
|
69 |
* - arm_cortexM7lfdp_math.lib (Little endian and Double Precision Floating Point Unit on Cortex-M7)
|
|
70 |
* - arm_cortexM7bfdp_math.lib (Big endian and Double Precision Floating Point Unit on Cortex-M7)
|
|
71 |
* - arm_cortexM7lfsp_math.lib (Little endian and Single Precision Floating Point Unit on Cortex-M7)
|
|
72 |
* - arm_cortexM7bfsp_math.lib (Big endian and Single Precision Floating Point Unit on Cortex-M7)
|
|
73 |
* - arm_cortexM7l_math.lib (Little endian on Cortex-M7)
|
|
74 |
* - arm_cortexM7b_math.lib (Big endian on Cortex-M7)
|
|
75 |
* - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
|
|
76 |
* - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
|
|
77 |
* - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
|
|
78 |
* - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
|
|
79 |
* - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
|
|
80 |
* - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
|
|
81 |
* - arm_cortexM0l_math.lib (Little endian on Cortex-M0 / CortexM0+)
|
|
82 |
* - arm_cortexM0b_math.lib (Big endian on Cortex-M0 / CortexM0+)
|
|
83 |
*
|
|
84 |
* The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
|
|
85 |
* Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
|
|
86 |
* public header file <code> arm_math.h</code> for Cortex-M7/M4/M3/M0/M0+ with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
|
|
87 |
* Define the appropriate pre processor MACRO ARM_MATH_CM7 or ARM_MATH_CM4 or ARM_MATH_CM3 or
|
|
88 |
* ARM_MATH_CM0 or ARM_MATH_CM0PLUS depending on the target processor in the application.
|
|
89 |
*
|
|
90 |
* Examples
|
|
91 |
* --------
|
|
92 |
*
|
|
93 |
* The library ships with a number of examples which demonstrate how to use the library functions.
|
|
94 |
*
|
|
95 |
* Toolchain Support
|
|
96 |
* ------------
|
|
97 |
*
|
|
98 |
* The library has been developed and tested with MDK-ARM version 5.14.0.0
|
|
99 |
* The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
|
|
100 |
*
|
|
101 |
* Building the Library
|
|
102 |
* ------------
|
|
103 |
*
|
|
104 |
* The library installer contains a project file to re build libraries on MDK-ARM Tool chain in the <code>CMSIS\\DSP_Lib\\Source\\ARM</code> folder.
|
|
105 |
* - arm_cortexM_math.uvprojx
|
|
106 |
*
|
|
107 |
*
|
|
108 |
* The libraries can be built by opening the arm_cortexM_math.uvprojx project in MDK-ARM, selecting a specific target, and defining the optional pre processor MACROs detailed above.
|
|
109 |
*
|
|
110 |
* Pre-processor Macros
|
|
111 |
* ------------
|
|
112 |
*
|
|
113 |
* Each library project have differant pre-processor macros.
|
|
114 |
*
|
|
115 |
* - UNALIGNED_SUPPORT_DISABLE:
|
|
116 |
*
|
|
117 |
* Define macro UNALIGNED_SUPPORT_DISABLE, If the silicon does not support unaligned memory access
|
|
118 |
*
|
|
119 |
* - ARM_MATH_BIG_ENDIAN:
|
|
120 |
*
|
|
121 |
* Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
|
|
122 |
*
|
|
123 |
* - ARM_MATH_MATRIX_CHECK:
|
|
124 |
*
|
|
125 |
* Define macro ARM_MATH_MATRIX_CHECK for checking on the input and output sizes of matrices
|
|
126 |
*
|
|
127 |
* - ARM_MATH_ROUNDING:
|
|
128 |
*
|
|
129 |
* Define macro ARM_MATH_ROUNDING for rounding on support functions
|
|
130 |
*
|
|
131 |
* - ARM_MATH_CMx:
|
|
132 |
*
|
|
133 |
* Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
|
|
134 |
* and ARM_MATH_CM0 for building library on Cortex-M0 target, ARM_MATH_CM0PLUS for building library on Cortex-M0+ target, and
|
|
135 |
* ARM_MATH_CM7 for building the library on cortex-M7.
|
|
136 |
*
|
|
137 |
* - __FPU_PRESENT:
|
|
138 |
*
|
|
139 |
* Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
|
|
140 |
*
|
|
141 |
* <hr>
|
|
142 |
* CMSIS-DSP in ARM::CMSIS Pack
|
|
143 |
* -----------------------------
|
|
144 |
*
|
|
145 |
* The following files relevant to CMSIS-DSP are present in the <b>ARM::CMSIS</b> Pack directories:
|
|
146 |
* |File/Folder |Content |
|
|
147 |
* |------------------------------|------------------------------------------------------------------------|
|
|
148 |
* |\b CMSIS\\Documentation\\DSP | This documentation |
|
|
149 |
* |\b CMSIS\\DSP_Lib | Software license agreement (license.txt) |
|
|
150 |
* |\b CMSIS\\DSP_Lib\\Examples | Example projects demonstrating the usage of the library functions |
|
|
151 |
* |\b CMSIS\\DSP_Lib\\Source | Source files for rebuilding the library |
|
|
152 |
*
|
|
153 |
* <hr>
|
|
154 |
* Revision History of CMSIS-DSP
|
|
155 |
* ------------
|
|
156 |
* Please refer to \ref ChangeLog_pg.
|
|
157 |
*
|
|
158 |
* Copyright Notice
|
|
159 |
* ------------
|
|
160 |
*
|
|
161 |
* Copyright (C) 2010-2015 ARM Limited. All rights reserved.
|
|
162 |
*/
|
|
163 |
|
|
164 |
|
|
165 |
/**
|
|
166 |
* @defgroup groupMath Basic Math Functions
|
|
167 |
*/
|
|
168 |
|
|
169 |
/**
|
|
170 |
* @defgroup groupFastMath Fast Math Functions
|
|
171 |
* This set of functions provides a fast approximation to sine, cosine, and square root.
|
|
172 |
* As compared to most of the other functions in the CMSIS math library, the fast math functions
|
|
173 |
* operate on individual values and not arrays.
|
|
174 |
* There are separate functions for Q15, Q31, and floating-point data.
|
|
175 |
*
|
|
176 |
*/
|
|
177 |
|
|
178 |
/**
|
|
179 |
* @defgroup groupCmplxMath Complex Math Functions
|
|
180 |
* This set of functions operates on complex data vectors.
|
|
181 |
* The data in the complex arrays is stored in an interleaved fashion
|
|
182 |
* (real, imag, real, imag, ...).
|
|
183 |
* In the API functions, the number of samples in a complex array refers
|
|
184 |
* to the number of complex values; the array contains twice this number of
|
|
185 |
* real values.
|
|
186 |
*/
|
|
187 |
|
|
188 |
/**
|
|
189 |
* @defgroup groupFilters Filtering Functions
|
|
190 |
*/
|
|
191 |
|
|
192 |
/**
|
|
193 |
* @defgroup groupMatrix Matrix Functions
|
|
194 |
*
|
|
195 |
* This set of functions provides basic matrix math operations.
|
|
196 |
* The functions operate on matrix data structures. For example,
|
|
197 |
* the type
|
|
198 |
* definition for the floating-point matrix structure is shown
|
|
199 |
* below:
|
|
200 |
* <pre>
|
|
201 |
* typedef struct
|
|
202 |
* {
|
|
203 |
* uint16_t numRows; // number of rows of the matrix.
|
|
204 |
* uint16_t numCols; // number of columns of the matrix.
|
|
205 |
* float32_t *pData; // points to the data of the matrix.
|
|
206 |
* } arm_matrix_instance_f32;
|
|
207 |
* </pre>
|
|
208 |
* There are similar definitions for Q15 and Q31 data types.
|
|
209 |
*
|
|
210 |
* The structure specifies the size of the matrix and then points to
|
|
211 |
* an array of data. The array is of size <code>numRows X numCols</code>
|
|
212 |
* and the values are arranged in row order. That is, the
|
|
213 |
* matrix element (i, j) is stored at:
|
|
214 |
* <pre>
|
|
215 |
* pData[i*numCols + j]
|
|
216 |
* </pre>
|
|
217 |
*
|
|
218 |
* \par Init Functions
|
|
219 |
* There is an associated initialization function for each type of matrix
|
|
220 |
* data structure.
|
|
221 |
* The initialization function sets the values of the internal structure fields.
|
|
222 |
* Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
|
|
223 |
* and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively.
|
|
224 |
*
|
|
225 |
* \par
|
|
226 |
* Use of the initialization function is optional. However, if initialization function is used
|
|
227 |
* then the instance structure cannot be placed into a const data section.
|
|
228 |
* To place the instance structure in a const data
|
|
229 |
* section, manually initialize the data structure. For example:
|
|
230 |
* <pre>
|
|
231 |
* <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
|
|
232 |
* <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
|
|
233 |
* <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
|
|
234 |
* </pre>
|
|
235 |
* where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
|
|
236 |
* specifies the number of columns, and <code>pData</code> points to the
|
|
237 |
* data array.
|
|
238 |
*
|
|
239 |
* \par Size Checking
|
|
240 |
* By default all of the matrix functions perform size checking on the input and
|
|
241 |
* output matrices. For example, the matrix addition function verifies that the
|
|
242 |
* two input matrices and the output matrix all have the same number of rows and
|
|
243 |
* columns. If the size check fails the functions return:
|
|
244 |
* <pre>
|
|
245 |
* ARM_MATH_SIZE_MISMATCH
|
|
246 |
* </pre>
|
|
247 |
* Otherwise the functions return
|
|
248 |
* <pre>
|
|
249 |
* ARM_MATH_SUCCESS
|
|
250 |
* </pre>
|
|
251 |
* There is some overhead associated with this matrix size checking.
|
|
252 |
* The matrix size checking is enabled via the \#define
|
|
253 |
* <pre>
|
|
254 |
* ARM_MATH_MATRIX_CHECK
|
|
255 |
* </pre>
|
|
256 |
* within the library project settings. By default this macro is defined
|
|
257 |
* and size checking is enabled. By changing the project settings and
|
|
258 |
* undefining this macro size checking is eliminated and the functions
|
|
259 |
* run a bit faster. With size checking disabled the functions always
|
|
260 |
* return <code>ARM_MATH_SUCCESS</code>.
|
|
261 |
*/
|
|
262 |
|
|
263 |
/**
|
|
264 |
* @defgroup groupTransforms Transform Functions
|
|
265 |
*/
|
|
266 |
|
|
267 |
/**
|
|
268 |
* @defgroup groupController Controller Functions
|
|
269 |
*/
|
|
270 |
|
|
271 |
/**
|
|
272 |
* @defgroup groupStats Statistics Functions
|
|
273 |
*/
|
|
274 |
/**
|
|
275 |
* @defgroup groupSupport Support Functions
|
|
276 |
*/
|
|
277 |
|
|
278 |
/**
|
|
279 |
* @defgroup groupInterpolation Interpolation Functions
|
|
280 |
* These functions perform 1- and 2-dimensional interpolation of data.
|
|
281 |
* Linear interpolation is used for 1-dimensional data and
|
|
282 |
* bilinear interpolation is used for 2-dimensional data.
|
|
283 |
*/
|
|
284 |
|
|
285 |
/**
|
|
286 |
* @defgroup groupExamples Examples
|
|
287 |
*/
|
|
288 |
#ifndef _ARM_MATH_H
|
|
289 |
#define _ARM_MATH_H
|
|
290 |
|
|
291 |
/* ignore some GCC warnings */
|
|
292 |
#if defined ( __GNUC__ )
|
|
293 |
#pragma GCC diagnostic push
|
|
294 |
#pragma GCC diagnostic ignored "-Wsign-conversion"
|
|
295 |
#pragma GCC diagnostic ignored "-Wconversion"
|
|
296 |
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
|
297 |
#endif
|
|
298 |
|
|
299 |
#define __CMSIS_GENERIC /* disable NVIC and Systick functions */
|
|
300 |
|
|
301 |
#if defined(ARM_MATH_CM7)
|
|
302 |
#include "core_cm7.h"
|
|
303 |
#elif defined (ARM_MATH_CM4)
|
|
304 |
#include "core_cm4.h"
|
|
305 |
#elif defined (ARM_MATH_CM3)
|
|
306 |
#include "core_cm3.h"
|
|
307 |
#elif defined (ARM_MATH_CM0)
|
|
308 |
#include "core_cm0.h"
|
|
309 |
#define ARM_MATH_CM0_FAMILY
|
|
310 |
#elif defined (ARM_MATH_CM0PLUS)
|
|
311 |
#include "core_cm0plus.h"
|
|
312 |
#define ARM_MATH_CM0_FAMILY
|
|
313 |
#else
|
|
314 |
#error "Define according the used Cortex core ARM_MATH_CM7, ARM_MATH_CM4, ARM_MATH_CM3, ARM_MATH_CM0PLUS or ARM_MATH_CM0"
|
|
315 |
#endif
|
|
316 |
|
|
317 |
#undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
|
|
318 |
#include "string.h"
|
|
319 |
#include "math.h"
|
|
320 |
#ifdef __cplusplus
|
|
321 |
extern "C"
|
|
322 |
{
|
|
323 |
#endif
|
|
324 |
|
|
325 |
|
|
326 |
/**
|
|
327 |
* @brief Macros required for reciprocal calculation in Normalized LMS
|
|
328 |
*/
|
|
329 |
|
|
330 |
#define DELTA_Q31 (0x100)
|
|
331 |
#define DELTA_Q15 0x5
|
|
332 |
#define INDEX_MASK 0x0000003F
|
|
333 |
#ifndef PI
|
|
334 |
#define PI 3.14159265358979f
|
|
335 |
#endif
|
|
336 |
|
|
337 |
/**
|
|
338 |
* @brief Macros required for SINE and COSINE Fast math approximations
|
|
339 |
*/
|
|
340 |
|
|
341 |
#define FAST_MATH_TABLE_SIZE 512
|
|
342 |
#define FAST_MATH_Q31_SHIFT (32 - 10)
|
|
343 |
#define FAST_MATH_Q15_SHIFT (16 - 10)
|
|
344 |
#define CONTROLLER_Q31_SHIFT (32 - 9)
|
|
345 |
#define TABLE_SIZE 256
|
|
346 |
#define TABLE_SPACING_Q31 0x400000
|
|
347 |
#define TABLE_SPACING_Q15 0x80
|
|
348 |
|
|
349 |
/**
|
|
350 |
* @brief Macros required for SINE and COSINE Controller functions
|
|
351 |
*/
|
|
352 |
/* 1.31(q31) Fixed value of 2/360 */
|
|
353 |
/* -1 to +1 is divided into 360 values so total spacing is (2/360) */
|
|
354 |
#define INPUT_SPACING 0xB60B61
|
|
355 |
|
|
356 |
/**
|
|
357 |
* @brief Macro for Unaligned Support
|
|
358 |
*/
|
|
359 |
#ifndef UNALIGNED_SUPPORT_DISABLE
|
|
360 |
#define ALIGN4
|
|
361 |
#else
|
|
362 |
#if defined (__GNUC__)
|
|
363 |
#define ALIGN4 __attribute__((aligned(4)))
|
|
364 |
#else
|
|
365 |
#define ALIGN4 __align(4)
|
|
366 |
#endif
|
|
367 |
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
|
|
368 |
|
|
369 |
/**
|
|
370 |
* @brief Error status returned by some functions in the library.
|
|
371 |
*/
|
|
372 |
|
|
373 |
typedef enum
|
|
374 |
{
|
|
375 |
ARM_MATH_SUCCESS = 0, /**< No error */
|
|
376 |
ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
|
|
377 |
ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
|
|
378 |
ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
|
|
379 |
ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
|
|
380 |
ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
|
|
381 |
ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
|
|
382 |
} arm_status;
|
|
383 |
|
|
384 |
/**
|
|
385 |
* @brief 8-bit fractional data type in 1.7 format.
|
|
386 |
*/
|
|
387 |
typedef int8_t q7_t;
|
|
388 |
|
|
389 |
/**
|
|
390 |
* @brief 16-bit fractional data type in 1.15 format.
|
|
391 |
*/
|
|
392 |
typedef int16_t q15_t;
|
|
393 |
|
|
394 |
/**
|
|
395 |
* @brief 32-bit fractional data type in 1.31 format.
|
|
396 |
*/
|
|
397 |
typedef int32_t q31_t;
|
|
398 |
|
|
399 |
/**
|
|
400 |
* @brief 64-bit fractional data type in 1.63 format.
|
|
401 |
*/
|
|
402 |
typedef int64_t q63_t;
|
|
403 |
|
|
404 |
/**
|
|
405 |
* @brief 32-bit floating-point type definition.
|
|
406 |
*/
|
|
407 |
typedef float float32_t;
|
|
408 |
|
|
409 |
/**
|
|
410 |
* @brief 64-bit floating-point type definition.
|
|
411 |
*/
|
|
412 |
typedef double float64_t;
|
|
413 |
|
|
414 |
/**
|
|
415 |
* @brief definition to read/write two 16 bit values.
|
|
416 |
*/
|
|
417 |
#if defined __CC_ARM
|
|
418 |
#define __SIMD32_TYPE int32_t __packed
|
|
419 |
#define CMSIS_UNUSED __attribute__((unused))
|
|
420 |
|
|
421 |
#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
|
|
422 |
#define __SIMD32_TYPE int32_t
|
|
423 |
#define CMSIS_UNUSED __attribute__((unused))
|
|
424 |
|
|
425 |
#elif defined __GNUC__
|
|
426 |
#define __SIMD32_TYPE int32_t
|
|
427 |
#define CMSIS_UNUSED __attribute__((unused))
|
|
428 |
|
|
429 |
#elif defined __ICCARM__
|
|
430 |
#define __SIMD32_TYPE int32_t __packed
|
|
431 |
#define CMSIS_UNUSED
|
|
432 |
|
|
433 |
#elif defined __CSMC__
|
|
434 |
#define __SIMD32_TYPE int32_t
|
|
435 |
#define CMSIS_UNUSED
|
|
436 |
|
|
437 |
#elif defined __TASKING__
|
|
438 |
#define __SIMD32_TYPE __unaligned int32_t
|
|
439 |
#define CMSIS_UNUSED
|
|
440 |
|
|
441 |
#else
|
|
442 |
#error Unknown compiler
|
|
443 |
#endif
|
|
444 |
|
|
445 |
#define __SIMD32(addr) (*(__SIMD32_TYPE **) & (addr))
|
|
446 |
#define __SIMD32_CONST(addr) ((__SIMD32_TYPE *)(addr))
|
|
447 |
#define _SIMD32_OFFSET(addr) (*(__SIMD32_TYPE *) (addr))
|
|
448 |
#define __SIMD64(addr) (*(int64_t **) & (addr))
|
|
449 |
|
|
450 |
#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
|
|
451 |
/**
|
|
452 |
* @brief definition to pack two 16 bit values.
|
|
453 |
*/
|
|
454 |
#define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
|
|
455 |
(((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
|
|
456 |
#define __PKHTB(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0xFFFF0000) | \
|
|
457 |
(((int32_t)(ARG2) >> ARG3) & (int32_t)0x0000FFFF) )
|
|
458 |
|
|
459 |
#endif
|
|
460 |
|
|
461 |
|
|
462 |
/**
|
|
463 |
* @brief definition to pack four 8 bit values.
|
|
464 |
*/
|
|
465 |
#ifndef ARM_MATH_BIG_ENDIAN
|
|
466 |
|
|
467 |
#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
|
|
468 |
(((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
|
|
469 |
(((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
|
|
470 |
(((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
|
|
471 |
#else
|
|
472 |
|
|
473 |
#define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
|
|
474 |
(((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
|
|
475 |
(((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
|
|
476 |
(((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
|
|
477 |
|
|
478 |
#endif
|
|
479 |
|
|
480 |
|
|
481 |
/**
|
|
482 |
* @brief Clips Q63 to Q31 values.
|
|
483 |
*/
|
|
484 |
static __INLINE q31_t clip_q63_to_q31(
|
|
485 |
q63_t x)
|
|
486 |
{
|
|
487 |
return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
|
|
488 |
((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
|
|
489 |
}
|
|
490 |
|
|
491 |
/**
|
|
492 |
* @brief Clips Q63 to Q15 values.
|
|
493 |
*/
|
|
494 |
static __INLINE q15_t clip_q63_to_q15(
|
|
495 |
q63_t x)
|
|
496 |
{
|
|
497 |
return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
|
|
498 |
((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
|
|
499 |
}
|
|
500 |
|
|
501 |
/**
|
|
502 |
* @brief Clips Q31 to Q7 values.
|
|
503 |
*/
|
|
504 |
static __INLINE q7_t clip_q31_to_q7(
|
|
505 |
q31_t x)
|
|
506 |
{
|
|
507 |
return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
|
|
508 |
((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
|
|
509 |
}
|
|
510 |
|
|
511 |
/**
|
|
512 |
* @brief Clips Q31 to Q15 values.
|
|
513 |
*/
|
|
514 |
static __INLINE q15_t clip_q31_to_q15(
|
|
515 |
q31_t x)
|
|
516 |
{
|
|
517 |
return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
|
|
518 |
((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
|
|
519 |
}
|
|
520 |
|
|
521 |
/**
|
|
522 |
* @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
|
|
523 |
*/
|
|
524 |
|
|
525 |
static __INLINE q63_t mult32x64(
|
|
526 |
q63_t x,
|
|
527 |
q31_t y)
|
|
528 |
{
|
|
529 |
return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
|
|
530 |
(((q63_t) (x >> 32) * y)));
|
|
531 |
}
|
|
532 |
|
|
533 |
/*
|
|
534 |
#if defined (ARM_MATH_CM0_FAMILY) && defined ( __CC_ARM )
|
|
535 |
#define __CLZ __clz
|
|
536 |
#endif
|
|
537 |
*/
|
|
538 |
/* note: function can be removed when all toolchain support __CLZ for Cortex-M0 */
|
|
539 |
#if defined (ARM_MATH_CM0_FAMILY) && ((defined (__ICCARM__)) )
|
|
540 |
static __INLINE uint32_t __CLZ(
|
|
541 |
q31_t data);
|
|
542 |
|
|
543 |
static __INLINE uint32_t __CLZ(
|
|
544 |
q31_t data)
|
|
545 |
{
|
|
546 |
uint32_t count = 0;
|
|
547 |
uint32_t mask = 0x80000000;
|
|
548 |
|
|
549 |
while((data & mask) == 0)
|
|
550 |
{
|
|
551 |
count += 1u;
|
|
552 |
mask = mask >> 1u;
|
|
553 |
}
|
|
554 |
|
|
555 |
return (count);
|
|
556 |
}
|
|
557 |
#endif
|
|
558 |
|
|
559 |
/**
|
|
560 |
* @brief Function to Calculates 1/in (reciprocal) value of Q31 Data type.
|
|
561 |
*/
|
|
562 |
|
|
563 |
static __INLINE uint32_t arm_recip_q31(
|
|
564 |
q31_t in,
|
|
565 |
q31_t * dst,
|
|
566 |
q31_t * pRecipTable)
|
|
567 |
{
|
|
568 |
q31_t out;
|
|
569 |
uint32_t tempVal;
|
|
570 |
uint32_t index, i;
|
|
571 |
uint32_t signBits;
|
|
572 |
|
|
573 |
if(in > 0)
|
|
574 |
{
|
|
575 |
signBits = ((uint32_t) (__CLZ( in) - 1));
|
|
576 |
}
|
|
577 |
else
|
|
578 |
{
|
|
579 |
signBits = ((uint32_t) (__CLZ(-in) - 1));
|
|
580 |
}
|
|
581 |
|
|
582 |
/* Convert input sample to 1.31 format */
|
|
583 |
in = (in << signBits);
|
|
584 |
|
|
585 |
/* calculation of index for initial approximated Val */
|
|
586 |
index = (uint32_t)(in >> 24);
|
|
587 |
index = (index & INDEX_MASK);
|
|
588 |
|
|
589 |
/* 1.31 with exp 1 */
|
|
590 |
out = pRecipTable[index];
|
|
591 |
|
|
592 |
/* calculation of reciprocal value */
|
|
593 |
/* running approximation for two iterations */
|
|
594 |
for (i = 0u; i < 2u; i++)
|
|
595 |
{
|
|
596 |
tempVal = (uint32_t) (((q63_t) in * out) >> 31);
|
|
597 |
tempVal = 0x7FFFFFFFu - tempVal;
|
|
598 |
/* 1.31 with exp 1 */
|
|
599 |
/* out = (q31_t) (((q63_t) out * tempVal) >> 30); */
|
|
600 |
out = clip_q63_to_q31(((q63_t) out * tempVal) >> 30);
|
|
601 |
}
|
|
602 |
|
|
603 |
/* write output */
|
|
604 |
*dst = out;
|
|
605 |
|
|
606 |
/* return num of signbits of out = 1/in value */
|
|
607 |
return (signBits + 1u);
|
|
608 |
}
|
|
609 |
|
|
610 |
|
|
611 |
/**
|
|
612 |
* @brief Function to Calculates 1/in (reciprocal) value of Q15 Data type.
|
|
613 |
*/
|
|
614 |
static __INLINE uint32_t arm_recip_q15(
|
|
615 |
q15_t in,
|
|
616 |
q15_t * dst,
|
|
617 |
q15_t * pRecipTable)
|
|
618 |
{
|
|
619 |
q15_t out = 0;
|
|
620 |
uint32_t tempVal = 0;
|
|
621 |
uint32_t index = 0, i = 0;
|
|
622 |
uint32_t signBits = 0;
|
|
623 |
|
|
624 |
if(in > 0)
|
|
625 |
{
|
|
626 |
signBits = ((uint32_t)(__CLZ( in) - 17));
|
|
627 |
}
|
|
628 |
else
|
|
629 |
{
|
|
630 |
signBits = ((uint32_t)(__CLZ(-in) - 17));
|
|
631 |
}
|
|
632 |
|
|
633 |
/* Convert input sample to 1.15 format */
|
|
634 |
in = (in << signBits);
|
|
635 |
|
|
636 |
/* calculation of index for initial approximated Val */
|
|
637 |
index = (uint32_t)(in >> 8);
|
|
638 |
index = (index & INDEX_MASK);
|
|
639 |
|
|
640 |
/* 1.15 with exp 1 */
|
|
641 |
out = pRecipTable[index];
|
|
642 |
|
|
643 |
/* calculation of reciprocal value */
|
|
644 |
/* running approximation for two iterations */
|
|
645 |
for (i = 0u; i < 2u; i++)
|
|
646 |
{
|
|
647 |
tempVal = (uint32_t) (((q31_t) in * out) >> 15);
|
|
648 |
tempVal = 0x7FFFu - tempVal;
|
|
649 |
/* 1.15 with exp 1 */
|
|
650 |
out = (q15_t) (((q31_t) out * tempVal) >> 14);
|
|
651 |
/* out = clip_q31_to_q15(((q31_t) out * tempVal) >> 14); */
|
|
652 |
}
|
|
653 |
|
|
654 |
/* write output */
|
|
655 |
*dst = out;
|
|
656 |
|
|
657 |
/* return num of signbits of out = 1/in value */
|
|
658 |
return (signBits + 1);
|
|
659 |
}
|
|
660 |
|
|
661 |
|
|
662 |
/*
|
|
663 |
* @brief C custom defined intrinisic function for only M0 processors
|
|
664 |
*/
|
|
665 |
#if defined(ARM_MATH_CM0_FAMILY)
|
|
666 |
static __INLINE q31_t __SSAT(
|
|
667 |
q31_t x,
|
|
668 |
uint32_t y)
|
|
669 |
{
|
|
670 |
int32_t posMax, negMin;
|
|
671 |
uint32_t i;
|
|
672 |
|
|
673 |
posMax = 1;
|
|
674 |
for (i = 0; i < (y - 1); i++)
|
|
675 |
{
|
|
676 |
posMax = posMax * 2;
|
|
677 |
}
|
|
678 |
|
|
679 |
if(x > 0)
|
|
680 |
{
|
|
681 |
posMax = (posMax - 1);
|
|
682 |
|
|
683 |
if(x > posMax)
|
|
684 |
{
|
|
685 |
x = posMax;
|
|
686 |
}
|
|
687 |
}
|
|
688 |
else
|
|
689 |
{
|
|
690 |
negMin = -posMax;
|
|
691 |
|
|
692 |
if(x < negMin)
|
|
693 |
{
|
|
694 |
x = negMin;
|
|
695 |
}
|
|
696 |
}
|
|
697 |
return (x);
|
|
698 |
}
|
|
699 |
#endif /* end of ARM_MATH_CM0_FAMILY */
|
|
700 |
|
|
701 |
|
|
702 |
/*
|
|
703 |
* @brief C custom defined intrinsic function for M3 and M0 processors
|
|
704 |
*/
|
|
705 |
#if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY)
|
|
706 |
|
|
707 |
/*
|
|
708 |
* @brief C custom defined QADD8 for M3 and M0 processors
|
|
709 |
*/
|
|
710 |
static __INLINE uint32_t __QADD8(
|
|
711 |
uint32_t x,
|
|
712 |
uint32_t y)
|
|
713 |
{
|
|
714 |
q31_t r, s, t, u;
|
|
715 |
|
|
716 |
r = __SSAT(((((q31_t)x << 24) >> 24) + (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
|
|
717 |
s = __SSAT(((((q31_t)x << 16) >> 24) + (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
|
|
718 |
t = __SSAT(((((q31_t)x << 8) >> 24) + (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
|
|
719 |
u = __SSAT(((((q31_t)x ) >> 24) + (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
|
|
720 |
|
|
721 |
return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
|
|
722 |
}
|
|
723 |
|
|
724 |
|
|
725 |
/*
|
|
726 |
* @brief C custom defined QSUB8 for M3 and M0 processors
|
|
727 |
*/
|
|
728 |
static __INLINE uint32_t __QSUB8(
|
|
729 |
uint32_t x,
|
|
730 |
uint32_t y)
|
|
731 |
{
|
|
732 |
q31_t r, s, t, u;
|
|
733 |
|
|
734 |
r = __SSAT(((((q31_t)x << 24) >> 24) - (((q31_t)y << 24) >> 24)), 8) & (int32_t)0x000000FF;
|
|
735 |
s = __SSAT(((((q31_t)x << 16) >> 24) - (((q31_t)y << 16) >> 24)), 8) & (int32_t)0x000000FF;
|
|
736 |
t = __SSAT(((((q31_t)x << 8) >> 24) - (((q31_t)y << 8) >> 24)), 8) & (int32_t)0x000000FF;
|
|
737 |
u = __SSAT(((((q31_t)x ) >> 24) - (((q31_t)y ) >> 24)), 8) & (int32_t)0x000000FF;
|
|
738 |
|
|
739 |
return ((uint32_t)((u << 24) | (t << 16) | (s << 8) | (r )));
|
|
740 |
}
|
|
741 |
|
|
742 |
|
|
743 |
/*
|
|
744 |
* @brief C custom defined QADD16 for M3 and M0 processors
|
|
745 |
*/
|
|
746 |
static __INLINE uint32_t __QADD16(
|
|
747 |
uint32_t x,
|
|
748 |
uint32_t y)
|
|
749 |
{
|
|
750 |
/* q31_t r, s; without initialisation 'arm_offset_q15 test' fails but 'intrinsic' tests pass! for armCC */
|
|
751 |
q31_t r = 0, s = 0;
|
|
752 |
|
|
753 |
r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
|
|
754 |
s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
|
|
755 |
|
|
756 |
return ((uint32_t)((s << 16) | (r )));
|
|
757 |
}
|
|
758 |
|
|
759 |
|
|
760 |
/*
|
|
761 |
* @brief C custom defined SHADD16 for M3 and M0 processors
|
|
762 |
*/
|
|
763 |
static __INLINE uint32_t __SHADD16(
|
|
764 |
uint32_t x,
|
|
765 |
uint32_t y)
|
|
766 |
{
|
|
767 |
q31_t r, s;
|
|
768 |
|
|
769 |
r = (((((q31_t)x << 16) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
|
770 |
s = (((((q31_t)x ) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
|
771 |
|
|
772 |
return ((uint32_t)((s << 16) | (r )));
|
|
773 |
}
|
|
774 |
|
|
775 |
|
|
776 |
/*
|
|
777 |
* @brief C custom defined QSUB16 for M3 and M0 processors
|
|
778 |
*/
|
|
779 |
static __INLINE uint32_t __QSUB16(
|
|
780 |
uint32_t x,
|
|
781 |
uint32_t y)
|
|
782 |
{
|
|
783 |
q31_t r, s;
|
|
784 |
|
|
785 |
r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
|
|
786 |
s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
|
|
787 |
|
|
788 |
return ((uint32_t)((s << 16) | (r )));
|
|
789 |
}
|
|
790 |
|
|
791 |
|
|
792 |
/*
|
|
793 |
* @brief C custom defined SHSUB16 for M3 and M0 processors
|
|
794 |
*/
|
|
795 |
static __INLINE uint32_t __SHSUB16(
|
|
796 |
uint32_t x,
|
|
797 |
uint32_t y)
|
|
798 |
{
|
|
799 |
q31_t r, s;
|
|
800 |
|
|
801 |
r = (((((q31_t)x << 16) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
|
802 |
s = (((((q31_t)x ) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
|
803 |
|
|
804 |
return ((uint32_t)((s << 16) | (r )));
|
|
805 |
}
|
|
806 |
|
|
807 |
|
|
808 |
/*
|
|
809 |
* @brief C custom defined QASX for M3 and M0 processors
|
|
810 |
*/
|
|
811 |
static __INLINE uint32_t __QASX(
|
|
812 |
uint32_t x,
|
|
813 |
uint32_t y)
|
|
814 |
{
|
|
815 |
q31_t r, s;
|
|
816 |
|
|
817 |
r = __SSAT(((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
|
|
818 |
s = __SSAT(((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
|
|
819 |
|
|
820 |
return ((uint32_t)((s << 16) | (r )));
|
|
821 |
}
|
|
822 |
|
|
823 |
|
|
824 |
/*
|
|
825 |
* @brief C custom defined SHASX for M3 and M0 processors
|
|
826 |
*/
|
|
827 |
static __INLINE uint32_t __SHASX(
|
|
828 |
uint32_t x,
|
|
829 |
uint32_t y)
|
|
830 |
{
|
|
831 |
q31_t r, s;
|
|
832 |
|
|
833 |
r = (((((q31_t)x << 16) >> 16) - (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
|
834 |
s = (((((q31_t)x ) >> 16) + (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
|
835 |
|
|
836 |
return ((uint32_t)((s << 16) | (r )));
|
|
837 |
}
|
|
838 |
|
|
839 |
|
|
840 |
/*
|
|
841 |
* @brief C custom defined QSAX for M3 and M0 processors
|
|
842 |
*/
|
|
843 |
static __INLINE uint32_t __QSAX(
|
|
844 |
uint32_t x,
|
|
845 |
uint32_t y)
|
|
846 |
{
|
|
847 |
q31_t r, s;
|
|
848 |
|
|
849 |
r = __SSAT(((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)), 16) & (int32_t)0x0000FFFF;
|
|
850 |
s = __SSAT(((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)), 16) & (int32_t)0x0000FFFF;
|
|
851 |
|
|
852 |
return ((uint32_t)((s << 16) | (r )));
|
|
853 |
}
|
|
854 |
|
|
855 |
|
|
856 |
/*
|
|
857 |
* @brief C custom defined SHSAX for M3 and M0 processors
|
|
858 |
*/
|
|
859 |
static __INLINE uint32_t __SHSAX(
|
|
860 |
uint32_t x,
|
|
861 |
uint32_t y)
|
|
862 |
{
|
|
863 |
q31_t r, s;
|
|
864 |
|
|
865 |
r = (((((q31_t)x << 16) >> 16) + (((q31_t)y ) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
|
866 |
s = (((((q31_t)x ) >> 16) - (((q31_t)y << 16) >> 16)) >> 1) & (int32_t)0x0000FFFF;
|
|
867 |
|
|
868 |
return ((uint32_t)((s << 16) | (r )));
|
|
869 |
}
|
|
870 |
|
|
871 |
|
|
872 |
/*
|
|
873 |
* @brief C custom defined SMUSDX for M3 and M0 processors
|
|
874 |
*/
|
|
875 |
static __INLINE uint32_t __SMUSDX(
|
|
876 |
uint32_t x,
|
|
877 |
uint32_t y)
|
|
878 |
{
|
|
879 |
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
|
|
880 |
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
|
|
881 |
}
|
|
882 |
|
|
883 |
/*
|
|
884 |
* @brief C custom defined SMUADX for M3 and M0 processors
|
|
885 |
*/
|
|
886 |
static __INLINE uint32_t __SMUADX(
|
|
887 |
uint32_t x,
|
|
888 |
uint32_t y)
|
|
889 |
{
|
|
890 |
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
|
|
891 |
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) ));
|
|
892 |
}
|
|
893 |
|
|
894 |
|
|
895 |
/*
|
|
896 |
* @brief C custom defined QADD for M3 and M0 processors
|
|
897 |
*/
|
|
898 |
static __INLINE int32_t __QADD(
|
|
899 |
int32_t x,
|
|
900 |
int32_t y)
|
|
901 |
{
|
|
902 |
return ((int32_t)(clip_q63_to_q31((q63_t)x + (q31_t)y)));
|
|
903 |
}
|
|
904 |
|
|
905 |
|
|
906 |
/*
|
|
907 |
* @brief C custom defined QSUB for M3 and M0 processors
|
|
908 |
*/
|
|
909 |
static __INLINE int32_t __QSUB(
|
|
910 |
int32_t x,
|
|
911 |
int32_t y)
|
|
912 |
{
|
|
913 |
return ((int32_t)(clip_q63_to_q31((q63_t)x - (q31_t)y)));
|
|
914 |
}
|
|
915 |
|
|
916 |
|
|
917 |
/*
|
|
918 |
* @brief C custom defined SMLAD for M3 and M0 processors
|
|
919 |
*/
|
|
920 |
static __INLINE uint32_t __SMLAD(
|
|
921 |
uint32_t x,
|
|
922 |
uint32_t y,
|
|
923 |
uint32_t sum)
|
|
924 |
{
|
|
925 |
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
|
|
926 |
((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
|
|
927 |
( ((q31_t)sum ) ) ));
|
|
928 |
}
|
|
929 |
|
|
930 |
|
|
931 |
/*
|
|
932 |
* @brief C custom defined SMLADX for M3 and M0 processors
|
|
933 |
*/
|
|
934 |
static __INLINE uint32_t __SMLADX(
|
|
935 |
uint32_t x,
|
|
936 |
uint32_t y,
|
|
937 |
uint32_t sum)
|
|
938 |
{
|
|
939 |
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
|
|
940 |
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
|
|
941 |
( ((q31_t)sum ) ) ));
|
|
942 |
}
|
|
943 |
|
|
944 |
|
|
945 |
/*
|
|
946 |
* @brief C custom defined SMLSDX for M3 and M0 processors
|
|
947 |
*/
|
|
948 |
static __INLINE uint32_t __SMLSDX(
|
|
949 |
uint32_t x,
|
|
950 |
uint32_t y,
|
|
951 |
uint32_t sum)
|
|
952 |
{
|
|
953 |
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) -
|
|
954 |
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
|
|
955 |
( ((q31_t)sum ) ) ));
|
|
956 |
}
|
|
957 |
|
|
958 |
|
|
959 |
/*
|
|
960 |
* @brief C custom defined SMLALD for M3 and M0 processors
|
|
961 |
*/
|
|
962 |
static __INLINE uint64_t __SMLALD(
|
|
963 |
uint32_t x,
|
|
964 |
uint32_t y,
|
|
965 |
uint64_t sum)
|
|
966 |
{
|
|
967 |
/* return (sum + ((q15_t) (x >> 16) * (q15_t) (y >> 16)) + ((q15_t) x * (q15_t) y)); */
|
|
968 |
return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
|
|
969 |
((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) +
|
|
970 |
( ((q63_t)sum ) ) ));
|
|
971 |
}
|
|
972 |
|
|
973 |
|
|
974 |
/*
|
|
975 |
* @brief C custom defined SMLALDX for M3 and M0 processors
|
|
976 |
*/
|
|
977 |
static __INLINE uint64_t __SMLALDX(
|
|
978 |
uint32_t x,
|
|
979 |
uint32_t y,
|
|
980 |
uint64_t sum)
|
|
981 |
{
|
|
982 |
/* return (sum + ((q15_t) (x >> 16) * (q15_t) y)) + ((q15_t) x * (q15_t) (y >> 16)); */
|
|
983 |
return ((uint64_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y ) >> 16)) +
|
|
984 |
((((q31_t)x ) >> 16) * (((q31_t)y << 16) >> 16)) +
|
|
985 |
( ((q63_t)sum ) ) ));
|
|
986 |
}
|
|
987 |
|
|
988 |
|
|
989 |
/*
|
|
990 |
* @brief C custom defined SMUAD for M3 and M0 processors
|
|
991 |
*/
|
|
992 |
static __INLINE uint32_t __SMUAD(
|
|
993 |
uint32_t x,
|
|
994 |
uint32_t y)
|
|
995 |
{
|
|
996 |
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) +
|
|
997 |
((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
|
|
998 |
}
|
|
999 |
|
|
1000 |
|
|
1001 |
/*
|
|
1002 |
* @brief C custom defined SMUSD for M3 and M0 processors
|
|
1003 |
*/
|
|
1004 |
static __INLINE uint32_t __SMUSD(
|
|
1005 |
uint32_t x,
|
|
1006 |
uint32_t y)
|
|
1007 |
{
|
|
1008 |
return ((uint32_t)(((((q31_t)x << 16) >> 16) * (((q31_t)y << 16) >> 16)) -
|
|
1009 |
((((q31_t)x ) >> 16) * (((q31_t)y ) >> 16)) ));
|
|
1010 |
}
|
|
1011 |
|
|
1012 |
|
|
1013 |
/*
|
|
1014 |
* @brief C custom defined SXTB16 for M3 and M0 processors
|
|
1015 |
*/
|
|
1016 |
static __INLINE uint32_t __SXTB16(
|
|
1017 |
uint32_t x)
|
|
1018 |
{
|
|
1019 |
return ((uint32_t)(((((q31_t)x << 24) >> 24) & (q31_t)0x0000FFFF) |
|
|
1020 |
((((q31_t)x << 8) >> 8) & (q31_t)0xFFFF0000) ));
|
|
1021 |
}
|
|
1022 |
|
|
1023 |
#endif /* defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0_FAMILY) */
|
|
1024 |
|
|
1025 |
|
|
1026 |
/**
|
|
1027 |
* @brief Instance structure for the Q7 FIR filter.
|
|
1028 |
*/
|
|
1029 |
typedef struct
|
|
1030 |
{
|
|
1031 |
uint16_t numTaps; /**< number of filter coefficients in the filter. */
|
|
1032 |
q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
1033 |
q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
|
1034 |
} arm_fir_instance_q7;
|
|
1035 |
|
|
1036 |
/**
|
|
1037 |
* @brief Instance structure for the Q15 FIR filter.
|
|
1038 |
*/
|
|
1039 |
typedef struct
|
|
1040 |
{
|
|
1041 |
uint16_t numTaps; /**< number of filter coefficients in the filter. */
|
|
1042 |
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
1043 |
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
|
1044 |
} arm_fir_instance_q15;
|
|
1045 |
|
|
1046 |
/**
|
|
1047 |
* @brief Instance structure for the Q31 FIR filter.
|
|
1048 |
*/
|
|
1049 |
typedef struct
|
|
1050 |
{
|
|
1051 |
uint16_t numTaps; /**< number of filter coefficients in the filter. */
|
|
1052 |
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
1053 |
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
|
1054 |
} arm_fir_instance_q31;
|
|
1055 |
|
|
1056 |
/**
|
|
1057 |
* @brief Instance structure for the floating-point FIR filter.
|
|
1058 |
*/
|
|
1059 |
typedef struct
|
|
1060 |
{
|
|
1061 |
uint16_t numTaps; /**< number of filter coefficients in the filter. */
|
|
1062 |
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
1063 |
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
|
1064 |
} arm_fir_instance_f32;
|
|
1065 |
|
|
1066 |
|
|
1067 |
/**
|
|
1068 |
* @brief Processing function for the Q7 FIR filter.
|
|
1069 |
* @param[in] S points to an instance of the Q7 FIR filter structure.
|
|
1070 |
* @param[in] pSrc points to the block of input data.
|
|
1071 |
* @param[out] pDst points to the block of output data.
|
|
1072 |
* @param[in] blockSize number of samples to process.
|
|
1073 |
*/
|
|
1074 |
void arm_fir_q7(
|
|
1075 |
const arm_fir_instance_q7 * S,
|
|
1076 |
q7_t * pSrc,
|
|
1077 |
q7_t * pDst,
|
|
1078 |
uint32_t blockSize);
|
|
1079 |
|
|
1080 |
|
|
1081 |
/**
|
|
1082 |
* @brief Initialization function for the Q7 FIR filter.
|
|
1083 |
* @param[in,out] S points to an instance of the Q7 FIR structure.
|
|
1084 |
* @param[in] numTaps Number of filter coefficients in the filter.
|
|
1085 |
* @param[in] pCoeffs points to the filter coefficients.
|
|
1086 |
* @param[in] pState points to the state buffer.
|
|
1087 |
* @param[in] blockSize number of samples that are processed.
|
|
1088 |
*/
|
|
1089 |
void arm_fir_init_q7(
|
|
1090 |
arm_fir_instance_q7 * S,
|
|
1091 |
uint16_t numTaps,
|
|
1092 |
q7_t * pCoeffs,
|
|
1093 |
q7_t * pState,
|
|
1094 |
uint32_t blockSize);
|
|
1095 |
|
|
1096 |
|
|
1097 |
/**
|
|
1098 |
* @brief Processing function for the Q15 FIR filter.
|
|
1099 |
* @param[in] S points to an instance of the Q15 FIR structure.
|
|
1100 |
* @param[in] pSrc points to the block of input data.
|
|
1101 |
* @param[out] pDst points to the block of output data.
|
|
1102 |
* @param[in] blockSize number of samples to process.
|
|
1103 |
*/
|
|
1104 |
void arm_fir_q15(
|
|
1105 |
const arm_fir_instance_q15 * S,
|
|
1106 |
q15_t * pSrc,
|
|
1107 |
q15_t * pDst,
|
|
1108 |
uint32_t blockSize);
|
|
1109 |
|
|
1110 |
|
|
1111 |
/**
|
|
1112 |
* @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
|
|
1113 |
* @param[in] S points to an instance of the Q15 FIR filter structure.
|
|
1114 |
* @param[in] pSrc points to the block of input data.
|
|
1115 |
* @param[out] pDst points to the block of output data.
|
|
1116 |
* @param[in] blockSize number of samples to process.
|
|
1117 |
*/
|
|
1118 |
void arm_fir_fast_q15(
|
|
1119 |
const arm_fir_instance_q15 * S,
|
|
1120 |
q15_t * pSrc,
|
|
1121 |
q15_t * pDst,
|
|
1122 |
uint32_t blockSize);
|
|
1123 |
|
|
1124 |
|
|
1125 |
/**
|
|
1126 |
* @brief Initialization function for the Q15 FIR filter.
|
|
1127 |
* @param[in,out] S points to an instance of the Q15 FIR filter structure.
|
|
1128 |
* @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
|
|
1129 |
* @param[in] pCoeffs points to the filter coefficients.
|
|
1130 |
* @param[in] pState points to the state buffer.
|
|
1131 |
* @param[in] blockSize number of samples that are processed at a time.
|
|
1132 |
* @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
|
|
1133 |
* <code>numTaps</code> is not a supported value.
|
|
1134 |
*/
|
|
1135 |
arm_status arm_fir_init_q15(
|
|
1136 |
arm_fir_instance_q15 * S,
|
|
1137 |
uint16_t numTaps,
|
|
1138 |
q15_t * pCoeffs,
|
|
1139 |
q15_t * pState,
|
|
1140 |
uint32_t blockSize);
|
|
1141 |
|
|
1142 |
|
|
1143 |
/**
|
|
1144 |
* @brief Processing function for the Q31 FIR filter.
|
|
1145 |
* @param[in] S points to an instance of the Q31 FIR filter structure.
|
|
1146 |
* @param[in] pSrc points to the block of input data.
|
|
1147 |
* @param[out] pDst points to the block of output data.
|
|
1148 |
* @param[in] blockSize number of samples to process.
|
|
1149 |
*/
|
|
1150 |
void arm_fir_q31(
|
|
1151 |
const arm_fir_instance_q31 * S,
|
|
1152 |
q31_t * pSrc,
|
|
1153 |
q31_t * pDst,
|
|
1154 |
uint32_t blockSize);
|
|
1155 |
|
|
1156 |
|
|
1157 |
/**
|
|
1158 |
* @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
|
|
1159 |
* @param[in] S points to an instance of the Q31 FIR structure.
|
|
1160 |
* @param[in] pSrc points to the block of input data.
|
|
1161 |
* @param[out] pDst points to the block of output data.
|
|
1162 |
* @param[in] blockSize number of samples to process.
|
|
1163 |
*/
|
|
1164 |
void arm_fir_fast_q31(
|
|
1165 |
const arm_fir_instance_q31 * S,
|
|
1166 |
q31_t * pSrc,
|
|
1167 |
q31_t * pDst,
|
|
1168 |
uint32_t blockSize);
|
|
1169 |
|
|
1170 |
|
|
1171 |
/**
|
|
1172 |
* @brief Initialization function for the Q31 FIR filter.
|
|
1173 |
* @param[in,out] S points to an instance of the Q31 FIR structure.
|
|
1174 |
* @param[in] numTaps Number of filter coefficients in the filter.
|
|
1175 |
* @param[in] pCoeffs points to the filter coefficients.
|
|
1176 |
* @param[in] pState points to the state buffer.
|
|
1177 |
* @param[in] blockSize number of samples that are processed at a time.
|
|
1178 |
*/
|
|
1179 |
void arm_fir_init_q31(
|
|
1180 |
arm_fir_instance_q31 * S,
|
|
1181 |
uint16_t numTaps,
|
|
1182 |
q31_t * pCoeffs,
|
|
1183 |
q31_t * pState,
|
|
1184 |
uint32_t blockSize);
|
|
1185 |
|
|
1186 |
|
|
1187 |
/**
|
|
1188 |
* @brief Processing function for the floating-point FIR filter.
|
|
1189 |
* @param[in] S points to an instance of the floating-point FIR structure.
|
|
1190 |
* @param[in] pSrc points to the block of input data.
|
|
1191 |
* @param[out] pDst points to the block of output data.
|
|
1192 |
* @param[in] blockSize number of samples to process.
|
|
1193 |
*/
|
|
1194 |
void arm_fir_f32(
|
|
1195 |
const arm_fir_instance_f32 * S,
|
|
1196 |
float32_t * pSrc,
|
|
1197 |
float32_t * pDst,
|
|
1198 |
uint32_t blockSize);
|
|
1199 |
|
|
1200 |
|
|
1201 |
/**
|
|
1202 |
* @brief Initialization function for the floating-point FIR filter.
|
|
1203 |
* @param[in,out] S points to an instance of the floating-point FIR filter structure.
|
|
1204 |
* @param[in] numTaps Number of filter coefficients in the filter.
|
|
1205 |
* @param[in] pCoeffs points to the filter coefficients.
|
|
1206 |
* @param[in] pState points to the state buffer.
|
|
1207 |
* @param[in] blockSize number of samples that are processed at a time.
|
|
1208 |
*/
|
|
1209 |
void arm_fir_init_f32(
|
|
1210 |
arm_fir_instance_f32 * S,
|
|
1211 |
uint16_t numTaps,
|
|
1212 |
float32_t * pCoeffs,
|
|
1213 |
float32_t * pState,
|
|
1214 |
uint32_t blockSize);
|
|
1215 |
|
|
1216 |
|
|
1217 |
/**
|
|
1218 |
* @brief Instance structure for the Q15 Biquad cascade filter.
|
|
1219 |
*/
|
|
1220 |
typedef struct
|
|
1221 |
{
|
|
1222 |
int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
|
|
1223 |
q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
|
|
1224 |
q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
|
|
1225 |
int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
|
|
1226 |
} arm_biquad_casd_df1_inst_q15;
|
|
1227 |
|
|
1228 |
/**
|
|
1229 |
* @brief Instance structure for the Q31 Biquad cascade filter.
|
|
1230 |
*/
|
|
1231 |
typedef struct
|
|
1232 |
{
|
|
1233 |
uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
|
|
1234 |
q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
|
|
1235 |
q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
|
|
1236 |
uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
|
|
1237 |
} arm_biquad_casd_df1_inst_q31;
|
|
1238 |
|
|
1239 |
/**
|
|
1240 |
* @brief Instance structure for the floating-point Biquad cascade filter.
|
|
1241 |
*/
|
|
1242 |
typedef struct
|
|
1243 |
{
|
|
1244 |
uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
|
|
1245 |
float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
|
|
1246 |
float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
|
|
1247 |
} arm_biquad_casd_df1_inst_f32;
|
|
1248 |
|
|
1249 |
|
|
1250 |
/**
|
|
1251 |
* @brief Processing function for the Q15 Biquad cascade filter.
|
|
1252 |
* @param[in] S points to an instance of the Q15 Biquad cascade structure.
|
|
1253 |
* @param[in] pSrc points to the block of input data.
|
|
1254 |
* @param[out] pDst points to the block of output data.
|
|
1255 |
* @param[in] blockSize number of samples to process.
|
|
1256 |
*/
|
|
1257 |
void arm_biquad_cascade_df1_q15(
|
|
1258 |
const arm_biquad_casd_df1_inst_q15 * S,
|
|
1259 |
q15_t * pSrc,
|
|
1260 |
q15_t * pDst,
|
|
1261 |
uint32_t blockSize);
|
|
1262 |
|
|
1263 |
|
|
1264 |
/**
|
|
1265 |
* @brief Initialization function for the Q15 Biquad cascade filter.
|
|
1266 |
* @param[in,out] S points to an instance of the Q15 Biquad cascade structure.
|
|
1267 |
* @param[in] numStages number of 2nd order stages in the filter.
|
|
1268 |
* @param[in] pCoeffs points to the filter coefficients.
|
|
1269 |
* @param[in] pState points to the state buffer.
|
|
1270 |
* @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
|
|
1271 |
*/
|
|
1272 |
void arm_biquad_cascade_df1_init_q15(
|
|
1273 |
arm_biquad_casd_df1_inst_q15 * S,
|
|
1274 |
uint8_t numStages,
|
|
1275 |
q15_t * pCoeffs,
|
|
1276 |
q15_t * pState,
|
|
1277 |
int8_t postShift);
|
|
1278 |
|
|
1279 |
|
|
1280 |
/**
|
|
1281 |
* @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
|
|
1282 |
* @param[in] S points to an instance of the Q15 Biquad cascade structure.
|
|
1283 |
* @param[in] pSrc points to the block of input data.
|
|
1284 |
* @param[out] pDst points to the block of output data.
|
|
1285 |
* @param[in] blockSize number of samples to process.
|
|
1286 |
*/
|
|
1287 |
void arm_biquad_cascade_df1_fast_q15(
|
|
1288 |
const arm_biquad_casd_df1_inst_q15 * S,
|
|
1289 |
q15_t * pSrc,
|
|
1290 |
q15_t * pDst,
|
|
1291 |
uint32_t blockSize);
|
|
1292 |
|
|
1293 |
|
|
1294 |
/**
|
|
1295 |
* @brief Processing function for the Q31 Biquad cascade filter
|
|
1296 |
* @param[in] S points to an instance of the Q31 Biquad cascade structure.
|
|
1297 |
* @param[in] pSrc points to the block of input data.
|
|
1298 |
* @param[out] pDst points to the block of output data.
|
|
1299 |
* @param[in] blockSize number of samples to process.
|
|
1300 |
*/
|
|
1301 |
void arm_biquad_cascade_df1_q31(
|
|
1302 |
const arm_biquad_casd_df1_inst_q31 * S,
|
|
1303 |
q31_t * pSrc,
|
|
1304 |
q31_t * pDst,
|
|
1305 |
uint32_t blockSize);
|
|
1306 |
|
|
1307 |
|
|
1308 |
/**
|
|
1309 |
* @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
|
|
1310 |
* @param[in] S points to an instance of the Q31 Biquad cascade structure.
|
|
1311 |
* @param[in] pSrc points to the block of input data.
|
|
1312 |
* @param[out] pDst points to the block of output data.
|
|
1313 |
* @param[in] blockSize number of samples to process.
|
|
1314 |
*/
|
|
1315 |
void arm_biquad_cascade_df1_fast_q31(
|
|
1316 |
const arm_biquad_casd_df1_inst_q31 * S,
|
|
1317 |
q31_t * pSrc,
|
|
1318 |
q31_t * pDst,
|
|
1319 |
uint32_t blockSize);
|
|
1320 |
|
|
1321 |
|
|
1322 |
/**
|
|
1323 |
* @brief Initialization function for the Q31 Biquad cascade filter.
|
|
1324 |
* @param[in,out] S points to an instance of the Q31 Biquad cascade structure.
|
|
1325 |
* @param[in] numStages number of 2nd order stages in the filter.
|
|
1326 |
* @param[in] pCoeffs points to the filter coefficients.
|
|
1327 |
* @param[in] pState points to the state buffer.
|
|
1328 |
* @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
|
|
1329 |
*/
|
|
1330 |
void arm_biquad_cascade_df1_init_q31(
|
|
1331 |
arm_biquad_casd_df1_inst_q31 * S,
|
|
1332 |
uint8_t numStages,
|
|
1333 |
q31_t * pCoeffs,
|
|
1334 |
q31_t * pState,
|
|
1335 |
int8_t postShift);
|
|
1336 |
|
|
1337 |
|
|
1338 |
/**
|
|
1339 |
* @brief Processing function for the floating-point Biquad cascade filter.
|
|
1340 |
* @param[in] S points to an instance of the floating-point Biquad cascade structure.
|
|
1341 |
* @param[in] pSrc points to the block of input data.
|
|
1342 |
* @param[out] pDst points to the block of output data.
|
|
1343 |
* @param[in] blockSize number of samples to process.
|
|
1344 |
*/
|
|
1345 |
void arm_biquad_cascade_df1_f32(
|
|
1346 |
const arm_biquad_casd_df1_inst_f32 * S,
|
|
1347 |
float32_t * pSrc,
|
|
1348 |
float32_t * pDst,
|
|
1349 |
uint32_t blockSize);
|
|
1350 |
|
|
1351 |
|
|
1352 |
/**
|
|
1353 |
* @brief Initialization function for the floating-point Biquad cascade filter.
|
|
1354 |
* @param[in,out] S points to an instance of the floating-point Biquad cascade structure.
|
|
1355 |
* @param[in] numStages number of 2nd order stages in the filter.
|
|
1356 |
* @param[in] pCoeffs points to the filter coefficients.
|
|
1357 |
* @param[in] pState points to the state buffer.
|
|
1358 |
*/
|
|
1359 |
void arm_biquad_cascade_df1_init_f32(
|
|
1360 |
arm_biquad_casd_df1_inst_f32 * S,
|
|
1361 |
uint8_t numStages,
|
|
1362 |
float32_t * pCoeffs,
|
|
1363 |
float32_t * pState);
|
|
1364 |
|
|
1365 |
|
|
1366 |
/**
|
|
1367 |
* @brief Instance structure for the floating-point matrix structure.
|
|
1368 |
*/
|
|
1369 |
typedef struct
|
|
1370 |
{
|
|
1371 |
uint16_t numRows; /**< number of rows of the matrix. */
|
|
1372 |
uint16_t numCols; /**< number of columns of the matrix. */
|
|
1373 |
float32_t *pData; /**< points to the data of the matrix. */
|
|
1374 |
} arm_matrix_instance_f32;
|
|
1375 |
|
|
1376 |
|
|
1377 |
/**
|
|
1378 |
* @brief Instance structure for the floating-point matrix structure.
|
|
1379 |
*/
|
|
1380 |
typedef struct
|
|
1381 |
{
|
|
1382 |
uint16_t numRows; /**< number of rows of the matrix. */
|
|
1383 |
uint16_t numCols; /**< number of columns of the matrix. */
|
|
1384 |
float64_t *pData; /**< points to the data of the matrix. */
|
|
1385 |
} arm_matrix_instance_f64;
|
|
1386 |
|
|
1387 |
/**
|
|
1388 |
* @brief Instance structure for the Q15 matrix structure.
|
|
1389 |
*/
|
|
1390 |
typedef struct
|
|
1391 |
{
|
|
1392 |
uint16_t numRows; /**< number of rows of the matrix. */
|
|
1393 |
uint16_t numCols; /**< number of columns of the matrix. */
|
|
1394 |
q15_t *pData; /**< points to the data of the matrix. */
|
|
1395 |
} arm_matrix_instance_q15;
|
|
1396 |
|
|
1397 |
/**
|
|
1398 |
* @brief Instance structure for the Q31 matrix structure.
|
|
1399 |
*/
|
|
1400 |
typedef struct
|
|
1401 |
{
|
|
1402 |
uint16_t numRows; /**< number of rows of the matrix. */
|
|
1403 |
uint16_t numCols; /**< number of columns of the matrix. */
|
|
1404 |
q31_t *pData; /**< points to the data of the matrix. */
|
|
1405 |
} arm_matrix_instance_q31;
|
|
1406 |
|
|
1407 |
|
|
1408 |
/**
|
|
1409 |
* @brief Floating-point matrix addition.
|
|
1410 |
* @param[in] pSrcA points to the first input matrix structure
|
|
1411 |
* @param[in] pSrcB points to the second input matrix structure
|
|
1412 |
* @param[out] pDst points to output matrix structure
|
|
1413 |
* @return The function returns either
|
|
1414 |
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
1415 |
*/
|
|
1416 |
arm_status arm_mat_add_f32(
|
|
1417 |
const arm_matrix_instance_f32 * pSrcA,
|
|
1418 |
const arm_matrix_instance_f32 * pSrcB,
|
|
1419 |
arm_matrix_instance_f32 * pDst);
|
|
1420 |
|
|
1421 |
|
|
1422 |
/**
|
|
1423 |
* @brief Q15 matrix addition.
|
|
1424 |
* @param[in] pSrcA points to the first input matrix structure
|
|
1425 |
* @param[in] pSrcB points to the second input matrix structure
|
|
1426 |
* @param[out] pDst points to output matrix structure
|
|
1427 |
* @return The function returns either
|
|
1428 |
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
1429 |
*/
|
|
1430 |
arm_status arm_mat_add_q15(
|
|
1431 |
const arm_matrix_instance_q15 * pSrcA,
|
|
1432 |
const arm_matrix_instance_q15 * pSrcB,
|
|
1433 |
arm_matrix_instance_q15 * pDst);
|
|
1434 |
|
|
1435 |
|
|
1436 |
/**
|
|
1437 |
* @brief Q31 matrix addition.
|
|
1438 |
* @param[in] pSrcA points to the first input matrix structure
|
|
1439 |
* @param[in] pSrcB points to the second input matrix structure
|
|
1440 |
* @param[out] pDst points to output matrix structure
|
|
1441 |
* @return The function returns either
|
|
1442 |
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
1443 |
*/
|
|
1444 |
arm_status arm_mat_add_q31(
|
|
1445 |
const arm_matrix_instance_q31 * pSrcA,
|
|
1446 |
const arm_matrix_instance_q31 * pSrcB,
|
|
1447 |
arm_matrix_instance_q31 * pDst);
|
|
1448 |
|
|
1449 |
|
|
1450 |
/**
|
|
1451 |
* @brief Floating-point, complex, matrix multiplication.
|
|
1452 |
* @param[in] pSrcA points to the first input matrix structure
|
|
1453 |
* @param[in] pSrcB points to the second input matrix structure
|
|
1454 |
* @param[out] pDst points to output matrix structure
|
|
1455 |
* @return The function returns either
|
|
1456 |
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
1457 |
*/
|
|
1458 |
arm_status arm_mat_cmplx_mult_f32(
|
|
1459 |
const arm_matrix_instance_f32 * pSrcA,
|
|
1460 |
const arm_matrix_instance_f32 * pSrcB,
|
|
1461 |
arm_matrix_instance_f32 * pDst);
|
|
1462 |
|
|
1463 |
|
|
1464 |
/**
|
|
1465 |
* @brief Q15, complex, matrix multiplication.
|
|
1466 |
* @param[in] pSrcA points to the first input matrix structure
|
|
1467 |
* @param[in] pSrcB points to the second input matrix structure
|
|
1468 |
* @param[out] pDst points to output matrix structure
|
|
1469 |
* @return The function returns either
|
|
1470 |
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
1471 |
*/
|
|
1472 |
arm_status arm_mat_cmplx_mult_q15(
|
|
1473 |
const arm_matrix_instance_q15 * pSrcA,
|
|
1474 |
const arm_matrix_instance_q15 * pSrcB,
|
|
1475 |
arm_matrix_instance_q15 * pDst,
|
|
1476 |
q15_t * pScratch);
|
|
1477 |
|
|
1478 |
|
|
1479 |
/**
|
|
1480 |
* @brief Q31, complex, matrix multiplication.
|
|
1481 |
* @param[in] pSrcA points to the first input matrix structure
|
|
1482 |
* @param[in] pSrcB points to the second input matrix structure
|
|
1483 |
* @param[out] pDst points to output matrix structure
|
|
1484 |
* @return The function returns either
|
|
1485 |
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
1486 |
*/
|
|
1487 |
arm_status arm_mat_cmplx_mult_q31(
|
|
1488 |
const arm_matrix_instance_q31 * pSrcA,
|
|
1489 |
const arm_matrix_instance_q31 * pSrcB,
|
|
1490 |
arm_matrix_instance_q31 * pDst);
|
|
1491 |
|
|
1492 |
|
|
1493 |
/**
|
|
1494 |
* @brief Floating-point matrix transpose.
|
|
1495 |
* @param[in] pSrc points to the input matrix
|
|
1496 |
* @param[out] pDst points to the output matrix
|
|
1497 |
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
|
|
1498 |
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
1499 |
*/
|
|
1500 |
arm_status arm_mat_trans_f32(
|
|
1501 |
const arm_matrix_instance_f32 * pSrc,
|
|
1502 |
arm_matrix_instance_f32 * pDst);
|
|
1503 |
|
|
1504 |
|
|
1505 |
/**
|
|
1506 |
* @brief Q15 matrix transpose.
|
|
1507 |
* @param[in] pSrc points to the input matrix
|
|
1508 |
* @param[out] pDst points to the output matrix
|
|
1509 |
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
|
|
1510 |
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
1511 |
*/
|
|
1512 |
arm_status arm_mat_trans_q15(
|
|
1513 |
const arm_matrix_instance_q15 * pSrc,
|
|
1514 |
arm_matrix_instance_q15 * pDst);
|
|
1515 |
|
|
1516 |
|
|
1517 |
/**
|
|
1518 |
* @brief Q31 matrix transpose.
|
|
1519 |
* @param[in] pSrc points to the input matrix
|
|
1520 |
* @param[out] pDst points to the output matrix
|
|
1521 |
* @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
|
|
1522 |
* or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
1523 |
*/
|
|
1524 |
arm_status arm_mat_trans_q31(
|
|
1525 |
const arm_matrix_instance_q31 * pSrc,
|
|
1526 |
arm_matrix_instance_q31 * pDst);
|
|
1527 |
|
|
1528 |
|
|
1529 |
/**
|
|
1530 |
* @brief Floating-point matrix multiplication
|
|
1531 |
* @param[in] pSrcA points to the first input matrix structure
|
|
1532 |
* @param[in] pSrcB points to the second input matrix structure
|
|
1533 |
* @param[out] pDst points to output matrix structure
|
|
1534 |
* @return The function returns either
|
|
1535 |
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
1536 |
*/
|
|
1537 |
arm_status arm_mat_mult_f32(
|
|
1538 |
const arm_matrix_instance_f32 * pSrcA,
|
|
1539 |
const arm_matrix_instance_f32 * pSrcB,
|
|
1540 |
arm_matrix_instance_f32 * pDst);
|
|
1541 |
|
|
1542 |
|
|
1543 |
/**
|
|
1544 |
* @brief Q15 matrix multiplication
|
|
1545 |
* @param[in] pSrcA points to the first input matrix structure
|
|
1546 |
* @param[in] pSrcB points to the second input matrix structure
|
|
1547 |
* @param[out] pDst points to output matrix structure
|
|
1548 |
* @param[in] pState points to the array for storing intermediate results
|
|
1549 |
* @return The function returns either
|
|
1550 |
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
1551 |
*/
|
|
1552 |
arm_status arm_mat_mult_q15(
|
|
1553 |
const arm_matrix_instance_q15 * pSrcA,
|
|
1554 |
const arm_matrix_instance_q15 * pSrcB,
|
|
1555 |
arm_matrix_instance_q15 * pDst,
|
|
1556 |
q15_t * pState);
|
|
1557 |
|
|
1558 |
|
|
1559 |
/**
|
|
1560 |
* @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
|
|
1561 |
* @param[in] pSrcA points to the first input matrix structure
|
|
1562 |
* @param[in] pSrcB points to the second input matrix structure
|
|
1563 |
* @param[out] pDst points to output matrix structure
|
|
1564 |
* @param[in] pState points to the array for storing intermediate results
|
|
1565 |
* @return The function returns either
|
|
1566 |
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
1567 |
*/
|
|
1568 |
arm_status arm_mat_mult_fast_q15(
|
|
1569 |
const arm_matrix_instance_q15 * pSrcA,
|
|
1570 |
const arm_matrix_instance_q15 * pSrcB,
|
|
1571 |
arm_matrix_instance_q15 * pDst,
|
|
1572 |
q15_t * pState);
|
|
1573 |
|
|
1574 |
|
|
1575 |
/**
|
|
1576 |
* @brief Q31 matrix multiplication
|
|
1577 |
* @param[in] pSrcA points to the first input matrix structure
|
|
1578 |
* @param[in] pSrcB points to the second input matrix structure
|
|
1579 |
* @param[out] pDst points to output matrix structure
|
|
1580 |
* @return The function returns either
|
|
1581 |
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
1582 |
*/
|
|
1583 |
arm_status arm_mat_mult_q31(
|
|
1584 |
const arm_matrix_instance_q31 * pSrcA,
|
|
1585 |
const arm_matrix_instance_q31 * pSrcB,
|
|
1586 |
arm_matrix_instance_q31 * pDst);
|
|
1587 |
|
|
1588 |
|
|
1589 |
/**
|
|
1590 |
* @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
|
|
1591 |
* @param[in] pSrcA points to the first input matrix structure
|
|
1592 |
* @param[in] pSrcB points to the second input matrix structure
|
|
1593 |
* @param[out] pDst points to output matrix structure
|
|
1594 |
* @return The function returns either
|
|
1595 |
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
1596 |
*/
|
|
1597 |
arm_status arm_mat_mult_fast_q31(
|
|
1598 |
const arm_matrix_instance_q31 * pSrcA,
|
|
1599 |
const arm_matrix_instance_q31 * pSrcB,
|
|
1600 |
arm_matrix_instance_q31 * pDst);
|
|
1601 |
|
|
1602 |
|
|
1603 |
/**
|
|
1604 |
* @brief Floating-point matrix subtraction
|
|
1605 |
* @param[in] pSrcA points to the first input matrix structure
|
|
1606 |
* @param[in] pSrcB points to the second input matrix structure
|
|
1607 |
* @param[out] pDst points to output matrix structure
|
|
1608 |
* @return The function returns either
|
|
1609 |
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
1610 |
*/
|
|
1611 |
arm_status arm_mat_sub_f32(
|
|
1612 |
const arm_matrix_instance_f32 * pSrcA,
|
|
1613 |
const arm_matrix_instance_f32 * pSrcB,
|
|
1614 |
arm_matrix_instance_f32 * pDst);
|
|
1615 |
|
|
1616 |
|
|
1617 |
/**
|
|
1618 |
* @brief Q15 matrix subtraction
|
|
1619 |
* @param[in] pSrcA points to the first input matrix structure
|
|
1620 |
* @param[in] pSrcB points to the second input matrix structure
|
|
1621 |
* @param[out] pDst points to output matrix structure
|
|
1622 |
* @return The function returns either
|
|
1623 |
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
1624 |
*/
|
|
1625 |
arm_status arm_mat_sub_q15(
|
|
1626 |
const arm_matrix_instance_q15 * pSrcA,
|
|
1627 |
const arm_matrix_instance_q15 * pSrcB,
|
|
1628 |
arm_matrix_instance_q15 * pDst);
|
|
1629 |
|
|
1630 |
|
|
1631 |
/**
|
|
1632 |
* @brief Q31 matrix subtraction
|
|
1633 |
* @param[in] pSrcA points to the first input matrix structure
|
|
1634 |
* @param[in] pSrcB points to the second input matrix structure
|
|
1635 |
* @param[out] pDst points to output matrix structure
|
|
1636 |
* @return The function returns either
|
|
1637 |
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
1638 |
*/
|
|
1639 |
arm_status arm_mat_sub_q31(
|
|
1640 |
const arm_matrix_instance_q31 * pSrcA,
|
|
1641 |
const arm_matrix_instance_q31 * pSrcB,
|
|
1642 |
arm_matrix_instance_q31 * pDst);
|
|
1643 |
|
|
1644 |
|
|
1645 |
/**
|
|
1646 |
* @brief Floating-point matrix scaling.
|
|
1647 |
* @param[in] pSrc points to the input matrix
|
|
1648 |
* @param[in] scale scale factor
|
|
1649 |
* @param[out] pDst points to the output matrix
|
|
1650 |
* @return The function returns either
|
|
1651 |
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
1652 |
*/
|
|
1653 |
arm_status arm_mat_scale_f32(
|
|
1654 |
const arm_matrix_instance_f32 * pSrc,
|
|
1655 |
float32_t scale,
|
|
1656 |
arm_matrix_instance_f32 * pDst);
|
|
1657 |
|
|
1658 |
|
|
1659 |
/**
|
|
1660 |
* @brief Q15 matrix scaling.
|
|
1661 |
* @param[in] pSrc points to input matrix
|
|
1662 |
* @param[in] scaleFract fractional portion of the scale factor
|
|
1663 |
* @param[in] shift number of bits to shift the result by
|
|
1664 |
* @param[out] pDst points to output matrix
|
|
1665 |
* @return The function returns either
|
|
1666 |
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
1667 |
*/
|
|
1668 |
arm_status arm_mat_scale_q15(
|
|
1669 |
const arm_matrix_instance_q15 * pSrc,
|
|
1670 |
q15_t scaleFract,
|
|
1671 |
int32_t shift,
|
|
1672 |
arm_matrix_instance_q15 * pDst);
|
|
1673 |
|
|
1674 |
|
|
1675 |
/**
|
|
1676 |
* @brief Q31 matrix scaling.
|
|
1677 |
* @param[in] pSrc points to input matrix
|
|
1678 |
* @param[in] scaleFract fractional portion of the scale factor
|
|
1679 |
* @param[in] shift number of bits to shift the result by
|
|
1680 |
* @param[out] pDst points to output matrix structure
|
|
1681 |
* @return The function returns either
|
|
1682 |
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
|
1683 |
*/
|
|
1684 |
arm_status arm_mat_scale_q31(
|
|
1685 |
const arm_matrix_instance_q31 * pSrc,
|
|
1686 |
q31_t scaleFract,
|
|
1687 |
int32_t shift,
|
|
1688 |
arm_matrix_instance_q31 * pDst);
|
|
1689 |
|
|
1690 |
|
|
1691 |
/**
|
|
1692 |
* @brief Q31 matrix initialization.
|
|
1693 |
* @param[in,out] S points to an instance of the floating-point matrix structure.
|
|
1694 |
* @param[in] nRows number of rows in the matrix.
|
|
1695 |
* @param[in] nColumns number of columns in the matrix.
|
|
1696 |
* @param[in] pData points to the matrix data array.
|
|
1697 |
*/
|
|
1698 |
void arm_mat_init_q31(
|
|
1699 |
arm_matrix_instance_q31 * S,
|
|
1700 |
uint16_t nRows,
|
|
1701 |
uint16_t nColumns,
|
|
1702 |
q31_t * pData);
|
|
1703 |
|
|
1704 |
|
|
1705 |
/**
|
|
1706 |
* @brief Q15 matrix initialization.
|
|
1707 |
* @param[in,out] S points to an instance of the floating-point matrix structure.
|
|
1708 |
* @param[in] nRows number of rows in the matrix.
|
|
1709 |
* @param[in] nColumns number of columns in the matrix.
|
|
1710 |
* @param[in] pData points to the matrix data array.
|
|
1711 |
*/
|
|
1712 |
void arm_mat_init_q15(
|
|
1713 |
arm_matrix_instance_q15 * S,
|
|
1714 |
uint16_t nRows,
|
|
1715 |
uint16_t nColumns,
|
|
1716 |
q15_t * pData);
|
|
1717 |
|
|
1718 |
|
|
1719 |
/**
|
|
1720 |
* @brief Floating-point matrix initialization.
|
|
1721 |
* @param[in,out] S points to an instance of the floating-point matrix structure.
|
|
1722 |
* @param[in] nRows number of rows in the matrix.
|
|
1723 |
* @param[in] nColumns number of columns in the matrix.
|
|
1724 |
* @param[in] pData points to the matrix data array.
|
|
1725 |
*/
|
|
1726 |
void arm_mat_init_f32(
|
|
1727 |
arm_matrix_instance_f32 * S,
|
|
1728 |
uint16_t nRows,
|
|
1729 |
uint16_t nColumns,
|
|
1730 |
float32_t * pData);
|
|
1731 |
|
|
1732 |
|
|
1733 |
|
|
1734 |
/**
|
|
1735 |
* @brief Instance structure for the Q15 PID Control.
|
|
1736 |
*/
|
|
1737 |
typedef struct
|
|
1738 |
{
|
|
1739 |
q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
|
|
1740 |
#ifdef ARM_MATH_CM0_FAMILY
|
|
1741 |
q15_t A1;
|
|
1742 |
q15_t A2;
|
|
1743 |
#else
|
|
1744 |
q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
|
|
1745 |
#endif
|
|
1746 |
q15_t state[3]; /**< The state array of length 3. */
|
|
1747 |
q15_t Kp; /**< The proportional gain. */
|
|
1748 |
q15_t Ki; /**< The integral gain. */
|
|
1749 |
q15_t Kd; /**< The derivative gain. */
|
|
1750 |
} arm_pid_instance_q15;
|
|
1751 |
|
|
1752 |
/**
|
|
1753 |
* @brief Instance structure for the Q31 PID Control.
|
|
1754 |
*/
|
|
1755 |
typedef struct
|
|
1756 |
{
|
|
1757 |
q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
|
|
1758 |
q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
|
|
1759 |
q31_t A2; /**< The derived gain, A2 = Kd . */
|
|
1760 |
q31_t state[3]; /**< The state array of length 3. */
|
|
1761 |
q31_t Kp; /**< The proportional gain. */
|
|
1762 |
q31_t Ki; /**< The integral gain. */
|
|
1763 |
q31_t Kd; /**< The derivative gain. */
|
|
1764 |
} arm_pid_instance_q31;
|
|
1765 |
|
|
1766 |
/**
|
|
1767 |
* @brief Instance structure for the floating-point PID Control.
|
|
1768 |
*/
|
|
1769 |
typedef struct
|
|
1770 |
{
|
|
1771 |
float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
|
|
1772 |
float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
|
|
1773 |
float32_t A2; /**< The derived gain, A2 = Kd . */
|
|
1774 |
float32_t state[3]; /**< The state array of length 3. */
|
|
1775 |
float32_t Kp; /**< The proportional gain. */
|
|
1776 |
float32_t Ki; /**< The integral gain. */
|
|
1777 |
float32_t Kd; /**< The derivative gain. */
|
|
1778 |
} arm_pid_instance_f32;
|
|
1779 |
|
|
1780 |
|
|
1781 |
|
|
1782 |
/**
|
|
1783 |
* @brief Initialization function for the floating-point PID Control.
|
|
1784 |
* @param[in,out] S points to an instance of the PID structure.
|
|
1785 |
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
|
|
1786 |
*/
|
|
1787 |
void arm_pid_init_f32(
|
|
1788 |
arm_pid_instance_f32 * S,
|
|
1789 |
int32_t resetStateFlag);
|
|
1790 |
|
|
1791 |
|
|
1792 |
/**
|
|
1793 |
* @brief Reset function for the floating-point PID Control.
|
|
1794 |
* @param[in,out] S is an instance of the floating-point PID Control structure
|
|
1795 |
*/
|
|
1796 |
void arm_pid_reset_f32(
|
|
1797 |
arm_pid_instance_f32 * S);
|
|
1798 |
|
|
1799 |
|
|
1800 |
/**
|
|
1801 |
* @brief Initialization function for the Q31 PID Control.
|
|
1802 |
* @param[in,out] S points to an instance of the Q15 PID structure.
|
|
1803 |
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
|
|
1804 |
*/
|
|
1805 |
void arm_pid_init_q31(
|
|
1806 |
arm_pid_instance_q31 * S,
|
|
1807 |
int32_t resetStateFlag);
|
|
1808 |
|
|
1809 |
|
|
1810 |
/**
|
|
1811 |
* @brief Reset function for the Q31 PID Control.
|
|
1812 |
* @param[in,out] S points to an instance of the Q31 PID Control structure
|
|
1813 |
*/
|
|
1814 |
|
|
1815 |
void arm_pid_reset_q31(
|
|
1816 |
arm_pid_instance_q31 * S);
|
|
1817 |
|
|
1818 |
|
|
1819 |
/**
|
|
1820 |
* @brief Initialization function for the Q15 PID Control.
|
|
1821 |
* @param[in,out] S points to an instance of the Q15 PID structure.
|
|
1822 |
* @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
|
|
1823 |
*/
|
|
1824 |
void arm_pid_init_q15(
|
|
1825 |
arm_pid_instance_q15 * S,
|
|
1826 |
int32_t resetStateFlag);
|
|
1827 |
|
|
1828 |
|
|
1829 |
/**
|
|
1830 |
* @brief Reset function for the Q15 PID Control.
|
|
1831 |
* @param[in,out] S points to an instance of the q15 PID Control structure
|
|
1832 |
*/
|
|
1833 |
void arm_pid_reset_q15(
|
|
1834 |
arm_pid_instance_q15 * S);
|
|
1835 |
|
|
1836 |
|
|
1837 |
/**
|
|
1838 |
* @brief Instance structure for the floating-point Linear Interpolate function.
|
|
1839 |
*/
|
|
1840 |
typedef struct
|
|
1841 |
{
|
|
1842 |
uint32_t nValues; /**< nValues */
|
|
1843 |
float32_t x1; /**< x1 */
|
|
1844 |
float32_t xSpacing; /**< xSpacing */
|
|
1845 |
float32_t *pYData; /**< pointer to the table of Y values */
|
|
1846 |
} arm_linear_interp_instance_f32;
|
|
1847 |
|
|
1848 |
/**
|
|
1849 |
* @brief Instance structure for the floating-point bilinear interpolation function.
|
|
1850 |
*/
|
|
1851 |
typedef struct
|
|
1852 |
{
|
|
1853 |
uint16_t numRows; /**< number of rows in the data table. */
|
|
1854 |
uint16_t numCols; /**< number of columns in the data table. */
|
|
1855 |
float32_t *pData; /**< points to the data table. */
|
|
1856 |
} arm_bilinear_interp_instance_f32;
|
|
1857 |
|
|
1858 |
/**
|
|
1859 |
* @brief Instance structure for the Q31 bilinear interpolation function.
|
|
1860 |
*/
|
|
1861 |
typedef struct
|
|
1862 |
{
|
|
1863 |
uint16_t numRows; /**< number of rows in the data table. */
|
|
1864 |
uint16_t numCols; /**< number of columns in the data table. */
|
|
1865 |
q31_t *pData; /**< points to the data table. */
|
|
1866 |
} arm_bilinear_interp_instance_q31;
|
|
1867 |
|
|
1868 |
/**
|
|
1869 |
* @brief Instance structure for the Q15 bilinear interpolation function.
|
|
1870 |
*/
|
|
1871 |
typedef struct
|
|
1872 |
{
|
|
1873 |
uint16_t numRows; /**< number of rows in the data table. */
|
|
1874 |
uint16_t numCols; /**< number of columns in the data table. */
|
|
1875 |
q15_t *pData; /**< points to the data table. */
|
|
1876 |
} arm_bilinear_interp_instance_q15;
|
|
1877 |
|
|
1878 |
/**
|
|
1879 |
* @brief Instance structure for the Q15 bilinear interpolation function.
|
|
1880 |
*/
|
|
1881 |
typedef struct
|
|
1882 |
{
|
|
1883 |
uint16_t numRows; /**< number of rows in the data table. */
|
|
1884 |
uint16_t numCols; /**< number of columns in the data table. */
|
|
1885 |
q7_t *pData; /**< points to the data table. */
|
|
1886 |
} arm_bilinear_interp_instance_q7;
|
|
1887 |
|
|
1888 |
|
|
1889 |
/**
|
|
1890 |
* @brief Q7 vector multiplication.
|
|
1891 |
* @param[in] pSrcA points to the first input vector
|
|
1892 |
* @param[in] pSrcB points to the second input vector
|
|
1893 |
* @param[out] pDst points to the output vector
|
|
1894 |
* @param[in] blockSize number of samples in each vector
|
|
1895 |
*/
|
|
1896 |
void arm_mult_q7(
|
|
1897 |
q7_t * pSrcA,
|
|
1898 |
q7_t * pSrcB,
|
|
1899 |
q7_t * pDst,
|
|
1900 |
uint32_t blockSize);
|
|
1901 |
|
|
1902 |
|
|
1903 |
/**
|
|
1904 |
* @brief Q15 vector multiplication.
|
|
1905 |
* @param[in] pSrcA points to the first input vector
|
|
1906 |
* @param[in] pSrcB points to the second input vector
|
|
1907 |
* @param[out] pDst points to the output vector
|
|
1908 |
* @param[in] blockSize number of samples in each vector
|
|
1909 |
*/
|
|
1910 |
void arm_mult_q15(
|
|
1911 |
q15_t * pSrcA,
|
|
1912 |
q15_t * pSrcB,
|
|
1913 |
q15_t * pDst,
|
|
1914 |
uint32_t blockSize);
|
|
1915 |
|
|
1916 |
|
|
1917 |
/**
|
|
1918 |
* @brief Q31 vector multiplication.
|
|
1919 |
* @param[in] pSrcA points to the first input vector
|
|
1920 |
* @param[in] pSrcB points to the second input vector
|
|
1921 |
* @param[out] pDst points to the output vector
|
|
1922 |
* @param[in] blockSize number of samples in each vector
|
|
1923 |
*/
|
|
1924 |
void arm_mult_q31(
|
|
1925 |
q31_t * pSrcA,
|
|
1926 |
q31_t * pSrcB,
|
|
1927 |
q31_t * pDst,
|
|
1928 |
uint32_t blockSize);
|
|
1929 |
|
|
1930 |
|
|
1931 |
/**
|
|
1932 |
* @brief Floating-point vector multiplication.
|
|
1933 |
* @param[in] pSrcA points to the first input vector
|
|
1934 |
* @param[in] pSrcB points to the second input vector
|
|
1935 |
* @param[out] pDst points to the output vector
|
|
1936 |
* @param[in] blockSize number of samples in each vector
|
|
1937 |
*/
|
|
1938 |
void arm_mult_f32(
|
|
1939 |
float32_t * pSrcA,
|
|
1940 |
float32_t * pSrcB,
|
|
1941 |
float32_t * pDst,
|
|
1942 |
uint32_t blockSize);
|
|
1943 |
|
|
1944 |
|
|
1945 |
/**
|
|
1946 |
* @brief Instance structure for the Q15 CFFT/CIFFT function.
|
|
1947 |
*/
|
|
1948 |
typedef struct
|
|
1949 |
{
|
|
1950 |
uint16_t fftLen; /**< length of the FFT. */
|
|
1951 |
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
|
1952 |
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
|
1953 |
q15_t *pTwiddle; /**< points to the Sin twiddle factor table. */
|
|
1954 |
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
|
1955 |
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
|
1956 |
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
|
1957 |
} arm_cfft_radix2_instance_q15;
|
|
1958 |
|
|
1959 |
/* Deprecated */
|
|
1960 |
arm_status arm_cfft_radix2_init_q15(
|
|
1961 |
arm_cfft_radix2_instance_q15 * S,
|
|
1962 |
uint16_t fftLen,
|
|
1963 |
uint8_t ifftFlag,
|
|
1964 |
uint8_t bitReverseFlag);
|
|
1965 |
|
|
1966 |
/* Deprecated */
|
|
1967 |
void arm_cfft_radix2_q15(
|
|
1968 |
const arm_cfft_radix2_instance_q15 * S,
|
|
1969 |
q15_t * pSrc);
|
|
1970 |
|
|
1971 |
|
|
1972 |
/**
|
|
1973 |
* @brief Instance structure for the Q15 CFFT/CIFFT function.
|
|
1974 |
*/
|
|
1975 |
typedef struct
|
|
1976 |
{
|
|
1977 |
uint16_t fftLen; /**< length of the FFT. */
|
|
1978 |
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
|
1979 |
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
|
1980 |
q15_t *pTwiddle; /**< points to the twiddle factor table. */
|
|
1981 |
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
|
1982 |
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
|
1983 |
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
|
1984 |
} arm_cfft_radix4_instance_q15;
|
|
1985 |
|
|
1986 |
/* Deprecated */
|
|
1987 |
arm_status arm_cfft_radix4_init_q15(
|
|
1988 |
arm_cfft_radix4_instance_q15 * S,
|
|
1989 |
uint16_t fftLen,
|
|
1990 |
uint8_t ifftFlag,
|
|
1991 |
uint8_t bitReverseFlag);
|
|
1992 |
|
|
1993 |
/* Deprecated */
|
|
1994 |
void arm_cfft_radix4_q15(
|
|
1995 |
const arm_cfft_radix4_instance_q15 * S,
|
|
1996 |
q15_t * pSrc);
|
|
1997 |
|
|
1998 |
/**
|
|
1999 |
* @brief Instance structure for the Radix-2 Q31 CFFT/CIFFT function.
|
|
2000 |
*/
|
|
2001 |
typedef struct
|
|
2002 |
{
|
|
2003 |
uint16_t fftLen; /**< length of the FFT. */
|
|
2004 |
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
|
2005 |
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
|
2006 |
q31_t *pTwiddle; /**< points to the Twiddle factor table. */
|
|
2007 |
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
|
2008 |
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
|
2009 |
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
|
2010 |
} arm_cfft_radix2_instance_q31;
|
|
2011 |
|
|
2012 |
/* Deprecated */
|
|
2013 |
arm_status arm_cfft_radix2_init_q31(
|
|
2014 |
arm_cfft_radix2_instance_q31 * S,
|
|
2015 |
uint16_t fftLen,
|
|
2016 |
uint8_t ifftFlag,
|
|
2017 |
uint8_t bitReverseFlag);
|
|
2018 |
|
|
2019 |
/* Deprecated */
|
|
2020 |
void arm_cfft_radix2_q31(
|
|
2021 |
const arm_cfft_radix2_instance_q31 * S,
|
|
2022 |
q31_t * pSrc);
|
|
2023 |
|
|
2024 |
/**
|
|
2025 |
* @brief Instance structure for the Q31 CFFT/CIFFT function.
|
|
2026 |
*/
|
|
2027 |
typedef struct
|
|
2028 |
{
|
|
2029 |
uint16_t fftLen; /**< length of the FFT. */
|
|
2030 |
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
|
2031 |
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
|
2032 |
q31_t *pTwiddle; /**< points to the twiddle factor table. */
|
|
2033 |
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
|
2034 |
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
|
2035 |
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
|
2036 |
} arm_cfft_radix4_instance_q31;
|
|
2037 |
|
|
2038 |
/* Deprecated */
|
|
2039 |
void arm_cfft_radix4_q31(
|
|
2040 |
const arm_cfft_radix4_instance_q31 * S,
|
|
2041 |
q31_t * pSrc);
|
|
2042 |
|
|
2043 |
/* Deprecated */
|
|
2044 |
arm_status arm_cfft_radix4_init_q31(
|
|
2045 |
arm_cfft_radix4_instance_q31 * S,
|
|
2046 |
uint16_t fftLen,
|
|
2047 |
uint8_t ifftFlag,
|
|
2048 |
uint8_t bitReverseFlag);
|
|
2049 |
|
|
2050 |
/**
|
|
2051 |
* @brief Instance structure for the floating-point CFFT/CIFFT function.
|
|
2052 |
*/
|
|
2053 |
typedef struct
|
|
2054 |
{
|
|
2055 |
uint16_t fftLen; /**< length of the FFT. */
|
|
2056 |
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
|
2057 |
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
|
2058 |
float32_t *pTwiddle; /**< points to the Twiddle factor table. */
|
|
2059 |
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
|
2060 |
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
|
2061 |
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
|
2062 |
float32_t onebyfftLen; /**< value of 1/fftLen. */
|
|
2063 |
} arm_cfft_radix2_instance_f32;
|
|
2064 |
|
|
2065 |
/* Deprecated */
|
|
2066 |
arm_status arm_cfft_radix2_init_f32(
|
|
2067 |
arm_cfft_radix2_instance_f32 * S,
|
|
2068 |
uint16_t fftLen,
|
|
2069 |
uint8_t ifftFlag,
|
|
2070 |
uint8_t bitReverseFlag);
|
|
2071 |
|
|
2072 |
/* Deprecated */
|
|
2073 |
void arm_cfft_radix2_f32(
|
|
2074 |
const arm_cfft_radix2_instance_f32 * S,
|
|
2075 |
float32_t * pSrc);
|
|
2076 |
|
|
2077 |
/**
|
|
2078 |
* @brief Instance structure for the floating-point CFFT/CIFFT function.
|
|
2079 |
*/
|
|
2080 |
typedef struct
|
|
2081 |
{
|
|
2082 |
uint16_t fftLen; /**< length of the FFT. */
|
|
2083 |
uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
|
|
2084 |
uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
|
|
2085 |
float32_t *pTwiddle; /**< points to the Twiddle factor table. */
|
|
2086 |
uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
|
2087 |
uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
|
2088 |
uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
|
|
2089 |
float32_t onebyfftLen; /**< value of 1/fftLen. */
|
|
2090 |
} arm_cfft_radix4_instance_f32;
|
|
2091 |
|
|
2092 |
/* Deprecated */
|
|
2093 |
arm_status arm_cfft_radix4_init_f32(
|
|
2094 |
arm_cfft_radix4_instance_f32 * S,
|
|
2095 |
uint16_t fftLen,
|
|
2096 |
uint8_t ifftFlag,
|
|
2097 |
uint8_t bitReverseFlag);
|
|
2098 |
|
|
2099 |
/* Deprecated */
|
|
2100 |
void arm_cfft_radix4_f32(
|
|
2101 |
const arm_cfft_radix4_instance_f32 * S,
|
|
2102 |
float32_t * pSrc);
|
|
2103 |
|
|
2104 |
/**
|
|
2105 |
* @brief Instance structure for the fixed-point CFFT/CIFFT function.
|
|
2106 |
*/
|
|
2107 |
typedef struct
|
|
2108 |
{
|
|
2109 |
uint16_t fftLen; /**< length of the FFT. */
|
|
2110 |
const q15_t *pTwiddle; /**< points to the Twiddle factor table. */
|
|
2111 |
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
|
2112 |
uint16_t bitRevLength; /**< bit reversal table length. */
|
|
2113 |
} arm_cfft_instance_q15;
|
|
2114 |
|
|
2115 |
void arm_cfft_q15(
|
|
2116 |
const arm_cfft_instance_q15 * S,
|
|
2117 |
q15_t * p1,
|
|
2118 |
uint8_t ifftFlag,
|
|
2119 |
uint8_t bitReverseFlag);
|
|
2120 |
|
|
2121 |
/**
|
|
2122 |
* @brief Instance structure for the fixed-point CFFT/CIFFT function.
|
|
2123 |
*/
|
|
2124 |
typedef struct
|
|
2125 |
{
|
|
2126 |
uint16_t fftLen; /**< length of the FFT. */
|
|
2127 |
const q31_t *pTwiddle; /**< points to the Twiddle factor table. */
|
|
2128 |
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
|
2129 |
uint16_t bitRevLength; /**< bit reversal table length. */
|
|
2130 |
} arm_cfft_instance_q31;
|
|
2131 |
|
|
2132 |
void arm_cfft_q31(
|
|
2133 |
const arm_cfft_instance_q31 * S,
|
|
2134 |
q31_t * p1,
|
|
2135 |
uint8_t ifftFlag,
|
|
2136 |
uint8_t bitReverseFlag);
|
|
2137 |
|
|
2138 |
/**
|
|
2139 |
* @brief Instance structure for the floating-point CFFT/CIFFT function.
|
|
2140 |
*/
|
|
2141 |
typedef struct
|
|
2142 |
{
|
|
2143 |
uint16_t fftLen; /**< length of the FFT. */
|
|
2144 |
const float32_t *pTwiddle; /**< points to the Twiddle factor table. */
|
|
2145 |
const uint16_t *pBitRevTable; /**< points to the bit reversal table. */
|
|
2146 |
uint16_t bitRevLength; /**< bit reversal table length. */
|
|
2147 |
} arm_cfft_instance_f32;
|
|
2148 |
|
|
2149 |
void arm_cfft_f32(
|
|
2150 |
const arm_cfft_instance_f32 * S,
|
|
2151 |
float32_t * p1,
|
|
2152 |
uint8_t ifftFlag,
|
|
2153 |
uint8_t bitReverseFlag);
|
|
2154 |
|
|
2155 |
/**
|
|
2156 |
* @brief Instance structure for the Q15 RFFT/RIFFT function.
|
|
2157 |
*/
|
|
2158 |
typedef struct
|
|
2159 |
{
|
|
2160 |
uint32_t fftLenReal; /**< length of the real FFT. */
|
|
2161 |
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
|
|
2162 |
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
|
|
2163 |
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
|
2164 |
q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
|
|
2165 |
q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
|
|
2166 |
const arm_cfft_instance_q15 *pCfft; /**< points to the complex FFT instance. */
|
|
2167 |
} arm_rfft_instance_q15;
|
|
2168 |
|
|
2169 |
arm_status arm_rfft_init_q15(
|
|
2170 |
arm_rfft_instance_q15 * S,
|
|
2171 |
uint32_t fftLenReal,
|
|
2172 |
uint32_t ifftFlagR,
|
|
2173 |
uint32_t bitReverseFlag);
|
|
2174 |
|
|
2175 |
void arm_rfft_q15(
|
|
2176 |
const arm_rfft_instance_q15 * S,
|
|
2177 |
q15_t * pSrc,
|
|
2178 |
q15_t * pDst);
|
|
2179 |
|
|
2180 |
/**
|
|
2181 |
* @brief Instance structure for the Q31 RFFT/RIFFT function.
|
|
2182 |
*/
|
|
2183 |
typedef struct
|
|
2184 |
{
|
|
2185 |
uint32_t fftLenReal; /**< length of the real FFT. */
|
|
2186 |
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
|
|
2187 |
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
|
|
2188 |
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
|
2189 |
q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
|
|
2190 |
q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
|
|
2191 |
const arm_cfft_instance_q31 *pCfft; /**< points to the complex FFT instance. */
|
|
2192 |
} arm_rfft_instance_q31;
|
|
2193 |
|
|
2194 |
arm_status arm_rfft_init_q31(
|
|
2195 |
arm_rfft_instance_q31 * S,
|
|
2196 |
uint32_t fftLenReal,
|
|
2197 |
uint32_t ifftFlagR,
|
|
2198 |
uint32_t bitReverseFlag);
|
|
2199 |
|
|
2200 |
void arm_rfft_q31(
|
|
2201 |
const arm_rfft_instance_q31 * S,
|
|
2202 |
q31_t * pSrc,
|
|
2203 |
q31_t * pDst);
|
|
2204 |
|
|
2205 |
/**
|
|
2206 |
* @brief Instance structure for the floating-point RFFT/RIFFT function.
|
|
2207 |
*/
|
|
2208 |
typedef struct
|
|
2209 |
{
|
|
2210 |
uint32_t fftLenReal; /**< length of the real FFT. */
|
|
2211 |
uint16_t fftLenBy2; /**< length of the complex FFT. */
|
|
2212 |
uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
|
|
2213 |
uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
|
|
2214 |
uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
|
|
2215 |
float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
|
|
2216 |
float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
|
|
2217 |
arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
|
|
2218 |
} arm_rfft_instance_f32;
|
|
2219 |
|
|
2220 |
arm_status arm_rfft_init_f32(
|
|
2221 |
arm_rfft_instance_f32 * S,
|
|
2222 |
arm_cfft_radix4_instance_f32 * S_CFFT,
|
|
2223 |
uint32_t fftLenReal,
|
|
2224 |
uint32_t ifftFlagR,
|
|
2225 |
uint32_t bitReverseFlag);
|
|
2226 |
|
|
2227 |
void arm_rfft_f32(
|
|
2228 |
const arm_rfft_instance_f32 * S,
|
|
2229 |
float32_t * pSrc,
|
|
2230 |
float32_t * pDst);
|
|
2231 |
|
|
2232 |
/**
|
|
2233 |
* @brief Instance structure for the floating-point RFFT/RIFFT function.
|
|
2234 |
*/
|
|
2235 |
typedef struct
|
|
2236 |
{
|
|
2237 |
arm_cfft_instance_f32 Sint; /**< Internal CFFT structure. */
|
|
2238 |
uint16_t fftLenRFFT; /**< length of the real sequence */
|
|
2239 |
float32_t * pTwiddleRFFT; /**< Twiddle factors real stage */
|
|
2240 |
} arm_rfft_fast_instance_f32 ;
|
|
2241 |
|
|
2242 |
arm_status arm_rfft_fast_init_f32 (
|
|
2243 |
arm_rfft_fast_instance_f32 * S,
|
|
2244 |
uint16_t fftLen);
|
|
2245 |
|
|
2246 |
void arm_rfft_fast_f32(
|
|
2247 |
arm_rfft_fast_instance_f32 * S,
|
|
2248 |
float32_t * p, float32_t * pOut,
|
|
2249 |
uint8_t ifftFlag);
|
|
2250 |
|
|
2251 |
/**
|
|
2252 |
* @brief Instance structure for the floating-point DCT4/IDCT4 function.
|
|
2253 |
*/
|
|
2254 |
typedef struct
|
|
2255 |
{
|
|
2256 |
uint16_t N; /**< length of the DCT4. */
|
|
2257 |
uint16_t Nby2; /**< half of the length of the DCT4. */
|
|
2258 |
float32_t normalize; /**< normalizing factor. */
|
|
2259 |
float32_t *pTwiddle; /**< points to the twiddle factor table. */
|
|
2260 |
float32_t *pCosFactor; /**< points to the cosFactor table. */
|
|
2261 |
arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
|
|
2262 |
arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
|
|
2263 |
} arm_dct4_instance_f32;
|
|
2264 |
|
|
2265 |
|
|
2266 |
/**
|
|
2267 |
* @brief Initialization function for the floating-point DCT4/IDCT4.
|
|
2268 |
* @param[in,out] S points to an instance of floating-point DCT4/IDCT4 structure.
|
|
2269 |
* @param[in] S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
|
|
2270 |
* @param[in] S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
|
|
2271 |
* @param[in] N length of the DCT4.
|
|
2272 |
* @param[in] Nby2 half of the length of the DCT4.
|
|
2273 |
* @param[in] normalize normalizing factor.
|
|
2274 |
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
|
|
2275 |
*/
|
|
2276 |
arm_status arm_dct4_init_f32(
|
|
2277 |
arm_dct4_instance_f32 * S,
|
|
2278 |
arm_rfft_instance_f32 * S_RFFT,
|
|
2279 |
arm_cfft_radix4_instance_f32 * S_CFFT,
|
|
2280 |
uint16_t N,
|
|
2281 |
uint16_t Nby2,
|
|
2282 |
float32_t normalize);
|
|
2283 |
|
|
2284 |
|
|
2285 |
/**
|
|
2286 |
* @brief Processing function for the floating-point DCT4/IDCT4.
|
|
2287 |
* @param[in] S points to an instance of the floating-point DCT4/IDCT4 structure.
|
|
2288 |
* @param[in] pState points to state buffer.
|
|
2289 |
* @param[in,out] pInlineBuffer points to the in-place input and output buffer.
|
|
2290 |
*/
|
|
2291 |
void arm_dct4_f32(
|
|
2292 |
const arm_dct4_instance_f32 * S,
|
|
2293 |
float32_t * pState,
|
|
2294 |
float32_t * pInlineBuffer);
|
|
2295 |
|
|
2296 |
|
|
2297 |
/**
|
|
2298 |
* @brief Instance structure for the Q31 DCT4/IDCT4 function.
|
|
2299 |
*/
|
|
2300 |
typedef struct
|
|
2301 |
{
|
|
2302 |
uint16_t N; /**< length of the DCT4. */
|
|
2303 |
uint16_t Nby2; /**< half of the length of the DCT4. */
|
|
2304 |
q31_t normalize; /**< normalizing factor. */
|
|
2305 |
q31_t *pTwiddle; /**< points to the twiddle factor table. */
|
|
2306 |
q31_t *pCosFactor; /**< points to the cosFactor table. */
|
|
2307 |
arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
|
|
2308 |
arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
|
|
2309 |
} arm_dct4_instance_q31;
|
|
2310 |
|
|
2311 |
|
|
2312 |
/**
|
|
2313 |
* @brief Initialization function for the Q31 DCT4/IDCT4.
|
|
2314 |
* @param[in,out] S points to an instance of Q31 DCT4/IDCT4 structure.
|
|
2315 |
* @param[in] S_RFFT points to an instance of Q31 RFFT/RIFFT structure
|
|
2316 |
* @param[in] S_CFFT points to an instance of Q31 CFFT/CIFFT structure
|
|
2317 |
* @param[in] N length of the DCT4.
|
|
2318 |
* @param[in] Nby2 half of the length of the DCT4.
|
|
2319 |
* @param[in] normalize normalizing factor.
|
|
2320 |
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
|
|
2321 |
*/
|
|
2322 |
arm_status arm_dct4_init_q31(
|
|
2323 |
arm_dct4_instance_q31 * S,
|
|
2324 |
arm_rfft_instance_q31 * S_RFFT,
|
|
2325 |
arm_cfft_radix4_instance_q31 * S_CFFT,
|
|
2326 |
uint16_t N,
|
|
2327 |
uint16_t Nby2,
|
|
2328 |
q31_t normalize);
|
|
2329 |
|
|
2330 |
|
|
2331 |
/**
|
|
2332 |
* @brief Processing function for the Q31 DCT4/IDCT4.
|
|
2333 |
* @param[in] S points to an instance of the Q31 DCT4 structure.
|
|
2334 |
* @param[in] pState points to state buffer.
|
|
2335 |
* @param[in,out] pInlineBuffer points to the in-place input and output buffer.
|
|
2336 |
*/
|
|
2337 |
void arm_dct4_q31(
|
|
2338 |
const arm_dct4_instance_q31 * S,
|
|
2339 |
q31_t * pState,
|
|
2340 |
q31_t * pInlineBuffer);
|
|
2341 |
|
|
2342 |
|
|
2343 |
/**
|
|
2344 |
* @brief Instance structure for the Q15 DCT4/IDCT4 function.
|
|
2345 |
*/
|
|
2346 |
typedef struct
|
|
2347 |
{
|
|
2348 |
uint16_t N; /**< length of the DCT4. */
|
|
2349 |
uint16_t Nby2; /**< half of the length of the DCT4. */
|
|
2350 |
q15_t normalize; /**< normalizing factor. */
|
|
2351 |
q15_t *pTwiddle; /**< points to the twiddle factor table. */
|
|
2352 |
q15_t *pCosFactor; /**< points to the cosFactor table. */
|
|
2353 |
arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
|
|
2354 |
arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
|
|
2355 |
} arm_dct4_instance_q15;
|
|
2356 |
|
|
2357 |
|
|
2358 |
/**
|
|
2359 |
* @brief Initialization function for the Q15 DCT4/IDCT4.
|
|
2360 |
* @param[in,out] S points to an instance of Q15 DCT4/IDCT4 structure.
|
|
2361 |
* @param[in] S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
|
|
2362 |
* @param[in] S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
|
|
2363 |
* @param[in] N length of the DCT4.
|
|
2364 |
* @param[in] Nby2 half of the length of the DCT4.
|
|
2365 |
* @param[in] normalize normalizing factor.
|
|
2366 |
* @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
|
|
2367 |
*/
|
|
2368 |
arm_status arm_dct4_init_q15(
|
|
2369 |
arm_dct4_instance_q15 * S,
|
|
2370 |
arm_rfft_instance_q15 * S_RFFT,
|
|
2371 |
arm_cfft_radix4_instance_q15 * S_CFFT,
|
|
2372 |
uint16_t N,
|
|
2373 |
uint16_t Nby2,
|
|
2374 |
q15_t normalize);
|
|
2375 |
|
|
2376 |
|
|
2377 |
/**
|
|
2378 |
* @brief Processing function for the Q15 DCT4/IDCT4.
|
|
2379 |
* @param[in] S points to an instance of the Q15 DCT4 structure.
|
|
2380 |
* @param[in] pState points to state buffer.
|
|
2381 |
* @param[in,out] pInlineBuffer points to the in-place input and output buffer.
|
|
2382 |
*/
|
|
2383 |
void arm_dct4_q15(
|
|
2384 |
const arm_dct4_instance_q15 * S,
|
|
2385 |
q15_t * pState,
|
|
2386 |
q15_t * pInlineBuffer);
|
|
2387 |
|
|
2388 |
|
|
2389 |
/**
|
|
2390 |
* @brief Floating-point vector addition.
|
|
2391 |
* @param[in] pSrcA points to the first input vector
|
|
2392 |
* @param[in] pSrcB points to the second input vector
|
|
2393 |
* @param[out] pDst points to the output vector
|
|
2394 |
* @param[in] blockSize number of samples in each vector
|
|
2395 |
*/
|
|
2396 |
void arm_add_f32(
|
|
2397 |
float32_t * pSrcA,
|
|
2398 |
float32_t * pSrcB,
|
|
2399 |
float32_t * pDst,
|
|
2400 |
uint32_t blockSize);
|
|
2401 |
|
|
2402 |
|
|
2403 |
/**
|
|
2404 |
* @brief Q7 vector addition.
|
|
2405 |
* @param[in] pSrcA points to the first input vector
|
|
2406 |
* @param[in] pSrcB points to the second input vector
|
|
2407 |
* @param[out] pDst points to the output vector
|
|
2408 |
* @param[in] blockSize number of samples in each vector
|
|
2409 |
*/
|
|
2410 |
void arm_add_q7(
|
|
2411 |
q7_t * pSrcA,
|
|
2412 |
q7_t * pSrcB,
|
|
2413 |
q7_t * pDst,
|
|
2414 |
uint32_t blockSize);
|
|
2415 |
|
|
2416 |
|
|
2417 |
/**
|
|
2418 |
* @brief Q15 vector addition.
|
|
2419 |
* @param[in] pSrcA points to the first input vector
|
|
2420 |
* @param[in] pSrcB points to the second input vector
|
|
2421 |
* @param[out] pDst points to the output vector
|
|
2422 |
* @param[in] blockSize number of samples in each vector
|
|
2423 |
*/
|
|
2424 |
void arm_add_q15(
|
|
2425 |
q15_t * pSrcA,
|
|
2426 |
q15_t * pSrcB,
|
|
2427 |
q15_t * pDst,
|
|
2428 |
uint32_t blockSize);
|
|
2429 |
|
|
2430 |
|
|
2431 |
/**
|
|
2432 |
* @brief Q31 vector addition.
|
|
2433 |
* @param[in] pSrcA points to the first input vector
|
|
2434 |
* @param[in] pSrcB points to the second input vector
|
|
2435 |
* @param[out] pDst points to the output vector
|
|
2436 |
* @param[in] blockSize number of samples in each vector
|
|
2437 |
*/
|
|
2438 |
void arm_add_q31(
|
|
2439 |
q31_t * pSrcA,
|
|
2440 |
q31_t * pSrcB,
|
|
2441 |
q31_t * pDst,
|
|
2442 |
uint32_t blockSize);
|
|
2443 |
|
|
2444 |
|
|
2445 |
/**
|
|
2446 |
* @brief Floating-point vector subtraction.
|
|
2447 |
* @param[in] pSrcA points to the first input vector
|
|
2448 |
* @param[in] pSrcB points to the second input vector
|
|
2449 |
* @param[out] pDst points to the output vector
|
|
2450 |
* @param[in] blockSize number of samples in each vector
|
|
2451 |
*/
|
|
2452 |
void arm_sub_f32(
|
|
2453 |
float32_t * pSrcA,
|
|
2454 |
float32_t * pSrcB,
|
|
2455 |
float32_t * pDst,
|
|
2456 |
uint32_t blockSize);
|
|
2457 |
|
|
2458 |
|
|
2459 |
/**
|
|
2460 |
* @brief Q7 vector subtraction.
|
|
2461 |
* @param[in] pSrcA points to the first input vector
|
|
2462 |
* @param[in] pSrcB points to the second input vector
|
|
2463 |
* @param[out] pDst points to the output vector
|
|
2464 |
* @param[in] blockSize number of samples in each vector
|
|
2465 |
*/
|
|
2466 |
void arm_sub_q7(
|
|
2467 |
q7_t * pSrcA,
|
|
2468 |
q7_t * pSrcB,
|
|
2469 |
q7_t * pDst,
|
|
2470 |
uint32_t blockSize);
|
|
2471 |
|
|
2472 |
|
|
2473 |
/**
|
|
2474 |
* @brief Q15 vector subtraction.
|
|
2475 |
* @param[in] pSrcA points to the first input vector
|
|
2476 |
* @param[in] pSrcB points to the second input vector
|
|
2477 |
* @param[out] pDst points to the output vector
|
|
2478 |
* @param[in] blockSize number of samples in each vector
|
|
2479 |
*/
|
|
2480 |
void arm_sub_q15(
|
|
2481 |
q15_t * pSrcA,
|
|
2482 |
q15_t * pSrcB,
|
|
2483 |
q15_t * pDst,
|
|
2484 |
uint32_t blockSize);
|
|
2485 |
|
|
2486 |
|
|
2487 |
/**
|
|
2488 |
* @brief Q31 vector subtraction.
|
|
2489 |
* @param[in] pSrcA points to the first input vector
|
|
2490 |
* @param[in] pSrcB points to the second input vector
|
|
2491 |
* @param[out] pDst points to the output vector
|
|
2492 |
* @param[in] blockSize number of samples in each vector
|
|
2493 |
*/
|
|
2494 |
void arm_sub_q31(
|
|
2495 |
q31_t * pSrcA,
|
|
2496 |
q31_t * pSrcB,
|
|
2497 |
q31_t * pDst,
|
|
2498 |
uint32_t blockSize);
|
|
2499 |
|
|
2500 |
|
|
2501 |
/**
|
|
2502 |
* @brief Multiplies a floating-point vector by a scalar.
|
|
2503 |
* @param[in] pSrc points to the input vector
|
|
2504 |
* @param[in] scale scale factor to be applied
|
|
2505 |
* @param[out] pDst points to the output vector
|
|
2506 |
* @param[in] blockSize number of samples in the vector
|
|
2507 |
*/
|
|
2508 |
void arm_scale_f32(
|
|
2509 |
float32_t * pSrc,
|
|
2510 |
float32_t scale,
|
|
2511 |
float32_t * pDst,
|
|
2512 |
uint32_t blockSize);
|
|
2513 |
|
|
2514 |
|
|
2515 |
/**
|
|
2516 |
* @brief Multiplies a Q7 vector by a scalar.
|
|
2517 |
* @param[in] pSrc points to the input vector
|
|
2518 |
* @param[in] scaleFract fractional portion of the scale value
|
|
2519 |
* @param[in] shift number of bits to shift the result by
|
|
2520 |
* @param[out] pDst points to the output vector
|
|
2521 |
* @param[in] blockSize number of samples in the vector
|
|
2522 |
*/
|
|
2523 |
void arm_scale_q7(
|
|
2524 |
q7_t * pSrc,
|
|
2525 |
q7_t scaleFract,
|
|
2526 |
int8_t shift,
|
|
2527 |
q7_t * pDst,
|
|
2528 |
uint32_t blockSize);
|
|
2529 |
|
|
2530 |
|
|
2531 |
/**
|
|
2532 |
* @brief Multiplies a Q15 vector by a scalar.
|
|
2533 |
* @param[in] pSrc points to the input vector
|
|
2534 |
* @param[in] scaleFract fractional portion of the scale value
|
|
2535 |
* @param[in] shift number of bits to shift the result by
|
|
2536 |
* @param[out] pDst points to the output vector
|
|
2537 |
* @param[in] blockSize number of samples in the vector
|
|
2538 |
*/
|
|
2539 |
void arm_scale_q15(
|
|
2540 |
q15_t * pSrc,
|
|
2541 |
q15_t scaleFract,
|
|
2542 |
int8_t shift,
|
|
2543 |
q15_t * pDst,
|
|
2544 |
uint32_t blockSize);
|
|
2545 |
|
|
2546 |
|
|
2547 |
/**
|
|
2548 |
* @brief Multiplies a Q31 vector by a scalar.
|
|
2549 |
* @param[in] pSrc points to the input vector
|
|
2550 |
* @param[in] scaleFract fractional portion of the scale value
|
|
2551 |
* @param[in] shift number of bits to shift the result by
|
|
2552 |
* @param[out] pDst points to the output vector
|
|
2553 |
* @param[in] blockSize number of samples in the vector
|
|
2554 |
*/
|
|
2555 |
void arm_scale_q31(
|
|
2556 |
q31_t * pSrc,
|
|
2557 |
q31_t scaleFract,
|
|
2558 |
int8_t shift,
|
|
2559 |
q31_t * pDst,
|
|
2560 |
uint32_t blockSize);
|
|
2561 |
|
|
2562 |
|
|
2563 |
/**
|
|
2564 |
* @brief Q7 vector absolute value.
|
|
2565 |
* @param[in] pSrc points to the input buffer
|
|
2566 |
* @param[out] pDst points to the output buffer
|
|
2567 |
* @param[in] blockSize number of samples in each vector
|
|
2568 |
*/
|
|
2569 |
void arm_abs_q7(
|
|
2570 |
q7_t * pSrc,
|
|
2571 |
q7_t * pDst,
|
|
2572 |
uint32_t blockSize);
|
|
2573 |
|
|
2574 |
|
|
2575 |
/**
|
|
2576 |
* @brief Floating-point vector absolute value.
|
|
2577 |
* @param[in] pSrc points to the input buffer
|
|
2578 |
* @param[out] pDst points to the output buffer
|
|
2579 |
* @param[in] blockSize number of samples in each vector
|
|
2580 |
*/
|
|
2581 |
void arm_abs_f32(
|
|
2582 |
float32_t * pSrc,
|
|
2583 |
float32_t * pDst,
|
|
2584 |
uint32_t blockSize);
|
|
2585 |
|
|
2586 |
|
|
2587 |
/**
|
|
2588 |
* @brief Q15 vector absolute value.
|
|
2589 |
* @param[in] pSrc points to the input buffer
|
|
2590 |
* @param[out] pDst points to the output buffer
|
|
2591 |
* @param[in] blockSize number of samples in each vector
|
|
2592 |
*/
|
|
2593 |
void arm_abs_q15(
|
|
2594 |
q15_t * pSrc,
|
|
2595 |
q15_t * pDst,
|
|
2596 |
uint32_t blockSize);
|
|
2597 |
|
|
2598 |
|
|
2599 |
/**
|
|
2600 |
* @brief Q31 vector absolute value.
|
|
2601 |
* @param[in] pSrc points to the input buffer
|
|
2602 |
* @param[out] pDst points to the output buffer
|
|
2603 |
* @param[in] blockSize number of samples in each vector
|
|
2604 |
*/
|
|
2605 |
void arm_abs_q31(
|
|
2606 |
q31_t * pSrc,
|
|
2607 |
q31_t * pDst,
|
|
2608 |
uint32_t blockSize);
|
|
2609 |
|
|
2610 |
|
|
2611 |
/**
|
|
2612 |
* @brief Dot product of floating-point vectors.
|
|
2613 |
* @param[in] pSrcA points to the first input vector
|
|
2614 |
* @param[in] pSrcB points to the second input vector
|
|
2615 |
* @param[in] blockSize number of samples in each vector
|
|
2616 |
* @param[out] result output result returned here
|
|
2617 |
*/
|
|
2618 |
void arm_dot_prod_f32(
|
|
2619 |
float32_t * pSrcA,
|
|
2620 |
float32_t * pSrcB,
|
|
2621 |
uint32_t blockSize,
|
|
2622 |
float32_t * result);
|
|
2623 |
|
|
2624 |
|
|
2625 |
/**
|
|
2626 |
* @brief Dot product of Q7 vectors.
|
|
2627 |
* @param[in] pSrcA points to the first input vector
|
|
2628 |
* @param[in] pSrcB points to the second input vector
|
|
2629 |
* @param[in] blockSize number of samples in each vector
|
|
2630 |
* @param[out] result output result returned here
|
|
2631 |
*/
|
|
2632 |
void arm_dot_prod_q7(
|
|
2633 |
q7_t * pSrcA,
|
|
2634 |
q7_t * pSrcB,
|
|
2635 |
uint32_t blockSize,
|
|
2636 |
q31_t * result);
|
|
2637 |
|
|
2638 |
|
|
2639 |
/**
|
|
2640 |
* @brief Dot product of Q15 vectors.
|
|
2641 |
* @param[in] pSrcA points to the first input vector
|
|
2642 |
* @param[in] pSrcB points to the second input vector
|
|
2643 |
* @param[in] blockSize number of samples in each vector
|
|
2644 |
* @param[out] result output result returned here
|
|
2645 |
*/
|
|
2646 |
void arm_dot_prod_q15(
|
|
2647 |
q15_t * pSrcA,
|
|
2648 |
q15_t * pSrcB,
|
|
2649 |
uint32_t blockSize,
|
|
2650 |
q63_t * result);
|
|
2651 |
|
|
2652 |
|
|
2653 |
/**
|
|
2654 |
* @brief Dot product of Q31 vectors.
|
|
2655 |
* @param[in] pSrcA points to the first input vector
|
|
2656 |
* @param[in] pSrcB points to the second input vector
|
|
2657 |
* @param[in] blockSize number of samples in each vector
|
|
2658 |
* @param[out] result output result returned here
|
|
2659 |
*/
|
|
2660 |
void arm_dot_prod_q31(
|
|
2661 |
q31_t * pSrcA,
|
|
2662 |
q31_t * pSrcB,
|
|
2663 |
uint32_t blockSize,
|
|
2664 |
q63_t * result);
|
|
2665 |
|
|
2666 |
|
|
2667 |
/**
|
|
2668 |
* @brief Shifts the elements of a Q7 vector a specified number of bits.
|
|
2669 |
* @param[in] pSrc points to the input vector
|
|
2670 |
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
|
|
2671 |
* @param[out] pDst points to the output vector
|
|
2672 |
* @param[in] blockSize number of samples in the vector
|
|
2673 |
*/
|
|
2674 |
void arm_shift_q7(
|
|
2675 |
q7_t * pSrc,
|
|
2676 |
int8_t shiftBits,
|
|
2677 |
q7_t * pDst,
|
|
2678 |
uint32_t blockSize);
|
|
2679 |
|
|
2680 |
|
|
2681 |
/**
|
|
2682 |
* @brief Shifts the elements of a Q15 vector a specified number of bits.
|
|
2683 |
* @param[in] pSrc points to the input vector
|
|
2684 |
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
|
|
2685 |
* @param[out] pDst points to the output vector
|
|
2686 |
* @param[in] blockSize number of samples in the vector
|
|
2687 |
*/
|
|
2688 |
void arm_shift_q15(
|
|
2689 |
q15_t * pSrc,
|
|
2690 |
int8_t shiftBits,
|
|
2691 |
q15_t * pDst,
|
|
2692 |
uint32_t blockSize);
|
|
2693 |
|
|
2694 |
|
|
2695 |
/**
|
|
2696 |
* @brief Shifts the elements of a Q31 vector a specified number of bits.
|
|
2697 |
* @param[in] pSrc points to the input vector
|
|
2698 |
* @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
|
|
2699 |
* @param[out] pDst points to the output vector
|
|
2700 |
* @param[in] blockSize number of samples in the vector
|
|
2701 |
*/
|
|
2702 |
void arm_shift_q31(
|
|
2703 |
q31_t * pSrc,
|
|
2704 |
int8_t shiftBits,
|
|
2705 |
q31_t * pDst,
|
|
2706 |
uint32_t blockSize);
|
|
2707 |
|
|
2708 |
|
|
2709 |
/**
|
|
2710 |
* @brief Adds a constant offset to a floating-point vector.
|
|
2711 |
* @param[in] pSrc points to the input vector
|
|
2712 |
* @param[in] offset is the offset to be added
|
|
2713 |
* @param[out] pDst points to the output vector
|
|
2714 |
* @param[in] blockSize number of samples in the vector
|
|
2715 |
*/
|
|
2716 |
void arm_offset_f32(
|
|
2717 |
float32_t * pSrc,
|
|
2718 |
float32_t offset,
|
|
2719 |
float32_t * pDst,
|
|
2720 |
uint32_t blockSize);
|
|
2721 |
|
|
2722 |
|
|
2723 |
/**
|
|
2724 |
* @brief Adds a constant offset to a Q7 vector.
|
|
2725 |
* @param[in] pSrc points to the input vector
|
|
2726 |
* @param[in] offset is the offset to be added
|
|
2727 |
* @param[out] pDst points to the output vector
|
|
2728 |
* @param[in] blockSize number of samples in the vector
|
|
2729 |
*/
|
|
2730 |
void arm_offset_q7(
|
|
2731 |
q7_t * pSrc,
|
|
2732 |
q7_t offset,
|
|
2733 |
q7_t * pDst,
|
|
2734 |
uint32_t blockSize);
|
|
2735 |
|
|
2736 |
|
|
2737 |
/**
|
|
2738 |
* @brief Adds a constant offset to a Q15 vector.
|
|
2739 |
* @param[in] pSrc points to the input vector
|
|
2740 |
* @param[in] offset is the offset to be added
|
|
2741 |
* @param[out] pDst points to the output vector
|
|
2742 |
* @param[in] blockSize number of samples in the vector
|
|
2743 |
*/
|
|
2744 |
void arm_offset_q15(
|
|
2745 |
q15_t * pSrc,
|
|
2746 |
q15_t offset,
|
|
2747 |
q15_t * pDst,
|
|
2748 |
uint32_t blockSize);
|
|
2749 |
|
|
2750 |
|
|
2751 |
/**
|
|
2752 |
* @brief Adds a constant offset to a Q31 vector.
|
|
2753 |
* @param[in] pSrc points to the input vector
|
|
2754 |
* @param[in] offset is the offset to be added
|
|
2755 |
* @param[out] pDst points to the output vector
|
|
2756 |
* @param[in] blockSize number of samples in the vector
|
|
2757 |
*/
|
|
2758 |
void arm_offset_q31(
|
|
2759 |
q31_t * pSrc,
|
|
2760 |
q31_t offset,
|
|
2761 |
q31_t * pDst,
|
|
2762 |
uint32_t blockSize);
|
|
2763 |
|
|
2764 |
|
|
2765 |
/**
|
|
2766 |
* @brief Negates the elements of a floating-point vector.
|
|
2767 |
* @param[in] pSrc points to the input vector
|
|
2768 |
* @param[out] pDst points to the output vector
|
|
2769 |
* @param[in] blockSize number of samples in the vector
|
|
2770 |
*/
|
|
2771 |
void arm_negate_f32(
|
|
2772 |
float32_t * pSrc,
|
|
2773 |
float32_t * pDst,
|
|
2774 |
uint32_t blockSize);
|
|
2775 |
|
|
2776 |
|
|
2777 |
/**
|
|
2778 |
* @brief Negates the elements of a Q7 vector.
|
|
2779 |
* @param[in] pSrc points to the input vector
|
|
2780 |
* @param[out] pDst points to the output vector
|
|
2781 |
* @param[in] blockSize number of samples in the vector
|
|
2782 |
*/
|
|
2783 |
void arm_negate_q7(
|
|
2784 |
q7_t * pSrc,
|
|
2785 |
q7_t * pDst,
|
|
2786 |
uint32_t blockSize);
|
|
2787 |
|
|
2788 |
|
|
2789 |
/**
|
|
2790 |
* @brief Negates the elements of a Q15 vector.
|
|
2791 |
* @param[in] pSrc points to the input vector
|
|
2792 |
* @param[out] pDst points to the output vector
|
|
2793 |
* @param[in] blockSize number of samples in the vector
|
|
2794 |
*/
|
|
2795 |
void arm_negate_q15(
|
|
2796 |
q15_t * pSrc,
|
|
2797 |
q15_t * pDst,
|
|
2798 |
uint32_t blockSize);
|
|
2799 |
|
|
2800 |
|
|
2801 |
/**
|
|
2802 |
* @brief Negates the elements of a Q31 vector.
|
|
2803 |
* @param[in] pSrc points to the input vector
|
|
2804 |
* @param[out] pDst points to the output vector
|
|
2805 |
* @param[in] blockSize number of samples in the vector
|
|
2806 |
*/
|
|
2807 |
void arm_negate_q31(
|
|
2808 |
q31_t * pSrc,
|
|
2809 |
q31_t * pDst,
|
|
2810 |
uint32_t blockSize);
|
|
2811 |
|
|
2812 |
|
|
2813 |
/**
|
|
2814 |
* @brief Copies the elements of a floating-point vector.
|
|
2815 |
* @param[in] pSrc input pointer
|
|
2816 |
* @param[out] pDst output pointer
|
|
2817 |
* @param[in] blockSize number of samples to process
|
|
2818 |
*/
|
|
2819 |
void arm_copy_f32(
|
|
2820 |
float32_t * pSrc,
|
|
2821 |
float32_t * pDst,
|
|
2822 |
uint32_t blockSize);
|
|
2823 |
|
|
2824 |
|
|
2825 |
/**
|
|
2826 |
* @brief Copies the elements of a Q7 vector.
|
|
2827 |
* @param[in] pSrc input pointer
|
|
2828 |
* @param[out] pDst output pointer
|
|
2829 |
* @param[in] blockSize number of samples to process
|
|
2830 |
*/
|
|
2831 |
void arm_copy_q7(
|
|
2832 |
q7_t * pSrc,
|
|
2833 |
q7_t * pDst,
|
|
2834 |
uint32_t blockSize);
|
|
2835 |
|
|
2836 |
|
|
2837 |
/**
|
|
2838 |
* @brief Copies the elements of a Q15 vector.
|
|
2839 |
* @param[in] pSrc input pointer
|
|
2840 |
* @param[out] pDst output pointer
|
|
2841 |
* @param[in] blockSize number of samples to process
|
|
2842 |
*/
|
|
2843 |
void arm_copy_q15(
|
|
2844 |
q15_t * pSrc,
|
|
2845 |
q15_t * pDst,
|
|
2846 |
uint32_t blockSize);
|
|
2847 |
|
|
2848 |
|
|
2849 |
/**
|
|
2850 |
* @brief Copies the elements of a Q31 vector.
|
|
2851 |
* @param[in] pSrc input pointer
|
|
2852 |
* @param[out] pDst output pointer
|
|
2853 |
* @param[in] blockSize number of samples to process
|
|
2854 |
*/
|
|
2855 |
void arm_copy_q31(
|
|
2856 |
q31_t * pSrc,
|
|
2857 |
q31_t * pDst,
|
|
2858 |
uint32_t blockSize);
|
|
2859 |
|
|
2860 |
|
|
2861 |
/**
|
|
2862 |
* @brief Fills a constant value into a floating-point vector.
|
|
2863 |
* @param[in] value input value to be filled
|
|
2864 |
* @param[out] pDst output pointer
|
|
2865 |
* @param[in] blockSize number of samples to process
|
|
2866 |
*/
|
|
2867 |
void arm_fill_f32(
|
|
2868 |
float32_t value,
|
|
2869 |
float32_t * pDst,
|
|
2870 |
uint32_t blockSize);
|
|
2871 |
|
|
2872 |
|
|
2873 |
/**
|
|
2874 |
* @brief Fills a constant value into a Q7 vector.
|
|
2875 |
* @param[in] value input value to be filled
|
|
2876 |
* @param[out] pDst output pointer
|
|
2877 |
* @param[in] blockSize number of samples to process
|
|
2878 |
*/
|
|
2879 |
void arm_fill_q7(
|
|
2880 |
q7_t value,
|
|
2881 |
q7_t * pDst,
|
|
2882 |
uint32_t blockSize);
|
|
2883 |
|
|
2884 |
|
|
2885 |
/**
|
|
2886 |
* @brief Fills a constant value into a Q15 vector.
|
|
2887 |
* @param[in] value input value to be filled
|
|
2888 |
* @param[out] pDst output pointer
|
|
2889 |
* @param[in] blockSize number of samples to process
|
|
2890 |
*/
|
|
2891 |
void arm_fill_q15(
|
|
2892 |
q15_t value,
|
|
2893 |
q15_t * pDst,
|
|
2894 |
uint32_t blockSize);
|
|
2895 |
|
|
2896 |
|
|
2897 |
/**
|
|
2898 |
* @brief Fills a constant value into a Q31 vector.
|
|
2899 |
* @param[in] value input value to be filled
|
|
2900 |
* @param[out] pDst output pointer
|
|
2901 |
* @param[in] blockSize number of samples to process
|
|
2902 |
*/
|
|
2903 |
void arm_fill_q31(
|
|
2904 |
q31_t value,
|
|
2905 |
q31_t * pDst,
|
|
2906 |
uint32_t blockSize);
|
|
2907 |
|
|
2908 |
|
|
2909 |
/**
|
|
2910 |
* @brief Convolution of floating-point sequences.
|
|
2911 |
* @param[in] pSrcA points to the first input sequence.
|
|
2912 |
* @param[in] srcALen length of the first input sequence.
|
|
2913 |
* @param[in] pSrcB points to the second input sequence.
|
|
2914 |
* @param[in] srcBLen length of the second input sequence.
|
|
2915 |
* @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
|
|
2916 |
*/
|
|
2917 |
void arm_conv_f32(
|
|
2918 |
float32_t * pSrcA,
|
|
2919 |
uint32_t srcALen,
|
|
2920 |
float32_t * pSrcB,
|
|
2921 |
uint32_t srcBLen,
|
|
2922 |
float32_t * pDst);
|
|
2923 |
|
|
2924 |
|
|
2925 |
/**
|
|
2926 |
* @brief Convolution of Q15 sequences.
|
|
2927 |
* @param[in] pSrcA points to the first input sequence.
|
|
2928 |
* @param[in] srcALen length of the first input sequence.
|
|
2929 |
* @param[in] pSrcB points to the second input sequence.
|
|
2930 |
* @param[in] srcBLen length of the second input sequence.
|
|
2931 |
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
|
|
2932 |
* @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
|
|
2933 |
* @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
|
|
2934 |
*/
|
|
2935 |
void arm_conv_opt_q15(
|
|
2936 |
q15_t * pSrcA,
|
|
2937 |
uint32_t srcALen,
|
|
2938 |
q15_t * pSrcB,
|
|
2939 |
uint32_t srcBLen,
|
|
2940 |
q15_t * pDst,
|
|
2941 |
q15_t * pScratch1,
|
|
2942 |
q15_t * pScratch2);
|
|
2943 |
|
|
2944 |
|
|
2945 |
/**
|
|
2946 |
* @brief Convolution of Q15 sequences.
|
|
2947 |
* @param[in] pSrcA points to the first input sequence.
|
|
2948 |
* @param[in] srcALen length of the first input sequence.
|
|
2949 |
* @param[in] pSrcB points to the second input sequence.
|
|
2950 |
* @param[in] srcBLen length of the second input sequence.
|
|
2951 |
* @param[out] pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
|
|
2952 |
*/
|
|
2953 |
void arm_conv_q15(
|
|
2954 |
q15_t * pSrcA,
|
|
2955 |
uint32_t srcALen,
|
|
2956 |
q15_t * pSrcB,
|
|
2957 |
uint32_t srcBLen,
|
|
2958 |
q15_t * pDst);
|
|
2959 |
|
|
2960 |
|
|
2961 |
/**
|
|
2962 |
* @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
|
|
2963 |
* @param[in] pSrcA points to the first input sequence.
|
|
2964 |
* @param[in] srcALen length of the first input sequence.
|
|
2965 |
* @param[in] pSrcB points to the second input sequence.
|
|
2966 |
* @param[in] srcBLen length of the second input sequence.
|
|
2967 |
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
|
|
2968 |
*/
|
|
2969 |
void arm_conv_fast_q15(
|
|
2970 |
q15_t * pSrcA,
|
|
2971 |
uint32_t srcALen,
|
|
2972 |
q15_t * pSrcB,
|
|
2973 |
uint32_t srcBLen,
|
|
2974 |
q15_t * pDst);
|
|
2975 |
|
|
2976 |
|
|
2977 |
/**
|
|
2978 |
* @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
|
|
2979 |
* @param[in] pSrcA points to the first input sequence.
|
|
2980 |
* @param[in] srcALen length of the first input sequence.
|
|
2981 |
* @param[in] pSrcB points to the second input sequence.
|
|
2982 |
* @param[in] srcBLen length of the second input sequence.
|
|
2983 |
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
|
|
2984 |
* @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
|
|
2985 |
* @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
|
|
2986 |
*/
|
|
2987 |
void arm_conv_fast_opt_q15(
|
|
2988 |
q15_t * pSrcA,
|
|
2989 |
uint32_t srcALen,
|
|
2990 |
q15_t * pSrcB,
|
|
2991 |
uint32_t srcBLen,
|
|
2992 |
q15_t * pDst,
|
|
2993 |
q15_t * pScratch1,
|
|
2994 |
q15_t * pScratch2);
|
|
2995 |
|
|
2996 |
|
|
2997 |
/**
|
|
2998 |
* @brief Convolution of Q31 sequences.
|
|
2999 |
* @param[in] pSrcA points to the first input sequence.
|
|
3000 |
* @param[in] srcALen length of the first input sequence.
|
|
3001 |
* @param[in] pSrcB points to the second input sequence.
|
|
3002 |
* @param[in] srcBLen length of the second input sequence.
|
|
3003 |
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
|
|
3004 |
*/
|
|
3005 |
void arm_conv_q31(
|
|
3006 |
q31_t * pSrcA,
|
|
3007 |
uint32_t srcALen,
|
|
3008 |
q31_t * pSrcB,
|
|
3009 |
uint32_t srcBLen,
|
|
3010 |
q31_t * pDst);
|
|
3011 |
|
|
3012 |
|
|
3013 |
/**
|
|
3014 |
* @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
|
|
3015 |
* @param[in] pSrcA points to the first input sequence.
|
|
3016 |
* @param[in] srcALen length of the first input sequence.
|
|
3017 |
* @param[in] pSrcB points to the second input sequence.
|
|
3018 |
* @param[in] srcBLen length of the second input sequence.
|
|
3019 |
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
|
|
3020 |
*/
|
|
3021 |
void arm_conv_fast_q31(
|
|
3022 |
q31_t * pSrcA,
|
|
3023 |
uint32_t srcALen,
|
|
3024 |
q31_t * pSrcB,
|
|
3025 |
uint32_t srcBLen,
|
|
3026 |
q31_t * pDst);
|
|
3027 |
|
|
3028 |
|
|
3029 |
/**
|
|
3030 |
* @brief Convolution of Q7 sequences.
|
|
3031 |
* @param[in] pSrcA points to the first input sequence.
|
|
3032 |
* @param[in] srcALen length of the first input sequence.
|
|
3033 |
* @param[in] pSrcB points to the second input sequence.
|
|
3034 |
* @param[in] srcBLen length of the second input sequence.
|
|
3035 |
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
|
|
3036 |
* @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
|
|
3037 |
* @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
|
|
3038 |
*/
|
|
3039 |
void arm_conv_opt_q7(
|
|
3040 |
q7_t * pSrcA,
|
|
3041 |
uint32_t srcALen,
|
|
3042 |
q7_t * pSrcB,
|
|
3043 |
uint32_t srcBLen,
|
|
3044 |
q7_t * pDst,
|
|
3045 |
q15_t * pScratch1,
|
|
3046 |
q15_t * pScratch2);
|
|
3047 |
|
|
3048 |
|
|
3049 |
/**
|
|
3050 |
* @brief Convolution of Q7 sequences.
|
|
3051 |
* @param[in] pSrcA points to the first input sequence.
|
|
3052 |
* @param[in] srcALen length of the first input sequence.
|
|
3053 |
* @param[in] pSrcB points to the second input sequence.
|
|
3054 |
* @param[in] srcBLen length of the second input sequence.
|
|
3055 |
* @param[out] pDst points to the block of output data Length srcALen+srcBLen-1.
|
|
3056 |
*/
|
|
3057 |
void arm_conv_q7(
|
|
3058 |
q7_t * pSrcA,
|
|
3059 |
uint32_t srcALen,
|
|
3060 |
q7_t * pSrcB,
|
|
3061 |
uint32_t srcBLen,
|
|
3062 |
q7_t * pDst);
|
|
3063 |
|
|
3064 |
|
|
3065 |
/**
|
|
3066 |
* @brief Partial convolution of floating-point sequences.
|
|
3067 |
* @param[in] pSrcA points to the first input sequence.
|
|
3068 |
* @param[in] srcALen length of the first input sequence.
|
|
3069 |
* @param[in] pSrcB points to the second input sequence.
|
|
3070 |
* @param[in] srcBLen length of the second input sequence.
|
|
3071 |
* @param[out] pDst points to the block of output data
|
|
3072 |
* @param[in] firstIndex is the first output sample to start with.
|
|
3073 |
* @param[in] numPoints is the number of output points to be computed.
|
|
3074 |
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
|
|
3075 |
*/
|
|
3076 |
arm_status arm_conv_partial_f32(
|
|
3077 |
float32_t * pSrcA,
|
|
3078 |
uint32_t srcALen,
|
|
3079 |
float32_t * pSrcB,
|
|
3080 |
uint32_t srcBLen,
|
|
3081 |
float32_t * pDst,
|
|
3082 |
uint32_t firstIndex,
|
|
3083 |
uint32_t numPoints);
|
|
3084 |
|
|
3085 |
|
|
3086 |
/**
|
|
3087 |
* @brief Partial convolution of Q15 sequences.
|
|
3088 |
* @param[in] pSrcA points to the first input sequence.
|
|
3089 |
* @param[in] srcALen length of the first input sequence.
|
|
3090 |
* @param[in] pSrcB points to the second input sequence.
|
|
3091 |
* @param[in] srcBLen length of the second input sequence.
|
|
3092 |
* @param[out] pDst points to the block of output data
|
|
3093 |
* @param[in] firstIndex is the first output sample to start with.
|
|
3094 |
* @param[in] numPoints is the number of output points to be computed.
|
|
3095 |
* @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
|
|
3096 |
* @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
|
|
3097 |
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
|
|
3098 |
*/
|
|
3099 |
arm_status arm_conv_partial_opt_q15(
|
|
3100 |
q15_t * pSrcA,
|
|
3101 |
uint32_t srcALen,
|
|
3102 |
q15_t * pSrcB,
|
|
3103 |
uint32_t srcBLen,
|
|
3104 |
q15_t * pDst,
|
|
3105 |
uint32_t firstIndex,
|
|
3106 |
uint32_t numPoints,
|
|
3107 |
q15_t * pScratch1,
|
|
3108 |
q15_t * pScratch2);
|
|
3109 |
|
|
3110 |
|
|
3111 |
/**
|
|
3112 |
* @brief Partial convolution of Q15 sequences.
|
|
3113 |
* @param[in] pSrcA points to the first input sequence.
|
|
3114 |
* @param[in] srcALen length of the first input sequence.
|
|
3115 |
* @param[in] pSrcB points to the second input sequence.
|
|
3116 |
* @param[in] srcBLen length of the second input sequence.
|
|
3117 |
* @param[out] pDst points to the block of output data
|
|
3118 |
* @param[in] firstIndex is the first output sample to start with.
|
|
3119 |
* @param[in] numPoints is the number of output points to be computed.
|
|
3120 |
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
|
|
3121 |
*/
|
|
3122 |
arm_status arm_conv_partial_q15(
|
|
3123 |
q15_t * pSrcA,
|
|
3124 |
uint32_t srcALen,
|
|
3125 |
q15_t * pSrcB,
|
|
3126 |
uint32_t srcBLen,
|
|
3127 |
q15_t * pDst,
|
|
3128 |
uint32_t firstIndex,
|
|
3129 |
uint32_t numPoints);
|
|
3130 |
|
|
3131 |
|
|
3132 |
/**
|
|
3133 |
* @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
|
|
3134 |
* @param[in] pSrcA points to the first input sequence.
|
|
3135 |
* @param[in] srcALen length of the first input sequence.
|
|
3136 |
* @param[in] pSrcB points to the second input sequence.
|
|
3137 |
* @param[in] srcBLen length of the second input sequence.
|
|
3138 |
* @param[out] pDst points to the block of output data
|
|
3139 |
* @param[in] firstIndex is the first output sample to start with.
|
|
3140 |
* @param[in] numPoints is the number of output points to be computed.
|
|
3141 |
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
|
|
3142 |
*/
|
|
3143 |
arm_status arm_conv_partial_fast_q15(
|
|
3144 |
q15_t * pSrcA,
|
|
3145 |
uint32_t srcALen,
|
|
3146 |
q15_t * pSrcB,
|
|
3147 |
uint32_t srcBLen,
|
|
3148 |
q15_t * pDst,
|
|
3149 |
uint32_t firstIndex,
|
|
3150 |
uint32_t numPoints);
|
|
3151 |
|
|
3152 |
|
|
3153 |
/**
|
|
3154 |
* @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
|
|
3155 |
* @param[in] pSrcA points to the first input sequence.
|
|
3156 |
* @param[in] srcALen length of the first input sequence.
|
|
3157 |
* @param[in] pSrcB points to the second input sequence.
|
|
3158 |
* @param[in] srcBLen length of the second input sequence.
|
|
3159 |
* @param[out] pDst points to the block of output data
|
|
3160 |
* @param[in] firstIndex is the first output sample to start with.
|
|
3161 |
* @param[in] numPoints is the number of output points to be computed.
|
|
3162 |
* @param[in] pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
|
|
3163 |
* @param[in] pScratch2 points to scratch buffer of size min(srcALen, srcBLen).
|
|
3164 |
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
|
|
3165 |
*/
|
|
3166 |
arm_status arm_conv_partial_fast_opt_q15(
|
|
3167 |
q15_t * pSrcA,
|
|
3168 |
uint32_t srcALen,
|
|
3169 |
q15_t * pSrcB,
|
|
3170 |
uint32_t srcBLen,
|
|
3171 |
q15_t * pDst,
|
|
3172 |
uint32_t firstIndex,
|
|
3173 |
uint32_t numPoints,
|
|
3174 |
q15_t * pScratch1,
|
|
3175 |
q15_t * pScratch2);
|
|
3176 |
|
|
3177 |
|
|
3178 |
/**
|
|
3179 |
* @brief Partial convolution of Q31 sequences.
|
|
3180 |
* @param[in] pSrcA points to the first input sequence.
|
|
3181 |
* @param[in] srcALen length of the first input sequence.
|
|
3182 |
* @param[in] pSrcB points to the second input sequence.
|
|
3183 |
* @param[in] srcBLen length of the second input sequence.
|
|
3184 |
* @param[out] pDst points to the block of output data
|
|
3185 |
* @param[in] firstIndex is the first output sample to start with.
|
|
3186 |
* @param[in] numPoints is the number of output points to be computed.
|
|
3187 |
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
|
|
3188 |
*/
|
|
3189 |
arm_status arm_conv_partial_q31(
|
|
3190 |
q31_t * pSrcA,
|
|
3191 |
uint32_t srcALen,
|
|
3192 |
q31_t * pSrcB,
|
|
3193 |
uint32_t srcBLen,
|
|
3194 |
q31_t * pDst,
|
|
3195 |
uint32_t firstIndex,
|
|
3196 |
uint32_t numPoints);
|
|
3197 |
|
|
3198 |
|
|
3199 |
/**
|
|
3200 |
* @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
|
|
3201 |
* @param[in] pSrcA points to the first input sequence.
|
|
3202 |
* @param[in] srcALen length of the first input sequence.
|
|
3203 |
* @param[in] pSrcB points to the second input sequence.
|
|
3204 |
* @param[in] srcBLen length of the second input sequence.
|
|
3205 |
* @param[out] pDst points to the block of output data
|
|
3206 |
* @param[in] firstIndex is the first output sample to start with.
|
|
3207 |
* @param[in] numPoints is the number of output points to be computed.
|
|
3208 |
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
|
|
3209 |
*/
|
|
3210 |
arm_status arm_conv_partial_fast_q31(
|
|
3211 |
q31_t * pSrcA,
|
|
3212 |
uint32_t srcALen,
|
|
3213 |
q31_t * pSrcB,
|
|
3214 |
uint32_t srcBLen,
|
|
3215 |
q31_t * pDst,
|
|
3216 |
uint32_t firstIndex,
|
|
3217 |
uint32_t numPoints);
|
|
3218 |
|
|
3219 |
|
|
3220 |
/**
|
|
3221 |
* @brief Partial convolution of Q7 sequences
|
|
3222 |
* @param[in] pSrcA points to the first input sequence.
|
|
3223 |
* @param[in] srcALen length of the first input sequence.
|
|
3224 |
* @param[in] pSrcB points to the second input sequence.
|
|
3225 |
* @param[in] srcBLen length of the second input sequence.
|
|
3226 |
* @param[out] pDst points to the block of output data
|
|
3227 |
* @param[in] firstIndex is the first output sample to start with.
|
|
3228 |
* @param[in] numPoints is the number of output points to be computed.
|
|
3229 |
* @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
|
|
3230 |
* @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
|
|
3231 |
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
|
|
3232 |
*/
|
|
3233 |
arm_status arm_conv_partial_opt_q7(
|
|
3234 |
q7_t * pSrcA,
|
|
3235 |
uint32_t srcALen,
|
|
3236 |
q7_t * pSrcB,
|
|
3237 |
uint32_t srcBLen,
|
|
3238 |
q7_t * pDst,
|
|
3239 |
uint32_t firstIndex,
|
|
3240 |
uint32_t numPoints,
|
|
3241 |
q15_t * pScratch1,
|
|
3242 |
q15_t * pScratch2);
|
|
3243 |
|
|
3244 |
|
|
3245 |
/**
|
|
3246 |
* @brief Partial convolution of Q7 sequences.
|
|
3247 |
* @param[in] pSrcA points to the first input sequence.
|
|
3248 |
* @param[in] srcALen length of the first input sequence.
|
|
3249 |
* @param[in] pSrcB points to the second input sequence.
|
|
3250 |
* @param[in] srcBLen length of the second input sequence.
|
|
3251 |
* @param[out] pDst points to the block of output data
|
|
3252 |
* @param[in] firstIndex is the first output sample to start with.
|
|
3253 |
* @param[in] numPoints is the number of output points to be computed.
|
|
3254 |
* @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
|
|
3255 |
*/
|
|
3256 |
arm_status arm_conv_partial_q7(
|
|
3257 |
q7_t * pSrcA,
|
|
3258 |
uint32_t srcALen,
|
|
3259 |
q7_t * pSrcB,
|
|
3260 |
uint32_t srcBLen,
|
|
3261 |
q7_t * pDst,
|
|
3262 |
uint32_t firstIndex,
|
|
3263 |
uint32_t numPoints);
|
|
3264 |
|
|
3265 |
|
|
3266 |
/**
|
|
3267 |
* @brief Instance structure for the Q15 FIR decimator.
|
|
3268 |
*/
|
|
3269 |
typedef struct
|
|
3270 |
{
|
|
3271 |
uint8_t M; /**< decimation factor. */
|
|
3272 |
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
3273 |
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
|
3274 |
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
3275 |
} arm_fir_decimate_instance_q15;
|
|
3276 |
|
|
3277 |
/**
|
|
3278 |
* @brief Instance structure for the Q31 FIR decimator.
|
|
3279 |
*/
|
|
3280 |
typedef struct
|
|
3281 |
{
|
|
3282 |
uint8_t M; /**< decimation factor. */
|
|
3283 |
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
3284 |
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
|
3285 |
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
3286 |
} arm_fir_decimate_instance_q31;
|
|
3287 |
|
|
3288 |
/**
|
|
3289 |
* @brief Instance structure for the floating-point FIR decimator.
|
|
3290 |
*/
|
|
3291 |
typedef struct
|
|
3292 |
{
|
|
3293 |
uint8_t M; /**< decimation factor. */
|
|
3294 |
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
3295 |
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
|
3296 |
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
3297 |
} arm_fir_decimate_instance_f32;
|
|
3298 |
|
|
3299 |
|
|
3300 |
/**
|
|
3301 |
* @brief Processing function for the floating-point FIR decimator.
|
|
3302 |
* @param[in] S points to an instance of the floating-point FIR decimator structure.
|
|
3303 |
* @param[in] pSrc points to the block of input data.
|
|
3304 |
* @param[out] pDst points to the block of output data
|
|
3305 |
* @param[in] blockSize number of input samples to process per call.
|
|
3306 |
*/
|
|
3307 |
void arm_fir_decimate_f32(
|
|
3308 |
const arm_fir_decimate_instance_f32 * S,
|
|
3309 |
float32_t * pSrc,
|
|
3310 |
float32_t * pDst,
|
|
3311 |
uint32_t blockSize);
|
|
3312 |
|
|
3313 |
|
|
3314 |
/**
|
|
3315 |
* @brief Initialization function for the floating-point FIR decimator.
|
|
3316 |
* @param[in,out] S points to an instance of the floating-point FIR decimator structure.
|
|
3317 |
* @param[in] numTaps number of coefficients in the filter.
|
|
3318 |
* @param[in] M decimation factor.
|
|
3319 |
* @param[in] pCoeffs points to the filter coefficients.
|
|
3320 |
* @param[in] pState points to the state buffer.
|
|
3321 |
* @param[in] blockSize number of input samples to process per call.
|
|
3322 |
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
|
|
3323 |
* <code>blockSize</code> is not a multiple of <code>M</code>.
|
|
3324 |
*/
|
|
3325 |
arm_status arm_fir_decimate_init_f32(
|
|
3326 |
arm_fir_decimate_instance_f32 * S,
|
|
3327 |
uint16_t numTaps,
|
|
3328 |
uint8_t M,
|
|
3329 |
float32_t * pCoeffs,
|
|
3330 |
float32_t * pState,
|
|
3331 |
uint32_t blockSize);
|
|
3332 |
|
|
3333 |
|
|
3334 |
/**
|
|
3335 |
* @brief Processing function for the Q15 FIR decimator.
|
|
3336 |
* @param[in] S points to an instance of the Q15 FIR decimator structure.
|
|
3337 |
* @param[in] pSrc points to the block of input data.
|
|
3338 |
* @param[out] pDst points to the block of output data
|
|
3339 |
* @param[in] blockSize number of input samples to process per call.
|
|
3340 |
*/
|
|
3341 |
void arm_fir_decimate_q15(
|
|
3342 |
const arm_fir_decimate_instance_q15 * S,
|
|
3343 |
q15_t * pSrc,
|
|
3344 |
q15_t * pDst,
|
|
3345 |
uint32_t blockSize);
|
|
3346 |
|
|
3347 |
|
|
3348 |
/**
|
|
3349 |
* @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
|
|
3350 |
* @param[in] S points to an instance of the Q15 FIR decimator structure.
|
|
3351 |
* @param[in] pSrc points to the block of input data.
|
|
3352 |
* @param[out] pDst points to the block of output data
|
|
3353 |
* @param[in] blockSize number of input samples to process per call.
|
|
3354 |
*/
|
|
3355 |
void arm_fir_decimate_fast_q15(
|
|
3356 |
const arm_fir_decimate_instance_q15 * S,
|
|
3357 |
q15_t * pSrc,
|
|
3358 |
q15_t * pDst,
|
|
3359 |
uint32_t blockSize);
|
|
3360 |
|
|
3361 |
|
|
3362 |
/**
|
|
3363 |
* @brief Initialization function for the Q15 FIR decimator.
|
|
3364 |
* @param[in,out] S points to an instance of the Q15 FIR decimator structure.
|
|
3365 |
* @param[in] numTaps number of coefficients in the filter.
|
|
3366 |
* @param[in] M decimation factor.
|
|
3367 |
* @param[in] pCoeffs points to the filter coefficients.
|
|
3368 |
* @param[in] pState points to the state buffer.
|
|
3369 |
* @param[in] blockSize number of input samples to process per call.
|
|
3370 |
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
|
|
3371 |
* <code>blockSize</code> is not a multiple of <code>M</code>.
|
|
3372 |
*/
|
|
3373 |
arm_status arm_fir_decimate_init_q15(
|
|
3374 |
arm_fir_decimate_instance_q15 * S,
|
|
3375 |
uint16_t numTaps,
|
|
3376 |
uint8_t M,
|
|
3377 |
q15_t * pCoeffs,
|
|
3378 |
q15_t * pState,
|
|
3379 |
uint32_t blockSize);
|
|
3380 |
|
|
3381 |
|
|
3382 |
/**
|
|
3383 |
* @brief Processing function for the Q31 FIR decimator.
|
|
3384 |
* @param[in] S points to an instance of the Q31 FIR decimator structure.
|
|
3385 |
* @param[in] pSrc points to the block of input data.
|
|
3386 |
* @param[out] pDst points to the block of output data
|
|
3387 |
* @param[in] blockSize number of input samples to process per call.
|
|
3388 |
*/
|
|
3389 |
void arm_fir_decimate_q31(
|
|
3390 |
const arm_fir_decimate_instance_q31 * S,
|
|
3391 |
q31_t * pSrc,
|
|
3392 |
q31_t * pDst,
|
|
3393 |
uint32_t blockSize);
|
|
3394 |
|
|
3395 |
/**
|
|
3396 |
* @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
|
|
3397 |
* @param[in] S points to an instance of the Q31 FIR decimator structure.
|
|
3398 |
* @param[in] pSrc points to the block of input data.
|
|
3399 |
* @param[out] pDst points to the block of output data
|
|
3400 |
* @param[in] blockSize number of input samples to process per call.
|
|
3401 |
*/
|
|
3402 |
void arm_fir_decimate_fast_q31(
|
|
3403 |
arm_fir_decimate_instance_q31 * S,
|
|
3404 |
q31_t * pSrc,
|
|
3405 |
q31_t * pDst,
|
|
3406 |
uint32_t blockSize);
|
|
3407 |
|
|
3408 |
|
|
3409 |
/**
|
|
3410 |
* @brief Initialization function for the Q31 FIR decimator.
|
|
3411 |
* @param[in,out] S points to an instance of the Q31 FIR decimator structure.
|
|
3412 |
* @param[in] numTaps number of coefficients in the filter.
|
|
3413 |
* @param[in] M decimation factor.
|
|
3414 |
* @param[in] pCoeffs points to the filter coefficients.
|
|
3415 |
* @param[in] pState points to the state buffer.
|
|
3416 |
* @param[in] blockSize number of input samples to process per call.
|
|
3417 |
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
|
|
3418 |
* <code>blockSize</code> is not a multiple of <code>M</code>.
|
|
3419 |
*/
|
|
3420 |
arm_status arm_fir_decimate_init_q31(
|
|
3421 |
arm_fir_decimate_instance_q31 * S,
|
|
3422 |
uint16_t numTaps,
|
|
3423 |
uint8_t M,
|
|
3424 |
q31_t * pCoeffs,
|
|
3425 |
q31_t * pState,
|
|
3426 |
uint32_t blockSize);
|
|
3427 |
|
|
3428 |
|
|
3429 |
/**
|
|
3430 |
* @brief Instance structure for the Q15 FIR interpolator.
|
|
3431 |
*/
|
|
3432 |
typedef struct
|
|
3433 |
{
|
|
3434 |
uint8_t L; /**< upsample factor. */
|
|
3435 |
uint16_t phaseLength; /**< length of each polyphase filter component. */
|
|
3436 |
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
|
|
3437 |
q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
|
|
3438 |
} arm_fir_interpolate_instance_q15;
|
|
3439 |
|
|
3440 |
/**
|
|
3441 |
* @brief Instance structure for the Q31 FIR interpolator.
|
|
3442 |
*/
|
|
3443 |
typedef struct
|
|
3444 |
{
|
|
3445 |
uint8_t L; /**< upsample factor. */
|
|
3446 |
uint16_t phaseLength; /**< length of each polyphase filter component. */
|
|
3447 |
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
|
|
3448 |
q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
|
|
3449 |
} arm_fir_interpolate_instance_q31;
|
|
3450 |
|
|
3451 |
/**
|
|
3452 |
* @brief Instance structure for the floating-point FIR interpolator.
|
|
3453 |
*/
|
|
3454 |
typedef struct
|
|
3455 |
{
|
|
3456 |
uint8_t L; /**< upsample factor. */
|
|
3457 |
uint16_t phaseLength; /**< length of each polyphase filter component. */
|
|
3458 |
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
|
|
3459 |
float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
|
|
3460 |
} arm_fir_interpolate_instance_f32;
|
|
3461 |
|
|
3462 |
|
|
3463 |
/**
|
|
3464 |
* @brief Processing function for the Q15 FIR interpolator.
|
|
3465 |
* @param[in] S points to an instance of the Q15 FIR interpolator structure.
|
|
3466 |
* @param[in] pSrc points to the block of input data.
|
|
3467 |
* @param[out] pDst points to the block of output data.
|
|
3468 |
* @param[in] blockSize number of input samples to process per call.
|
|
3469 |
*/
|
|
3470 |
void arm_fir_interpolate_q15(
|
|
3471 |
const arm_fir_interpolate_instance_q15 * S,
|
|
3472 |
q15_t * pSrc,
|
|
3473 |
q15_t * pDst,
|
|
3474 |
uint32_t blockSize);
|
|
3475 |
|
|
3476 |
|
|
3477 |
/**
|
|
3478 |
* @brief Initialization function for the Q15 FIR interpolator.
|
|
3479 |
* @param[in,out] S points to an instance of the Q15 FIR interpolator structure.
|
|
3480 |
* @param[in] L upsample factor.
|
|
3481 |
* @param[in] numTaps number of filter coefficients in the filter.
|
|
3482 |
* @param[in] pCoeffs points to the filter coefficient buffer.
|
|
3483 |
* @param[in] pState points to the state buffer.
|
|
3484 |
* @param[in] blockSize number of input samples to process per call.
|
|
3485 |
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
|
|
3486 |
* the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
|
|
3487 |
*/
|
|
3488 |
arm_status arm_fir_interpolate_init_q15(
|
|
3489 |
arm_fir_interpolate_instance_q15 * S,
|
|
3490 |
uint8_t L,
|
|
3491 |
uint16_t numTaps,
|
|
3492 |
q15_t * pCoeffs,
|
|
3493 |
q15_t * pState,
|
|
3494 |
uint32_t blockSize);
|
|
3495 |
|
|
3496 |
|
|
3497 |
/**
|
|
3498 |
* @brief Processing function for the Q31 FIR interpolator.
|
|
3499 |
* @param[in] S points to an instance of the Q15 FIR interpolator structure.
|
|
3500 |
* @param[in] pSrc points to the block of input data.
|
|
3501 |
* @param[out] pDst points to the block of output data.
|
|
3502 |
* @param[in] blockSize number of input samples to process per call.
|
|
3503 |
*/
|
|
3504 |
void arm_fir_interpolate_q31(
|
|
3505 |
const arm_fir_interpolate_instance_q31 * S,
|
|
3506 |
q31_t * pSrc,
|
|
3507 |
q31_t * pDst,
|
|
3508 |
uint32_t blockSize);
|
|
3509 |
|
|
3510 |
|
|
3511 |
/**
|
|
3512 |
* @brief Initialization function for the Q31 FIR interpolator.
|
|
3513 |
* @param[in,out] S points to an instance of the Q31 FIR interpolator structure.
|
|
3514 |
* @param[in] L upsample factor.
|
|
3515 |
* @param[in] numTaps number of filter coefficients in the filter.
|
|
3516 |
* @param[in] pCoeffs points to the filter coefficient buffer.
|
|
3517 |
* @param[in] pState points to the state buffer.
|
|
3518 |
* @param[in] blockSize number of input samples to process per call.
|
|
3519 |
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
|
|
3520 |
* the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
|
|
3521 |
*/
|
|
3522 |
arm_status arm_fir_interpolate_init_q31(
|
|
3523 |
arm_fir_interpolate_instance_q31 * S,
|
|
3524 |
uint8_t L,
|
|
3525 |
uint16_t numTaps,
|
|
3526 |
q31_t * pCoeffs,
|
|
3527 |
q31_t * pState,
|
|
3528 |
uint32_t blockSize);
|
|
3529 |
|
|
3530 |
|
|
3531 |
/**
|
|
3532 |
* @brief Processing function for the floating-point FIR interpolator.
|
|
3533 |
* @param[in] S points to an instance of the floating-point FIR interpolator structure.
|
|
3534 |
* @param[in] pSrc points to the block of input data.
|
|
3535 |
* @param[out] pDst points to the block of output data.
|
|
3536 |
* @param[in] blockSize number of input samples to process per call.
|
|
3537 |
*/
|
|
3538 |
void arm_fir_interpolate_f32(
|
|
3539 |
const arm_fir_interpolate_instance_f32 * S,
|
|
3540 |
float32_t * pSrc,
|
|
3541 |
float32_t * pDst,
|
|
3542 |
uint32_t blockSize);
|
|
3543 |
|
|
3544 |
|
|
3545 |
/**
|
|
3546 |
* @brief Initialization function for the floating-point FIR interpolator.
|
|
3547 |
* @param[in,out] S points to an instance of the floating-point FIR interpolator structure.
|
|
3548 |
* @param[in] L upsample factor.
|
|
3549 |
* @param[in] numTaps number of filter coefficients in the filter.
|
|
3550 |
* @param[in] pCoeffs points to the filter coefficient buffer.
|
|
3551 |
* @param[in] pState points to the state buffer.
|
|
3552 |
* @param[in] blockSize number of input samples to process per call.
|
|
3553 |
* @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
|
|
3554 |
* the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
|
|
3555 |
*/
|
|
3556 |
arm_status arm_fir_interpolate_init_f32(
|
|
3557 |
arm_fir_interpolate_instance_f32 * S,
|
|
3558 |
uint8_t L,
|
|
3559 |
uint16_t numTaps,
|
|
3560 |
float32_t * pCoeffs,
|
|
3561 |
float32_t * pState,
|
|
3562 |
uint32_t blockSize);
|
|
3563 |
|
|
3564 |
|
|
3565 |
/**
|
|
3566 |
* @brief Instance structure for the high precision Q31 Biquad cascade filter.
|
|
3567 |
*/
|
|
3568 |
typedef struct
|
|
3569 |
{
|
|
3570 |
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
|
|
3571 |
q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
|
|
3572 |
q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
|
|
3573 |
uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
|
|
3574 |
} arm_biquad_cas_df1_32x64_ins_q31;
|
|
3575 |
|
|
3576 |
|
|
3577 |
/**
|
|
3578 |
* @param[in] S points to an instance of the high precision Q31 Biquad cascade filter structure.
|
|
3579 |
* @param[in] pSrc points to the block of input data.
|
|
3580 |
* @param[out] pDst points to the block of output data
|
|
3581 |
* @param[in] blockSize number of samples to process.
|
|
3582 |
*/
|
|
3583 |
void arm_biquad_cas_df1_32x64_q31(
|
|
3584 |
const arm_biquad_cas_df1_32x64_ins_q31 * S,
|
|
3585 |
q31_t * pSrc,
|
|
3586 |
q31_t * pDst,
|
|
3587 |
uint32_t blockSize);
|
|
3588 |
|
|
3589 |
|
|
3590 |
/**
|
|
3591 |
* @param[in,out] S points to an instance of the high precision Q31 Biquad cascade filter structure.
|
|
3592 |
* @param[in] numStages number of 2nd order stages in the filter.
|
|
3593 |
* @param[in] pCoeffs points to the filter coefficients.
|
|
3594 |
* @param[in] pState points to the state buffer.
|
|
3595 |
* @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
|
|
3596 |
*/
|
|
3597 |
void arm_biquad_cas_df1_32x64_init_q31(
|
|
3598 |
arm_biquad_cas_df1_32x64_ins_q31 * S,
|
|
3599 |
uint8_t numStages,
|
|
3600 |
q31_t * pCoeffs,
|
|
3601 |
q63_t * pState,
|
|
3602 |
uint8_t postShift);
|
|
3603 |
|
|
3604 |
|
|
3605 |
/**
|
|
3606 |
* @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
|
|
3607 |
*/
|
|
3608 |
typedef struct
|
|
3609 |
{
|
|
3610 |
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
|
|
3611 |
float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
|
|
3612 |
float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
|
|
3613 |
} arm_biquad_cascade_df2T_instance_f32;
|
|
3614 |
|
|
3615 |
/**
|
|
3616 |
* @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
|
|
3617 |
*/
|
|
3618 |
typedef struct
|
|
3619 |
{
|
|
3620 |
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
|
|
3621 |
float32_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
|
|
3622 |
float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
|
|
3623 |
} arm_biquad_cascade_stereo_df2T_instance_f32;
|
|
3624 |
|
|
3625 |
/**
|
|
3626 |
* @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
|
|
3627 |
*/
|
|
3628 |
typedef struct
|
|
3629 |
{
|
|
3630 |
uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
|
|
3631 |
float64_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
|
|
3632 |
float64_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
|
|
3633 |
} arm_biquad_cascade_df2T_instance_f64;
|
|
3634 |
|
|
3635 |
|
|
3636 |
/**
|
|
3637 |
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
|
|
3638 |
* @param[in] S points to an instance of the filter data structure.
|
|
3639 |
* @param[in] pSrc points to the block of input data.
|
|
3640 |
* @param[out] pDst points to the block of output data
|
|
3641 |
* @param[in] blockSize number of samples to process.
|
|
3642 |
*/
|
|
3643 |
void arm_biquad_cascade_df2T_f32(
|
|
3644 |
const arm_biquad_cascade_df2T_instance_f32 * S,
|
|
3645 |
float32_t * pSrc,
|
|
3646 |
float32_t * pDst,
|
|
3647 |
uint32_t blockSize);
|
|
3648 |
|
|
3649 |
|
|
3650 |
/**
|
|
3651 |
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter. 2 channels
|
|
3652 |
* @param[in] S points to an instance of the filter data structure.
|
|
3653 |
* @param[in] pSrc points to the block of input data.
|
|
3654 |
* @param[out] pDst points to the block of output data
|
|
3655 |
* @param[in] blockSize number of samples to process.
|
|
3656 |
*/
|
|
3657 |
void arm_biquad_cascade_stereo_df2T_f32(
|
|
3658 |
const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
|
|
3659 |
float32_t * pSrc,
|
|
3660 |
float32_t * pDst,
|
|
3661 |
uint32_t blockSize);
|
|
3662 |
|
|
3663 |
|
|
3664 |
/**
|
|
3665 |
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
|
|
3666 |
* @param[in] S points to an instance of the filter data structure.
|
|
3667 |
* @param[in] pSrc points to the block of input data.
|
|
3668 |
* @param[out] pDst points to the block of output data
|
|
3669 |
* @param[in] blockSize number of samples to process.
|
|
3670 |
*/
|
|
3671 |
void arm_biquad_cascade_df2T_f64(
|
|
3672 |
const arm_biquad_cascade_df2T_instance_f64 * S,
|
|
3673 |
float64_t * pSrc,
|
|
3674 |
float64_t * pDst,
|
|
3675 |
uint32_t blockSize);
|
|
3676 |
|
|
3677 |
|
|
3678 |
/**
|
|
3679 |
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
|
|
3680 |
* @param[in,out] S points to an instance of the filter data structure.
|
|
3681 |
* @param[in] numStages number of 2nd order stages in the filter.
|
|
3682 |
* @param[in] pCoeffs points to the filter coefficients.
|
|
3683 |
* @param[in] pState points to the state buffer.
|
|
3684 |
*/
|
|
3685 |
void arm_biquad_cascade_df2T_init_f32(
|
|
3686 |
arm_biquad_cascade_df2T_instance_f32 * S,
|
|
3687 |
uint8_t numStages,
|
|
3688 |
float32_t * pCoeffs,
|
|
3689 |
float32_t * pState);
|
|
3690 |
|
|
3691 |
|
|
3692 |
/**
|
|
3693 |
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
|
|
3694 |
* @param[in,out] S points to an instance of the filter data structure.
|
|
3695 |
* @param[in] numStages number of 2nd order stages in the filter.
|
|
3696 |
* @param[in] pCoeffs points to the filter coefficients.
|
|
3697 |
* @param[in] pState points to the state buffer.
|
|
3698 |
*/
|
|
3699 |
void arm_biquad_cascade_stereo_df2T_init_f32(
|
|
3700 |
arm_biquad_cascade_stereo_df2T_instance_f32 * S,
|
|
3701 |
uint8_t numStages,
|
|
3702 |
float32_t * pCoeffs,
|
|
3703 |
float32_t * pState);
|
|
3704 |
|
|
3705 |
|
|
3706 |
/**
|
|
3707 |
* @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
|
|
3708 |
* @param[in,out] S points to an instance of the filter data structure.
|
|
3709 |
* @param[in] numStages number of 2nd order stages in the filter.
|
|
3710 |
* @param[in] pCoeffs points to the filter coefficients.
|
|
3711 |
* @param[in] pState points to the state buffer.
|
|
3712 |
*/
|
|
3713 |
void arm_biquad_cascade_df2T_init_f64(
|
|
3714 |
arm_biquad_cascade_df2T_instance_f64 * S,
|
|
3715 |
uint8_t numStages,
|
|
3716 |
float64_t * pCoeffs,
|
|
3717 |
float64_t * pState);
|
|
3718 |
|
|
3719 |
|
|
3720 |
/**
|
|
3721 |
* @brief Instance structure for the Q15 FIR lattice filter.
|
|
3722 |
*/
|
|
3723 |
typedef struct
|
|
3724 |
{
|
|
3725 |
uint16_t numStages; /**< number of filter stages. */
|
|
3726 |
q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
|
|
3727 |
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
|
|
3728 |
} arm_fir_lattice_instance_q15;
|
|
3729 |
|
|
3730 |
/**
|
|
3731 |
* @brief Instance structure for the Q31 FIR lattice filter.
|
|
3732 |
*/
|
|
3733 |
typedef struct
|
|
3734 |
{
|
|
3735 |
uint16_t numStages; /**< number of filter stages. */
|
|
3736 |
q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
|
|
3737 |
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
|
|
3738 |
} arm_fir_lattice_instance_q31;
|
|
3739 |
|
|
3740 |
/**
|
|
3741 |
* @brief Instance structure for the floating-point FIR lattice filter.
|
|
3742 |
*/
|
|
3743 |
typedef struct
|
|
3744 |
{
|
|
3745 |
uint16_t numStages; /**< number of filter stages. */
|
|
3746 |
float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
|
|
3747 |
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
|
|
3748 |
} arm_fir_lattice_instance_f32;
|
|
3749 |
|
|
3750 |
|
|
3751 |
/**
|
|
3752 |
* @brief Initialization function for the Q15 FIR lattice filter.
|
|
3753 |
* @param[in] S points to an instance of the Q15 FIR lattice structure.
|
|
3754 |
* @param[in] numStages number of filter stages.
|
|
3755 |
* @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
|
|
3756 |
* @param[in] pState points to the state buffer. The array is of length numStages.
|
|
3757 |
*/
|
|
3758 |
void arm_fir_lattice_init_q15(
|
|
3759 |
arm_fir_lattice_instance_q15 * S,
|
|
3760 |
uint16_t numStages,
|
|
3761 |
q15_t * pCoeffs,
|
|
3762 |
q15_t * pState);
|
|
3763 |
|
|
3764 |
|
|
3765 |
/**
|
|
3766 |
* @brief Processing function for the Q15 FIR lattice filter.
|
|
3767 |
* @param[in] S points to an instance of the Q15 FIR lattice structure.
|
|
3768 |
* @param[in] pSrc points to the block of input data.
|
|
3769 |
* @param[out] pDst points to the block of output data.
|
|
3770 |
* @param[in] blockSize number of samples to process.
|
|
3771 |
*/
|
|
3772 |
void arm_fir_lattice_q15(
|
|
3773 |
const arm_fir_lattice_instance_q15 * S,
|
|
3774 |
q15_t * pSrc,
|
|
3775 |
q15_t * pDst,
|
|
3776 |
uint32_t blockSize);
|
|
3777 |
|
|
3778 |
|
|
3779 |
/**
|
|
3780 |
* @brief Initialization function for the Q31 FIR lattice filter.
|
|
3781 |
* @param[in] S points to an instance of the Q31 FIR lattice structure.
|
|
3782 |
* @param[in] numStages number of filter stages.
|
|
3783 |
* @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
|
|
3784 |
* @param[in] pState points to the state buffer. The array is of length numStages.
|
|
3785 |
*/
|
|
3786 |
void arm_fir_lattice_init_q31(
|
|
3787 |
arm_fir_lattice_instance_q31 * S,
|
|
3788 |
uint16_t numStages,
|
|
3789 |
q31_t * pCoeffs,
|
|
3790 |
q31_t * pState);
|
|
3791 |
|
|
3792 |
|
|
3793 |
/**
|
|
3794 |
* @brief Processing function for the Q31 FIR lattice filter.
|
|
3795 |
* @param[in] S points to an instance of the Q31 FIR lattice structure.
|
|
3796 |
* @param[in] pSrc points to the block of input data.
|
|
3797 |
* @param[out] pDst points to the block of output data
|
|
3798 |
* @param[in] blockSize number of samples to process.
|
|
3799 |
*/
|
|
3800 |
void arm_fir_lattice_q31(
|
|
3801 |
const arm_fir_lattice_instance_q31 * S,
|
|
3802 |
q31_t * pSrc,
|
|
3803 |
q31_t * pDst,
|
|
3804 |
uint32_t blockSize);
|
|
3805 |
|
|
3806 |
|
|
3807 |
/**
|
|
3808 |
* @brief Initialization function for the floating-point FIR lattice filter.
|
|
3809 |
* @param[in] S points to an instance of the floating-point FIR lattice structure.
|
|
3810 |
* @param[in] numStages number of filter stages.
|
|
3811 |
* @param[in] pCoeffs points to the coefficient buffer. The array is of length numStages.
|
|
3812 |
* @param[in] pState points to the state buffer. The array is of length numStages.
|
|
3813 |
*/
|
|
3814 |
void arm_fir_lattice_init_f32(
|
|
3815 |
arm_fir_lattice_instance_f32 * S,
|
|
3816 |
uint16_t numStages,
|
|
3817 |
float32_t * pCoeffs,
|
|
3818 |
float32_t * pState);
|
|
3819 |
|
|
3820 |
|
|
3821 |
/**
|
|
3822 |
* @brief Processing function for the floating-point FIR lattice filter.
|
|
3823 |
* @param[in] S points to an instance of the floating-point FIR lattice structure.
|
|
3824 |
* @param[in] pSrc points to the block of input data.
|
|
3825 |
* @param[out] pDst points to the block of output data
|
|
3826 |
* @param[in] blockSize number of samples to process.
|
|
3827 |
*/
|
|
3828 |
void arm_fir_lattice_f32(
|
|
3829 |
const arm_fir_lattice_instance_f32 * S,
|
|
3830 |
float32_t * pSrc,
|
|
3831 |
float32_t * pDst,
|
|
3832 |
uint32_t blockSize);
|
|
3833 |
|
|
3834 |
|
|
3835 |
/**
|
|
3836 |
* @brief Instance structure for the Q15 IIR lattice filter.
|
|
3837 |
*/
|
|
3838 |
typedef struct
|
|
3839 |
{
|
|
3840 |
uint16_t numStages; /**< number of stages in the filter. */
|
|
3841 |
q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
|
|
3842 |
q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
|
|
3843 |
q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
|
|
3844 |
} arm_iir_lattice_instance_q15;
|
|
3845 |
|
|
3846 |
/**
|
|
3847 |
* @brief Instance structure for the Q31 IIR lattice filter.
|
|
3848 |
*/
|
|
3849 |
typedef struct
|
|
3850 |
{
|
|
3851 |
uint16_t numStages; /**< number of stages in the filter. */
|
|
3852 |
q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
|
|
3853 |
q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
|
|
3854 |
q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
|
|
3855 |
} arm_iir_lattice_instance_q31;
|
|
3856 |
|
|
3857 |
/**
|
|
3858 |
* @brief Instance structure for the floating-point IIR lattice filter.
|
|
3859 |
*/
|
|
3860 |
typedef struct
|
|
3861 |
{
|
|
3862 |
uint16_t numStages; /**< number of stages in the filter. */
|
|
3863 |
float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
|
|
3864 |
float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
|
|
3865 |
float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
|
|
3866 |
} arm_iir_lattice_instance_f32;
|
|
3867 |
|
|
3868 |
|
|
3869 |
/**
|
|
3870 |
* @brief Processing function for the floating-point IIR lattice filter.
|
|
3871 |
* @param[in] S points to an instance of the floating-point IIR lattice structure.
|
|
3872 |
* @param[in] pSrc points to the block of input data.
|
|
3873 |
* @param[out] pDst points to the block of output data.
|
|
3874 |
* @param[in] blockSize number of samples to process.
|
|
3875 |
*/
|
|
3876 |
void arm_iir_lattice_f32(
|
|
3877 |
const arm_iir_lattice_instance_f32 * S,
|
|
3878 |
float32_t * pSrc,
|
|
3879 |
float32_t * pDst,
|
|
3880 |
uint32_t blockSize);
|
|
3881 |
|
|
3882 |
|
|
3883 |
/**
|
|
3884 |
* @brief Initialization function for the floating-point IIR lattice filter.
|
|
3885 |
* @param[in] S points to an instance of the floating-point IIR lattice structure.
|
|
3886 |
* @param[in] numStages number of stages in the filter.
|
|
3887 |
* @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
|
|
3888 |
* @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
|
|
3889 |
* @param[in] pState points to the state buffer. The array is of length numStages+blockSize-1.
|
|
3890 |
* @param[in] blockSize number of samples to process.
|
|
3891 |
*/
|
|
3892 |
void arm_iir_lattice_init_f32(
|
|
3893 |
arm_iir_lattice_instance_f32 * S,
|
|
3894 |
uint16_t numStages,
|
|
3895 |
float32_t * pkCoeffs,
|
|
3896 |
float32_t * pvCoeffs,
|
|
3897 |
float32_t * pState,
|
|
3898 |
uint32_t blockSize);
|
|
3899 |
|
|
3900 |
|
|
3901 |
/**
|
|
3902 |
* @brief Processing function for the Q31 IIR lattice filter.
|
|
3903 |
* @param[in] S points to an instance of the Q31 IIR lattice structure.
|
|
3904 |
* @param[in] pSrc points to the block of input data.
|
|
3905 |
* @param[out] pDst points to the block of output data.
|
|
3906 |
* @param[in] blockSize number of samples to process.
|
|
3907 |
*/
|
|
3908 |
void arm_iir_lattice_q31(
|
|
3909 |
const arm_iir_lattice_instance_q31 * S,
|
|
3910 |
q31_t * pSrc,
|
|
3911 |
q31_t * pDst,
|
|
3912 |
uint32_t blockSize);
|
|
3913 |
|
|
3914 |
|
|
3915 |
/**
|
|
3916 |
* @brief Initialization function for the Q31 IIR lattice filter.
|
|
3917 |
* @param[in] S points to an instance of the Q31 IIR lattice structure.
|
|
3918 |
* @param[in] numStages number of stages in the filter.
|
|
3919 |
* @param[in] pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
|
|
3920 |
* @param[in] pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
|
|
3921 |
* @param[in] pState points to the state buffer. The array is of length numStages+blockSize.
|
|
3922 |
* @param[in] blockSize number of samples to process.
|
|
3923 |
*/
|
|
3924 |
void arm_iir_lattice_init_q31(
|
|
3925 |
arm_iir_lattice_instance_q31 * S,
|
|
3926 |
uint16_t numStages,
|
|
3927 |
q31_t * pkCoeffs,
|
|
3928 |
q31_t * pvCoeffs,
|
|
3929 |
q31_t * pState,
|
|
3930 |
uint32_t blockSize);
|
|
3931 |
|
|
3932 |
|
|
3933 |
/**
|
|
3934 |
* @brief Processing function for the Q15 IIR lattice filter.
|
|
3935 |
* @param[in] S points to an instance of the Q15 IIR lattice structure.
|
|
3936 |
* @param[in] pSrc points to the block of input data.
|
|
3937 |
* @param[out] pDst points to the block of output data.
|
|
3938 |
* @param[in] blockSize number of samples to process.
|
|
3939 |
*/
|
|
3940 |
void arm_iir_lattice_q15(
|
|
3941 |
const arm_iir_lattice_instance_q15 * S,
|
|
3942 |
q15_t * pSrc,
|
|
3943 |
q15_t * pDst,
|
|
3944 |
uint32_t blockSize);
|
|
3945 |
|
|
3946 |
|
|
3947 |
/**
|
|
3948 |
* @brief Initialization function for the Q15 IIR lattice filter.
|
|
3949 |
* @param[in] S points to an instance of the fixed-point Q15 IIR lattice structure.
|
|
3950 |
* @param[in] numStages number of stages in the filter.
|
|
3951 |
* @param[in] pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
|
|
3952 |
* @param[in] pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
|
|
3953 |
* @param[in] pState points to state buffer. The array is of length numStages+blockSize.
|
|
3954 |
* @param[in] blockSize number of samples to process per call.
|
|
3955 |
*/
|
|
3956 |
void arm_iir_lattice_init_q15(
|
|
3957 |
arm_iir_lattice_instance_q15 * S,
|
|
3958 |
uint16_t numStages,
|
|
3959 |
q15_t * pkCoeffs,
|
|
3960 |
q15_t * pvCoeffs,
|
|
3961 |
q15_t * pState,
|
|
3962 |
uint32_t blockSize);
|
|
3963 |
|
|
3964 |
|
|
3965 |
/**
|
|
3966 |
* @brief Instance structure for the floating-point LMS filter.
|
|
3967 |
*/
|
|
3968 |
typedef struct
|
|
3969 |
{
|
|
3970 |
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
3971 |
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
3972 |
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
|
3973 |
float32_t mu; /**< step size that controls filter coefficient updates. */
|
|
3974 |
} arm_lms_instance_f32;
|
|
3975 |
|
|
3976 |
|
|
3977 |
/**
|
|
3978 |
* @brief Processing function for floating-point LMS filter.
|
|
3979 |
* @param[in] S points to an instance of the floating-point LMS filter structure.
|
|
3980 |
* @param[in] pSrc points to the block of input data.
|
|
3981 |
* @param[in] pRef points to the block of reference data.
|
|
3982 |
* @param[out] pOut points to the block of output data.
|
|
3983 |
* @param[out] pErr points to the block of error data.
|
|
3984 |
* @param[in] blockSize number of samples to process.
|
|
3985 |
*/
|
|
3986 |
void arm_lms_f32(
|
|
3987 |
const arm_lms_instance_f32 * S,
|
|
3988 |
float32_t * pSrc,
|
|
3989 |
float32_t * pRef,
|
|
3990 |
float32_t * pOut,
|
|
3991 |
float32_t * pErr,
|
|
3992 |
uint32_t blockSize);
|
|
3993 |
|
|
3994 |
|
|
3995 |
/**
|
|
3996 |
* @brief Initialization function for floating-point LMS filter.
|
|
3997 |
* @param[in] S points to an instance of the floating-point LMS filter structure.
|
|
3998 |
* @param[in] numTaps number of filter coefficients.
|
|
3999 |
* @param[in] pCoeffs points to the coefficient buffer.
|
|
4000 |
* @param[in] pState points to state buffer.
|
|
4001 |
* @param[in] mu step size that controls filter coefficient updates.
|
|
4002 |
* @param[in] blockSize number of samples to process.
|
|
4003 |
*/
|
|
4004 |
void arm_lms_init_f32(
|
|
4005 |
arm_lms_instance_f32 * S,
|
|
4006 |
uint16_t numTaps,
|
|
4007 |
float32_t * pCoeffs,
|
|
4008 |
float32_t * pState,
|
|
4009 |
float32_t mu,
|
|
4010 |
uint32_t blockSize);
|
|
4011 |
|
|
4012 |
|
|
4013 |
/**
|
|
4014 |
* @brief Instance structure for the Q15 LMS filter.
|
|
4015 |
*/
|
|
4016 |
typedef struct
|
|
4017 |
{
|
|
4018 |
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
4019 |
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
4020 |
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
|
4021 |
q15_t mu; /**< step size that controls filter coefficient updates. */
|
|
4022 |
uint32_t postShift; /**< bit shift applied to coefficients. */
|
|
4023 |
} arm_lms_instance_q15;
|
|
4024 |
|
|
4025 |
|
|
4026 |
/**
|
|
4027 |
* @brief Initialization function for the Q15 LMS filter.
|
|
4028 |
* @param[in] S points to an instance of the Q15 LMS filter structure.
|
|
4029 |
* @param[in] numTaps number of filter coefficients.
|
|
4030 |
* @param[in] pCoeffs points to the coefficient buffer.
|
|
4031 |
* @param[in] pState points to the state buffer.
|
|
4032 |
* @param[in] mu step size that controls filter coefficient updates.
|
|
4033 |
* @param[in] blockSize number of samples to process.
|
|
4034 |
* @param[in] postShift bit shift applied to coefficients.
|
|
4035 |
*/
|
|
4036 |
void arm_lms_init_q15(
|
|
4037 |
arm_lms_instance_q15 * S,
|
|
4038 |
uint16_t numTaps,
|
|
4039 |
q15_t * pCoeffs,
|
|
4040 |
q15_t * pState,
|
|
4041 |
q15_t mu,
|
|
4042 |
uint32_t blockSize,
|
|
4043 |
uint32_t postShift);
|
|
4044 |
|
|
4045 |
|
|
4046 |
/**
|
|
4047 |
* @brief Processing function for Q15 LMS filter.
|
|
4048 |
* @param[in] S points to an instance of the Q15 LMS filter structure.
|
|
4049 |
* @param[in] pSrc points to the block of input data.
|
|
4050 |
* @param[in] pRef points to the block of reference data.
|
|
4051 |
* @param[out] pOut points to the block of output data.
|
|
4052 |
* @param[out] pErr points to the block of error data.
|
|
4053 |
* @param[in] blockSize number of samples to process.
|
|
4054 |
*/
|
|
4055 |
void arm_lms_q15(
|
|
4056 |
const arm_lms_instance_q15 * S,
|
|
4057 |
q15_t * pSrc,
|
|
4058 |
q15_t * pRef,
|
|
4059 |
q15_t * pOut,
|
|
4060 |
q15_t * pErr,
|
|
4061 |
uint32_t blockSize);
|
|
4062 |
|
|
4063 |
|
|
4064 |
/**
|
|
4065 |
* @brief Instance structure for the Q31 LMS filter.
|
|
4066 |
*/
|
|
4067 |
typedef struct
|
|
4068 |
{
|
|
4069 |
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
4070 |
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
4071 |
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
|
4072 |
q31_t mu; /**< step size that controls filter coefficient updates. */
|
|
4073 |
uint32_t postShift; /**< bit shift applied to coefficients. */
|
|
4074 |
} arm_lms_instance_q31;
|
|
4075 |
|
|
4076 |
|
|
4077 |
/**
|
|
4078 |
* @brief Processing function for Q31 LMS filter.
|
|
4079 |
* @param[in] S points to an instance of the Q15 LMS filter structure.
|
|
4080 |
* @param[in] pSrc points to the block of input data.
|
|
4081 |
* @param[in] pRef points to the block of reference data.
|
|
4082 |
* @param[out] pOut points to the block of output data.
|
|
4083 |
* @param[out] pErr points to the block of error data.
|
|
4084 |
* @param[in] blockSize number of samples to process.
|
|
4085 |
*/
|
|
4086 |
void arm_lms_q31(
|
|
4087 |
const arm_lms_instance_q31 * S,
|
|
4088 |
q31_t * pSrc,
|
|
4089 |
q31_t * pRef,
|
|
4090 |
q31_t * pOut,
|
|
4091 |
q31_t * pErr,
|
|
4092 |
uint32_t blockSize);
|
|
4093 |
|
|
4094 |
|
|
4095 |
/**
|
|
4096 |
* @brief Initialization function for Q31 LMS filter.
|
|
4097 |
* @param[in] S points to an instance of the Q31 LMS filter structure.
|
|
4098 |
* @param[in] numTaps number of filter coefficients.
|
|
4099 |
* @param[in] pCoeffs points to coefficient buffer.
|
|
4100 |
* @param[in] pState points to state buffer.
|
|
4101 |
* @param[in] mu step size that controls filter coefficient updates.
|
|
4102 |
* @param[in] blockSize number of samples to process.
|
|
4103 |
* @param[in] postShift bit shift applied to coefficients.
|
|
4104 |
*/
|
|
4105 |
void arm_lms_init_q31(
|
|
4106 |
arm_lms_instance_q31 * S,
|
|
4107 |
uint16_t numTaps,
|
|
4108 |
q31_t * pCoeffs,
|
|
4109 |
q31_t * pState,
|
|
4110 |
q31_t mu,
|
|
4111 |
uint32_t blockSize,
|
|
4112 |
uint32_t postShift);
|
|
4113 |
|
|
4114 |
|
|
4115 |
/**
|
|
4116 |
* @brief Instance structure for the floating-point normalized LMS filter.
|
|
4117 |
*/
|
|
4118 |
typedef struct
|
|
4119 |
{
|
|
4120 |
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
4121 |
float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
4122 |
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
|
4123 |
float32_t mu; /**< step size that control filter coefficient updates. */
|
|
4124 |
float32_t energy; /**< saves previous frame energy. */
|
|
4125 |
float32_t x0; /**< saves previous input sample. */
|
|
4126 |
} arm_lms_norm_instance_f32;
|
|
4127 |
|
|
4128 |
|
|
4129 |
/**
|
|
4130 |
* @brief Processing function for floating-point normalized LMS filter.
|
|
4131 |
* @param[in] S points to an instance of the floating-point normalized LMS filter structure.
|
|
4132 |
* @param[in] pSrc points to the block of input data.
|
|
4133 |
* @param[in] pRef points to the block of reference data.
|
|
4134 |
* @param[out] pOut points to the block of output data.
|
|
4135 |
* @param[out] pErr points to the block of error data.
|
|
4136 |
* @param[in] blockSize number of samples to process.
|
|
4137 |
*/
|
|
4138 |
void arm_lms_norm_f32(
|
|
4139 |
arm_lms_norm_instance_f32 * S,
|
|
4140 |
float32_t * pSrc,
|
|
4141 |
float32_t * pRef,
|
|
4142 |
float32_t * pOut,
|
|
4143 |
float32_t * pErr,
|
|
4144 |
uint32_t blockSize);
|
|
4145 |
|
|
4146 |
|
|
4147 |
/**
|
|
4148 |
* @brief Initialization function for floating-point normalized LMS filter.
|
|
4149 |
* @param[in] S points to an instance of the floating-point LMS filter structure.
|
|
4150 |
* @param[in] numTaps number of filter coefficients.
|
|
4151 |
* @param[in] pCoeffs points to coefficient buffer.
|
|
4152 |
* @param[in] pState points to state buffer.
|
|
4153 |
* @param[in] mu step size that controls filter coefficient updates.
|
|
4154 |
* @param[in] blockSize number of samples to process.
|
|
4155 |
*/
|
|
4156 |
void arm_lms_norm_init_f32(
|
|
4157 |
arm_lms_norm_instance_f32 * S,
|
|
4158 |
uint16_t numTaps,
|
|
4159 |
float32_t * pCoeffs,
|
|
4160 |
float32_t * pState,
|
|
4161 |
float32_t mu,
|
|
4162 |
uint32_t blockSize);
|
|
4163 |
|
|
4164 |
|
|
4165 |
/**
|
|
4166 |
* @brief Instance structure for the Q31 normalized LMS filter.
|
|
4167 |
*/
|
|
4168 |
typedef struct
|
|
4169 |
{
|
|
4170 |
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
4171 |
q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
4172 |
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
|
4173 |
q31_t mu; /**< step size that controls filter coefficient updates. */
|
|
4174 |
uint8_t postShift; /**< bit shift applied to coefficients. */
|
|
4175 |
q31_t *recipTable; /**< points to the reciprocal initial value table. */
|
|
4176 |
q31_t energy; /**< saves previous frame energy. */
|
|
4177 |
q31_t x0; /**< saves previous input sample. */
|
|
4178 |
} arm_lms_norm_instance_q31;
|
|
4179 |
|
|
4180 |
|
|
4181 |
/**
|
|
4182 |
* @brief Processing function for Q31 normalized LMS filter.
|
|
4183 |
* @param[in] S points to an instance of the Q31 normalized LMS filter structure.
|
|
4184 |
* @param[in] pSrc points to the block of input data.
|
|
4185 |
* @param[in] pRef points to the block of reference data.
|
|
4186 |
* @param[out] pOut points to the block of output data.
|
|
4187 |
* @param[out] pErr points to the block of error data.
|
|
4188 |
* @param[in] blockSize number of samples to process.
|
|
4189 |
*/
|
|
4190 |
void arm_lms_norm_q31(
|
|
4191 |
arm_lms_norm_instance_q31 * S,
|
|
4192 |
q31_t * pSrc,
|
|
4193 |
q31_t * pRef,
|
|
4194 |
q31_t * pOut,
|
|
4195 |
q31_t * pErr,
|
|
4196 |
uint32_t blockSize);
|
|
4197 |
|
|
4198 |
|
|
4199 |
/**
|
|
4200 |
* @brief Initialization function for Q31 normalized LMS filter.
|
|
4201 |
* @param[in] S points to an instance of the Q31 normalized LMS filter structure.
|
|
4202 |
* @param[in] numTaps number of filter coefficients.
|
|
4203 |
* @param[in] pCoeffs points to coefficient buffer.
|
|
4204 |
* @param[in] pState points to state buffer.
|
|
4205 |
* @param[in] mu step size that controls filter coefficient updates.
|
|
4206 |
* @param[in] blockSize number of samples to process.
|
|
4207 |
* @param[in] postShift bit shift applied to coefficients.
|
|
4208 |
*/
|
|
4209 |
void arm_lms_norm_init_q31(
|
|
4210 |
arm_lms_norm_instance_q31 * S,
|
|
4211 |
uint16_t numTaps,
|
|
4212 |
q31_t * pCoeffs,
|
|
4213 |
q31_t * pState,
|
|
4214 |
q31_t mu,
|
|
4215 |
uint32_t blockSize,
|
|
4216 |
uint8_t postShift);
|
|
4217 |
|
|
4218 |
|
|
4219 |
/**
|
|
4220 |
* @brief Instance structure for the Q15 normalized LMS filter.
|
|
4221 |
*/
|
|
4222 |
typedef struct
|
|
4223 |
{
|
|
4224 |
uint16_t numTaps; /**< Number of coefficients in the filter. */
|
|
4225 |
q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
|
|
4226 |
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
|
|
4227 |
q15_t mu; /**< step size that controls filter coefficient updates. */
|
|
4228 |
uint8_t postShift; /**< bit shift applied to coefficients. */
|
|
4229 |
q15_t *recipTable; /**< Points to the reciprocal initial value table. */
|
|
4230 |
q15_t energy; /**< saves previous frame energy. */
|
|
4231 |
q15_t x0; /**< saves previous input sample. */
|
|
4232 |
} arm_lms_norm_instance_q15;
|
|
4233 |
|
|
4234 |
|
|
4235 |
/**
|
|
4236 |
* @brief Processing function for Q15 normalized LMS filter.
|
|
4237 |
* @param[in] S points to an instance of the Q15 normalized LMS filter structure.
|
|
4238 |
* @param[in] pSrc points to the block of input data.
|
|
4239 |
* @param[in] pRef points to the block of reference data.
|
|
4240 |
* @param[out] pOut points to the block of output data.
|
|
4241 |
* @param[out] pErr points to the block of error data.
|
|
4242 |
* @param[in] blockSize number of samples to process.
|
|
4243 |
*/
|
|
4244 |
void arm_lms_norm_q15(
|
|
4245 |
arm_lms_norm_instance_q15 * S,
|
|
4246 |
q15_t * pSrc,
|
|
4247 |
q15_t * pRef,
|
|
4248 |
q15_t * pOut,
|
|
4249 |
q15_t * pErr,
|
|
4250 |
uint32_t blockSize);
|
|
4251 |
|
|
4252 |
|
|
4253 |
/**
|
|
4254 |
* @brief Initialization function for Q15 normalized LMS filter.
|
|
4255 |
* @param[in] S points to an instance of the Q15 normalized LMS filter structure.
|
|
4256 |
* @param[in] numTaps number of filter coefficients.
|
|
4257 |
* @param[in] pCoeffs points to coefficient buffer.
|
|
4258 |
* @param[in] pState points to state buffer.
|
|
4259 |
* @param[in] mu step size that controls filter coefficient updates.
|
|
4260 |
* @param[in] blockSize number of samples to process.
|
|
4261 |
* @param[in] postShift bit shift applied to coefficients.
|
|
4262 |
*/
|
|
4263 |
void arm_lms_norm_init_q15(
|
|
4264 |
arm_lms_norm_instance_q15 * S,
|
|
4265 |
uint16_t numTaps,
|
|
4266 |
q15_t * pCoeffs,
|
|
4267 |
q15_t * pState,
|
|
4268 |
q15_t mu,
|
|
4269 |
uint32_t blockSize,
|
|
4270 |
uint8_t postShift);
|
|
4271 |
|
|
4272 |
|
|
4273 |
/**
|
|
4274 |
* @brief Correlation of floating-point sequences.
|
|
4275 |
* @param[in] pSrcA points to the first input sequence.
|
|
4276 |
* @param[in] srcALen length of the first input sequence.
|
|
4277 |
* @param[in] pSrcB points to the second input sequence.
|
|
4278 |
* @param[in] srcBLen length of the second input sequence.
|
|
4279 |
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
|
|
4280 |
*/
|
|
4281 |
void arm_correlate_f32(
|
|
4282 |
float32_t * pSrcA,
|
|
4283 |
uint32_t srcALen,
|
|
4284 |
float32_t * pSrcB,
|
|
4285 |
uint32_t srcBLen,
|
|
4286 |
float32_t * pDst);
|
|
4287 |
|
|
4288 |
|
|
4289 |
/**
|
|
4290 |
* @brief Correlation of Q15 sequences
|
|
4291 |
* @param[in] pSrcA points to the first input sequence.
|
|
4292 |
* @param[in] srcALen length of the first input sequence.
|
|
4293 |
* @param[in] pSrcB points to the second input sequence.
|
|
4294 |
* @param[in] srcBLen length of the second input sequence.
|
|
4295 |
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
|
|
4296 |
* @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
|
|
4297 |
*/
|
|
4298 |
void arm_correlate_opt_q15(
|
|
4299 |
q15_t * pSrcA,
|
|
4300 |
uint32_t srcALen,
|
|
4301 |
q15_t * pSrcB,
|
|
4302 |
uint32_t srcBLen,
|
|
4303 |
q15_t * pDst,
|
|
4304 |
q15_t * pScratch);
|
|
4305 |
|
|
4306 |
|
|
4307 |
/**
|
|
4308 |
* @brief Correlation of Q15 sequences.
|
|
4309 |
* @param[in] pSrcA points to the first input sequence.
|
|
4310 |
* @param[in] srcALen length of the first input sequence.
|
|
4311 |
* @param[in] pSrcB points to the second input sequence.
|
|
4312 |
* @param[in] srcBLen length of the second input sequence.
|
|
4313 |
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
|
|
4314 |
*/
|
|
4315 |
|
|
4316 |
void arm_correlate_q15(
|
|
4317 |
q15_t * pSrcA,
|
|
4318 |
uint32_t srcALen,
|
|
4319 |
q15_t * pSrcB,
|
|
4320 |
uint32_t srcBLen,
|
|
4321 |
q15_t * pDst);
|
|
4322 |
|
|
4323 |
|
|
4324 |
/**
|
|
4325 |
* @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
|
|
4326 |
* @param[in] pSrcA points to the first input sequence.
|
|
4327 |
* @param[in] srcALen length of the first input sequence.
|
|
4328 |
* @param[in] pSrcB points to the second input sequence.
|
|
4329 |
* @param[in] srcBLen length of the second input sequence.
|
|
4330 |
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
|
|
4331 |
*/
|
|
4332 |
|
|
4333 |
void arm_correlate_fast_q15(
|
|
4334 |
q15_t * pSrcA,
|
|
4335 |
uint32_t srcALen,
|
|
4336 |
q15_t * pSrcB,
|
|
4337 |
uint32_t srcBLen,
|
|
4338 |
q15_t * pDst);
|
|
4339 |
|
|
4340 |
|
|
4341 |
/**
|
|
4342 |
* @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
|
|
4343 |
* @param[in] pSrcA points to the first input sequence.
|
|
4344 |
* @param[in] srcALen length of the first input sequence.
|
|
4345 |
* @param[in] pSrcB points to the second input sequence.
|
|
4346 |
* @param[in] srcBLen length of the second input sequence.
|
|
4347 |
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
|
|
4348 |
* @param[in] pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
|
|
4349 |
*/
|
|
4350 |
void arm_correlate_fast_opt_q15(
|
|
4351 |
q15_t * pSrcA,
|
|
4352 |
uint32_t srcALen,
|
|
4353 |
q15_t * pSrcB,
|
|
4354 |
uint32_t srcBLen,
|
|
4355 |
q15_t * pDst,
|
|
4356 |
q15_t * pScratch);
|
|
4357 |
|
|
4358 |
|
|
4359 |
/**
|
|
4360 |
* @brief Correlation of Q31 sequences.
|
|
4361 |
* @param[in] pSrcA points to the first input sequence.
|
|
4362 |
* @param[in] srcALen length of the first input sequence.
|
|
4363 |
* @param[in] pSrcB points to the second input sequence.
|
|
4364 |
* @param[in] srcBLen length of the second input sequence.
|
|
4365 |
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
|
|
4366 |
*/
|
|
4367 |
void arm_correlate_q31(
|
|
4368 |
q31_t * pSrcA,
|
|
4369 |
uint32_t srcALen,
|
|
4370 |
q31_t * pSrcB,
|
|
4371 |
uint32_t srcBLen,
|
|
4372 |
q31_t * pDst);
|
|
4373 |
|
|
4374 |
|
|
4375 |
/**
|
|
4376 |
* @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
|
|
4377 |
* @param[in] pSrcA points to the first input sequence.
|
|
4378 |
* @param[in] srcALen length of the first input sequence.
|
|
4379 |
* @param[in] pSrcB points to the second input sequence.
|
|
4380 |
* @param[in] srcBLen length of the second input sequence.
|
|
4381 |
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
|
|
4382 |
*/
|
|
4383 |
void arm_correlate_fast_q31(
|
|
4384 |
q31_t * pSrcA,
|
|
4385 |
uint32_t srcALen,
|
|
4386 |
q31_t * pSrcB,
|
|
4387 |
uint32_t srcBLen,
|
|
4388 |
q31_t * pDst);
|
|
4389 |
|
|
4390 |
|
|
4391 |
/**
|
|
4392 |
* @brief Correlation of Q7 sequences.
|
|
4393 |
* @param[in] pSrcA points to the first input sequence.
|
|
4394 |
* @param[in] srcALen length of the first input sequence.
|
|
4395 |
* @param[in] pSrcB points to the second input sequence.
|
|
4396 |
* @param[in] srcBLen length of the second input sequence.
|
|
4397 |
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
|
|
4398 |
* @param[in] pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.
|
|
4399 |
* @param[in] pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).
|
|
4400 |
*/
|
|
4401 |
void arm_correlate_opt_q7(
|
|
4402 |
q7_t * pSrcA,
|
|
4403 |
uint32_t srcALen,
|
|
4404 |
q7_t * pSrcB,
|
|
4405 |
uint32_t srcBLen,
|
|
4406 |
q7_t * pDst,
|
|
4407 |
q15_t * pScratch1,
|
|
4408 |
q15_t * pScratch2);
|
|
4409 |
|
|
4410 |
|
|
4411 |
/**
|
|
4412 |
* @brief Correlation of Q7 sequences.
|
|
4413 |
* @param[in] pSrcA points to the first input sequence.
|
|
4414 |
* @param[in] srcALen length of the first input sequence.
|
|
4415 |
* @param[in] pSrcB points to the second input sequence.
|
|
4416 |
* @param[in] srcBLen length of the second input sequence.
|
|
4417 |
* @param[out] pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
|
|
4418 |
*/
|
|
4419 |
void arm_correlate_q7(
|
|
4420 |
q7_t * pSrcA,
|
|
4421 |
uint32_t srcALen,
|
|
4422 |
q7_t * pSrcB,
|
|
4423 |
uint32_t srcBLen,
|
|
4424 |
q7_t * pDst);
|
|
4425 |
|
|
4426 |
|
|
4427 |
/**
|
|
4428 |
* @brief Instance structure for the floating-point sparse FIR filter.
|
|
4429 |
*/
|
|
4430 |
typedef struct
|
|
4431 |
{
|
|
4432 |
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
4433 |
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
|
|
4434 |
float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
|
|
4435 |
float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
|
4436 |
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
|
|
4437 |
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
|
|
4438 |
} arm_fir_sparse_instance_f32;
|
|
4439 |
|
|
4440 |
/**
|
|
4441 |
* @brief Instance structure for the Q31 sparse FIR filter.
|
|
4442 |
*/
|
|
4443 |
typedef struct
|
|
4444 |
{
|
|
4445 |
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
4446 |
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
|
|
4447 |
q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
|
|
4448 |
q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
|
4449 |
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
|
|
4450 |
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
|
|
4451 |
} arm_fir_sparse_instance_q31;
|
|
4452 |
|
|
4453 |
/**
|
|
4454 |
* @brief Instance structure for the Q15 sparse FIR filter.
|
|
4455 |
*/
|
|
4456 |
typedef struct
|
|
4457 |
{
|
|
4458 |
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
4459 |
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
|
|
4460 |
q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
|
|
4461 |
q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
|
4462 |
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
|
|
4463 |
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
|
|
4464 |
} arm_fir_sparse_instance_q15;
|
|
4465 |
|
|
4466 |
/**
|
|
4467 |
* @brief Instance structure for the Q7 sparse FIR filter.
|
|
4468 |
*/
|
|
4469 |
typedef struct
|
|
4470 |
{
|
|
4471 |
uint16_t numTaps; /**< number of coefficients in the filter. */
|
|
4472 |
uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
|
|
4473 |
q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
|
|
4474 |
q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
|
|
4475 |
uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
|
|
4476 |
int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
|
|
4477 |
} arm_fir_sparse_instance_q7;
|
|
4478 |
|
|
4479 |
|
|
4480 |
/**
|
|
4481 |
* @brief Processing function for the floating-point sparse FIR filter.
|
|
4482 |
* @param[in] S points to an instance of the floating-point sparse FIR structure.
|
|
4483 |
* @param[in] pSrc points to the block of input data.
|
|
4484 |
* @param[out] pDst points to the block of output data
|
|
4485 |
* @param[in] pScratchIn points to a temporary buffer of size blockSize.
|
|
4486 |
* @param[in] blockSize number of input samples to process per call.
|
|
4487 |
*/
|
|
4488 |
void arm_fir_sparse_f32(
|
|
4489 |
arm_fir_sparse_instance_f32 * S,
|
|
4490 |
float32_t * pSrc,
|
|
4491 |
float32_t * pDst,
|
|
4492 |
float32_t * pScratchIn,
|
|
4493 |
uint32_t blockSize);
|
|
4494 |
|
|
4495 |
|
|
4496 |
/**
|
|
4497 |
* @brief Initialization function for the floating-point sparse FIR filter.
|
|
4498 |
* @param[in,out] S points to an instance of the floating-point sparse FIR structure.
|
|
4499 |
* @param[in] numTaps number of nonzero coefficients in the filter.
|
|
4500 |
* @param[in] pCoeffs points to the array of filter coefficients.
|
|
4501 |
* @param[in] pState points to the state buffer.
|
|
4502 |
* @param[in] pTapDelay points to the array of offset times.
|
|
4503 |
* @param[in] maxDelay maximum offset time supported.
|
|
4504 |
* @param[in] blockSize number of samples that will be processed per block.
|
|
4505 |
*/
|
|
4506 |
void arm_fir_sparse_init_f32(
|
|
4507 |
arm_fir_sparse_instance_f32 * S,
|
|
4508 |
uint16_t numTaps,
|
|
4509 |
float32_t * pCoeffs,
|
|
4510 |
float32_t * pState,
|
|
4511 |
int32_t * pTapDelay,
|
|
4512 |
uint16_t maxDelay,
|
|
4513 |
uint32_t blockSize);
|
|
4514 |
|
|
4515 |
|
|
4516 |
/**
|
|
4517 |
* @brief Processing function for the Q31 sparse FIR filter.
|
|
4518 |
* @param[in] S points to an instance of the Q31 sparse FIR structure.
|
|
4519 |
* @param[in] pSrc points to the block of input data.
|
|
4520 |
* @param[out] pDst points to the block of output data
|
|
4521 |
* @param[in] pScratchIn points to a temporary buffer of size blockSize.
|
|
4522 |
* @param[in] blockSize number of input samples to process per call.
|
|
4523 |
*/
|
|
4524 |
void arm_fir_sparse_q31(
|
|
4525 |
arm_fir_sparse_instance_q31 * S,
|
|
4526 |
q31_t * pSrc,
|
|
4527 |
q31_t * pDst,
|
|
4528 |
q31_t * pScratchIn,
|
|
4529 |
uint32_t blockSize);
|
|
4530 |
|
|
4531 |
|
|
4532 |
/**
|
|
4533 |
* @brief Initialization function for the Q31 sparse FIR filter.
|
|
4534 |
* @param[in,out] S points to an instance of the Q31 sparse FIR structure.
|
|
4535 |
* @param[in] numTaps number of nonzero coefficients in the filter.
|
|
4536 |
* @param[in] pCoeffs points to the array of filter coefficients.
|
|
4537 |
* @param[in] pState points to the state buffer.
|
|
4538 |
* @param[in] pTapDelay points to the array of offset times.
|
|
4539 |
* @param[in] maxDelay maximum offset time supported.
|
|
4540 |
* @param[in] blockSize number of samples that will be processed per block.
|
|
4541 |
*/
|
|
4542 |
void arm_fir_sparse_init_q31(
|
|
4543 |
arm_fir_sparse_instance_q31 * S,
|
|
4544 |
uint16_t numTaps,
|
|
4545 |
q31_t * pCoeffs,
|
|
4546 |
q31_t * pState,
|
|
4547 |
int32_t * pTapDelay,
|
|
4548 |
uint16_t maxDelay,
|
|
4549 |
uint32_t blockSize);
|
|
4550 |
|
|
4551 |
|
|
4552 |
/**
|
|
4553 |
* @brief Processing function for the Q15 sparse FIR filter.
|
|
4554 |
* @param[in] S points to an instance of the Q15 sparse FIR structure.
|
|
4555 |
* @param[in] pSrc points to the block of input data.
|
|
4556 |
* @param[out] pDst points to the block of output data
|
|
4557 |
* @param[in] pScratchIn points to a temporary buffer of size blockSize.
|
|
4558 |
* @param[in] pScratchOut points to a temporary buffer of size blockSize.
|
|
4559 |
* @param[in] blockSize number of input samples to process per call.
|
|
4560 |
*/
|
|
4561 |
void arm_fir_sparse_q15(
|
|
4562 |
arm_fir_sparse_instance_q15 * S,
|
|
4563 |
q15_t * pSrc,
|
|
4564 |
q15_t * pDst,
|
|
4565 |
q15_t * pScratchIn,
|
|
4566 |
q31_t * pScratchOut,
|
|
4567 |
uint32_t blockSize);
|
|
4568 |
|
|
4569 |
|
|
4570 |
/**
|
|
4571 |
* @brief Initialization function for the Q15 sparse FIR filter.
|
|
4572 |
* @param[in,out] S points to an instance of the Q15 sparse FIR structure.
|
|
4573 |
* @param[in] numTaps number of nonzero coefficients in the filter.
|
|
4574 |
* @param[in] pCoeffs points to the array of filter coefficients.
|
|
4575 |
* @param[in] pState points to the state buffer.
|
|
4576 |
* @param[in] pTapDelay points to the array of offset times.
|
|
4577 |
* @param[in] maxDelay maximum offset time supported.
|
|
4578 |
* @param[in] blockSize number of samples that will be processed per block.
|
|
4579 |
*/
|
|
4580 |
void arm_fir_sparse_init_q15(
|
|
4581 |
arm_fir_sparse_instance_q15 * S,
|
|
4582 |
uint16_t numTaps,
|
|
4583 |
q15_t * pCoeffs,
|
|
4584 |
q15_t * pState,
|
|
4585 |
int32_t * pTapDelay,
|
|
4586 |
uint16_t maxDelay,
|
|
4587 |
uint32_t blockSize);
|
|
4588 |
|
|
4589 |
|
|
4590 |
/**
|
|
4591 |
* @brief Processing function for the Q7 sparse FIR filter.
|
|
4592 |
* @param[in] S points to an instance of the Q7 sparse FIR structure.
|
|
4593 |
* @param[in] pSrc points to the block of input data.
|
|
4594 |
* @param[out] pDst points to the block of output data
|
|
4595 |
* @param[in] pScratchIn points to a temporary buffer of size blockSize.
|
|
4596 |
* @param[in] pScratchOut points to a temporary buffer of size blockSize.
|
|
4597 |
* @param[in] blockSize number of input samples to process per call.
|
|
4598 |
*/
|
|
4599 |
void arm_fir_sparse_q7(
|
|
4600 |
arm_fir_sparse_instance_q7 * S,
|
|
4601 |
q7_t * pSrc,
|
|
4602 |
q7_t * pDst,
|
|
4603 |
q7_t * pScratchIn,
|
|
4604 |
q31_t * pScratchOut,
|
|
4605 |
uint32_t blockSize);
|
|
4606 |
|
|
4607 |
|
|
4608 |
/**
|
|
4609 |
* @brief Initialization function for the Q7 sparse FIR filter.
|
|
4610 |
* @param[in,out] S points to an instance of the Q7 sparse FIR structure.
|
|
4611 |
* @param[in] numTaps number of nonzero coefficients in the filter.
|
|
4612 |
* @param[in] pCoeffs points to the array of filter coefficients.
|
|
4613 |
* @param[in] pState points to the state buffer.
|
|
4614 |
* @param[in] pTapDelay points to the array of offset times.
|
|
4615 |
* @param[in] maxDelay maximum offset time supported.
|
|
4616 |
* @param[in] blockSize number of samples that will be processed per block.
|
|
4617 |
*/
|
|
4618 |
void arm_fir_sparse_init_q7(
|
|
4619 |
arm_fir_sparse_instance_q7 * S,
|
|
4620 |
uint16_t numTaps,
|
|
4621 |
q7_t * pCoeffs,
|
|
4622 |
q7_t * pState,
|
|
4623 |
int32_t * pTapDelay,
|
|
4624 |
uint16_t maxDelay,
|
|
4625 |
uint32_t blockSize);
|
|
4626 |
|
|
4627 |
|
|
4628 |
/**
|
|
4629 |
* @brief Floating-point sin_cos function.
|
|
4630 |
* @param[in] theta input value in degrees
|
|
4631 |
* @param[out] pSinVal points to the processed sine output.
|
|
4632 |
* @param[out] pCosVal points to the processed cos output.
|
|
4633 |
*/
|
|
4634 |
void arm_sin_cos_f32(
|
|
4635 |
float32_t theta,
|
|
4636 |
float32_t * pSinVal,
|
|
4637 |
float32_t * pCosVal);
|
|
4638 |
|
|
4639 |
|
|
4640 |
/**
|
|
4641 |
* @brief Q31 sin_cos function.
|
|
4642 |
* @param[in] theta scaled input value in degrees
|
|
4643 |
* @param[out] pSinVal points to the processed sine output.
|
|
4644 |
* @param[out] pCosVal points to the processed cosine output.
|
|
4645 |
*/
|
|
4646 |
void arm_sin_cos_q31(
|
|
4647 |
q31_t theta,
|
|
4648 |
q31_t * pSinVal,
|
|
4649 |
q31_t * pCosVal);
|
|
4650 |
|
|
4651 |
|
|
4652 |
/**
|
|
4653 |
* @brief Floating-point complex conjugate.
|
|
4654 |
* @param[in] pSrc points to the input vector
|
|
4655 |
* @param[out] pDst points to the output vector
|
|
4656 |
* @param[in] numSamples number of complex samples in each vector
|
|
4657 |
*/
|
|
4658 |
void arm_cmplx_conj_f32(
|
|
4659 |
float32_t * pSrc,
|
|
4660 |
float32_t * pDst,
|
|
4661 |
uint32_t numSamples);
|
|
4662 |
|
|
4663 |
/**
|
|
4664 |
* @brief Q31 complex conjugate.
|
|
4665 |
* @param[in] pSrc points to the input vector
|
|
4666 |
* @param[out] pDst points to the output vector
|
|
4667 |
* @param[in] numSamples number of complex samples in each vector
|
|
4668 |
*/
|
|
4669 |
void arm_cmplx_conj_q31(
|
|
4670 |
q31_t * pSrc,
|
|
4671 |
q31_t * pDst,
|
|
4672 |
uint32_t numSamples);
|
|
4673 |
|
|
4674 |
|
|
4675 |
/**
|
|
4676 |
* @brief Q15 complex conjugate.
|
|
4677 |
* @param[in] pSrc points to the input vector
|
|
4678 |
* @param[out] pDst points to the output vector
|
|
4679 |
* @param[in] numSamples number of complex samples in each vector
|
|
4680 |
*/
|
|
4681 |
void arm_cmplx_conj_q15(
|
|
4682 |
q15_t * pSrc,
|
|
4683 |
q15_t * pDst,
|
|
4684 |
uint32_t numSamples);
|
|
4685 |
|
|
4686 |
|
|
4687 |
/**
|
|
4688 |
* @brief Floating-point complex magnitude squared
|
|
4689 |
* @param[in] pSrc points to the complex input vector
|
|
4690 |
* @param[out] pDst points to the real output vector
|
|
4691 |
* @param[in] numSamples number of complex samples in the input vector
|
|
4692 |
*/
|
|
4693 |
void arm_cmplx_mag_squared_f32(
|
|
4694 |
float32_t * pSrc,
|
|
4695 |
float32_t * pDst,
|
|
4696 |
uint32_t numSamples);
|
|
4697 |
|
|
4698 |
|
|
4699 |
/**
|
|
4700 |
* @brief Q31 complex magnitude squared
|
|
4701 |
* @param[in] pSrc points to the complex input vector
|
|
4702 |
* @param[out] pDst points to the real output vector
|
|
4703 |
* @param[in] numSamples number of complex samples in the input vector
|
|
4704 |
*/
|
|
4705 |
void arm_cmplx_mag_squared_q31(
|
|
4706 |
q31_t * pSrc,
|
|
4707 |
q31_t * pDst,
|
|
4708 |
uint32_t numSamples);
|
|
4709 |
|
|
4710 |
|
|
4711 |
/**
|
|
4712 |
* @brief Q15 complex magnitude squared
|
|
4713 |
* @param[in] pSrc points to the complex input vector
|
|
4714 |
* @param[out] pDst points to the real output vector
|
|
4715 |
* @param[in] numSamples number of complex samples in the input vector
|
|
4716 |
*/
|
|
4717 |
void arm_cmplx_mag_squared_q15(
|
|
4718 |
q15_t * pSrc,
|
|
4719 |
q15_t * pDst,
|
|
4720 |
uint32_t numSamples);
|
|
4721 |
|
|
4722 |
|
|
4723 |
/**
|
|
4724 |
* @ingroup groupController
|
|
4725 |
*/
|
|
4726 |
|
|
4727 |
/**
|
|
4728 |
* @defgroup PID PID Motor Control
|
|
4729 |
*
|
|
4730 |
* A Proportional Integral Derivative (PID) controller is a generic feedback control
|
|
4731 |
* loop mechanism widely used in industrial control systems.
|
|
4732 |
* A PID controller is the most commonly used type of feedback controller.
|
|
4733 |
*
|
|
4734 |
* This set of functions implements (PID) controllers
|
|
4735 |
* for Q15, Q31, and floating-point data types. The functions operate on a single sample
|
|
4736 |
* of data and each call to the function returns a single processed value.
|
|
4737 |
* <code>S</code> points to an instance of the PID control data structure. <code>in</code>
|
|
4738 |
* is the input sample value. The functions return the output value.
|
|
4739 |
*
|
|
4740 |
* \par Algorithm:
|
|
4741 |
* <pre>
|
|
4742 |
* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
|
|
4743 |
* A0 = Kp + Ki + Kd
|
|
4744 |
* A1 = (-Kp ) - (2 * Kd )
|
|
4745 |
* A2 = Kd </pre>
|
|
4746 |
*
|
|
4747 |
* \par
|
|
4748 |
* where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
|
|
4749 |
*
|
|
4750 |
* \par
|
|
4751 |
* \image html PID.gif "Proportional Integral Derivative Controller"
|
|
4752 |
*
|
|
4753 |
* \par
|
|
4754 |
* The PID controller calculates an "error" value as the difference between
|
|
4755 |
* the measured output and the reference input.
|
|
4756 |
* The controller attempts to minimize the error by adjusting the process control inputs.
|
|
4757 |
* The proportional value determines the reaction to the current error,
|
|
4758 |
* the integral value determines the reaction based on the sum of recent errors,
|
|
4759 |
* and the derivative value determines the reaction based on the rate at which the error has been changing.
|
|
4760 |
*
|
|
4761 |
* \par Instance Structure
|
|
4762 |
* The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
|
|
4763 |
* A separate instance structure must be defined for each PID Controller.
|
|
4764 |
* There are separate instance structure declarations for each of the 3 supported data types.
|
|
4765 |
*
|
|
4766 |
* \par Reset Functions
|
|
4767 |
* There is also an associated reset function for each data type which clears the state array.
|
|
4768 |
*
|
|
4769 |
* \par Initialization Functions
|
|
4770 |
* There is also an associated initialization function for each data type.
|
|
4771 |
* The initialization function performs the following operations:
|
|
4772 |
* - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
|
|
4773 |
* - Zeros out the values in the state buffer.
|
|
4774 |
*
|
|
4775 |
* \par
|
|
4776 |
* Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
|
|
4777 |
*
|
|
4778 |
* \par Fixed-Point Behavior
|
|
4779 |
* Care must be taken when using the fixed-point versions of the PID Controller functions.
|
|
4780 |
* In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
|
|
4781 |
* Refer to the function specific documentation below for usage guidelines.
|
|
4782 |
*/
|
|
4783 |
|
|
4784 |
/**
|
|
4785 |
* @addtogroup PID
|
|
4786 |
* @{
|
|
4787 |
*/
|
|
4788 |
|
|
4789 |
/**
|
|
4790 |
* @brief Process function for the floating-point PID Control.
|
|
4791 |
* @param[in,out] S is an instance of the floating-point PID Control structure
|
|
4792 |
* @param[in] in input sample to process
|
|
4793 |
* @return out processed output sample.
|
|
4794 |
*/
|
|
4795 |
static __INLINE float32_t arm_pid_f32(
|
|
4796 |
arm_pid_instance_f32 * S,
|
|
4797 |
float32_t in)
|
|
4798 |
{
|
|
4799 |
float32_t out;
|
|
4800 |
|
|
4801 |
/* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
|
|
4802 |
out = (S->A0 * in) +
|
|
4803 |
(S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
|
|
4804 |
|
|
4805 |
/* Update state */
|
|
4806 |
S->state[1] = S->state[0];
|
|
4807 |
S->state[0] = in;
|
|
4808 |
S->state[2] = out;
|
|
4809 |
|
|
4810 |
/* return to application */
|
|
4811 |
return (out);
|
|
4812 |
|
|
4813 |
}
|
|
4814 |
|
|
4815 |
/**
|
|
4816 |
* @brief Process function for the Q31 PID Control.
|
|
4817 |
* @param[in,out] S points to an instance of the Q31 PID Control structure
|
|
4818 |
* @param[in] in input sample to process
|
|
4819 |
* @return out processed output sample.
|
|
4820 |
*
|
|
4821 |
* <b>Scaling and Overflow Behavior:</b>
|
|
4822 |
* \par
|
|
4823 |
* The function is implemented using an internal 64-bit accumulator.
|
|
4824 |
* The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
|
|
4825 |
* Thus, if the accumulator result overflows it wraps around rather than clip.
|
|
4826 |
* In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
|
|
4827 |
* After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
|
|
4828 |
*/
|
|
4829 |
static __INLINE q31_t arm_pid_q31(
|
|
4830 |
arm_pid_instance_q31 * S,
|
|
4831 |
q31_t in)
|
|
4832 |
{
|
|
4833 |
q63_t acc;
|
|
4834 |
q31_t out;
|
|
4835 |
|
|
4836 |
/* acc = A0 * x[n] */
|
|
4837 |
acc = (q63_t) S->A0 * in;
|
|
4838 |
|
|
4839 |
/* acc += A1 * x[n-1] */
|
|
4840 |
acc += (q63_t) S->A1 * S->state[0];
|
|
4841 |
|
|
4842 |
/* acc += A2 * x[n-2] */
|
|
4843 |
acc += (q63_t) S->A2 * S->state[1];
|
|
4844 |
|
|
4845 |
/* convert output to 1.31 format to add y[n-1] */
|
|
4846 |
out = (q31_t) (acc >> 31u);
|
|
4847 |
|
|
4848 |
/* out += y[n-1] */
|
|
4849 |
out += S->state[2];
|
|
4850 |
|
|
4851 |
/* Update state */
|
|
4852 |
S->state[1] = S->state[0];
|
|
4853 |
S->state[0] = in;
|
|
4854 |
S->state[2] = out;
|
|
4855 |
|
|
4856 |
/* return to application */
|
|
4857 |
return (out);
|
|
4858 |
}
|
|
4859 |
|
|
4860 |
|
|
4861 |
/**
|
|
4862 |
* @brief Process function for the Q15 PID Control.
|
|
4863 |
* @param[in,out] S points to an instance of the Q15 PID Control structure
|
|
4864 |
* @param[in] in input sample to process
|
|
4865 |
* @return out processed output sample.
|
|
4866 |
*
|
|
4867 |
* <b>Scaling and Overflow Behavior:</b>
|
|
4868 |
* \par
|
|
4869 |
* The function is implemented using a 64-bit internal accumulator.
|
|
4870 |
* Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
|
|
4871 |
* The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
|
|
4872 |
* There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
|
|
4873 |
* After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
|
|
4874 |
* Lastly, the accumulator is saturated to yield a result in 1.15 format.
|
|
4875 |
*/
|
|
4876 |
static __INLINE q15_t arm_pid_q15(
|
|
4877 |
arm_pid_instance_q15 * S,
|
|
4878 |
q15_t in)
|
|
4879 |
{
|
|
4880 |
q63_t acc;
|
|
4881 |
q15_t out;
|
|
4882 |
|
|
4883 |
#ifndef ARM_MATH_CM0_FAMILY
|
|
4884 |
__SIMD32_TYPE *vstate;
|
|
4885 |
|
|
4886 |
/* Implementation of PID controller */
|
|
4887 |
|
|
4888 |
/* acc = A0 * x[n] */
|
|
4889 |
acc = (q31_t) __SMUAD((uint32_t)S->A0, (uint32_t)in);
|
|
4890 |
|
|
4891 |
/* acc += A1 * x[n-1] + A2 * x[n-2] */
|
|
4892 |
vstate = __SIMD32_CONST(S->state);
|
|
4893 |
acc = (q63_t)__SMLALD((uint32_t)S->A1, (uint32_t)*vstate, (uint64_t)acc);
|
|
4894 |
#else
|
|
4895 |
/* acc = A0 * x[n] */
|
|
4896 |
acc = ((q31_t) S->A0) * in;
|
|
4897 |
|
|
4898 |
/* acc += A1 * x[n-1] + A2 * x[n-2] */
|
|
4899 |
acc += (q31_t) S->A1 * S->state[0];
|
|
4900 |
acc += (q31_t) S->A2 * S->state[1];
|
|
4901 |
#endif
|
|
4902 |
|
|
4903 |
/* acc += y[n-1] */
|
|
4904 |
acc += (q31_t) S->state[2] << 15;
|
|
4905 |
|
|
4906 |
/* saturate the output */
|
|
4907 |
out = (q15_t) (__SSAT((acc >> 15), 16));
|
|
4908 |
|
|
4909 |
/* Update state */
|
|
4910 |
S->state[1] = S->state[0];
|
|
4911 |
S->state[0] = in;
|
|
4912 |
S->state[2] = out;
|
|
4913 |
|
|
4914 |
/* return to application */
|
|
4915 |
return (out);
|
|
4916 |
}
|
|
4917 |
|
|
4918 |
/**
|
|
4919 |
* @} end of PID group
|
|
4920 |
*/
|
|
4921 |
|
|
4922 |
|
|
4923 |
/**
|
|
4924 |
* @brief Floating-point matrix inverse.
|
|
4925 |
* @param[in] src points to the instance of the input floating-point matrix structure.
|
|
4926 |
* @param[out] dst points to the instance of the output floating-point matrix structure.
|
|
4927 |
* @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
|
|
4928 |
* If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
|
|
4929 |
*/
|
|
4930 |
arm_status arm_mat_inverse_f32(
|
|
4931 |
const arm_matrix_instance_f32 * src,
|
|
4932 |
arm_matrix_instance_f32 * dst);
|
|
4933 |
|
|
4934 |
|
|
4935 |
/**
|
|
4936 |
* @brief Floating-point matrix inverse.
|
|
4937 |
* @param[in] src points to the instance of the input floating-point matrix structure.
|
|
4938 |
* @param[out] dst points to the instance of the output floating-point matrix structure.
|
|
4939 |
* @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
|
|
4940 |
* If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
|
|
4941 |
*/
|
|
4942 |
arm_status arm_mat_inverse_f64(
|
|
4943 |
const arm_matrix_instance_f64 * src,
|
|
4944 |
arm_matrix_instance_f64 * dst);
|
|
4945 |
|
|
4946 |
|
|
4947 |
|
|
4948 |
/**
|
|
4949 |
* @ingroup groupController
|
|
4950 |
*/
|
|
4951 |
|
|
4952 |
/**
|
|
4953 |
* @defgroup clarke Vector Clarke Transform
|
|
4954 |
* Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
|
|
4955 |
* Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
|
|
4956 |
* in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
|
|
4957 |
* When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
|
|
4958 |
* \image html clarke.gif Stator current space vector and its components in (a,b).
|
|
4959 |
* and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
|
|
4960 |
* can be calculated using only <code>Ia</code> and <code>Ib</code>.
|
|
4961 |
*
|
|
4962 |
* The function operates on a single sample of data and each call to the function returns the processed output.
|
|
4963 |
* The library provides separate functions for Q31 and floating-point data types.
|
|
4964 |
* \par Algorithm
|
|
4965 |
* \image html clarkeFormula.gif
|
|
4966 |
* where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
|
|
4967 |
* <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
|
|
4968 |
* \par Fixed-Point Behavior
|
|
4969 |
* Care must be taken when using the Q31 version of the Clarke transform.
|
|
4970 |
* In particular, the overflow and saturation behavior of the accumulator used must be considered.
|
|
4971 |
* Refer to the function specific documentation below for usage guidelines.
|
|
4972 |
*/
|
|
4973 |
|
|
4974 |
/**
|
|
4975 |
* @addtogroup clarke
|
|
4976 |
* @{
|
|
4977 |
*/
|
|
4978 |
|
|
4979 |
/**
|
|
4980 |
*
|
|
4981 |
* @brief Floating-point Clarke transform
|
|
4982 |
* @param[in] Ia input three-phase coordinate <code>a</code>
|
|
4983 |
* @param[in] Ib input three-phase coordinate <code>b</code>
|
|
4984 |
* @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
|
|
4985 |
* @param[out] pIbeta points to output two-phase orthogonal vector axis beta
|
|
4986 |
*/
|
|
4987 |
static __INLINE void arm_clarke_f32(
|
|
4988 |
float32_t Ia,
|
|
4989 |
float32_t Ib,
|
|
4990 |
float32_t * pIalpha,
|
|
4991 |
float32_t * pIbeta)
|
|
4992 |
{
|
|
4993 |
/* Calculate pIalpha using the equation, pIalpha = Ia */
|
|
4994 |
*pIalpha = Ia;
|
|
4995 |
|
|
4996 |
/* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
|
|
4997 |
*pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
|
|
4998 |
}
|
|
4999 |
|
|
5000 |
|
|
5001 |
/**
|
|
5002 |
* @brief Clarke transform for Q31 version
|
|
5003 |
* @param[in] Ia input three-phase coordinate <code>a</code>
|
|
5004 |
* @param[in] Ib input three-phase coordinate <code>b</code>
|
|
5005 |
* @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
|
|
5006 |
* @param[out] pIbeta points to output two-phase orthogonal vector axis beta
|
|
5007 |
*
|
|
5008 |
* <b>Scaling and Overflow Behavior:</b>
|
|
5009 |
* \par
|
|
5010 |
* The function is implemented using an internal 32-bit accumulator.
|
|
5011 |
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
|
|
5012 |
* There is saturation on the addition, hence there is no risk of overflow.
|
|
5013 |
*/
|
|
5014 |
static __INLINE void arm_clarke_q31(
|
|
5015 |
q31_t Ia,
|
|
5016 |
q31_t Ib,
|
|
5017 |
q31_t * pIalpha,
|
|
5018 |
q31_t * pIbeta)
|
|
5019 |
{
|
|
5020 |
q31_t product1, product2; /* Temporary variables used to store intermediate results */
|
|
5021 |
|
|
5022 |
/* Calculating pIalpha from Ia by equation pIalpha = Ia */
|
|
5023 |
*pIalpha = Ia;
|
|
5024 |
|
|
5025 |
/* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
|
|
5026 |
product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
|
|
5027 |
|
|
5028 |
/* Intermediate product is calculated by (2/sqrt(3) * Ib) */
|
|
5029 |
product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
|
|
5030 |
|
|
5031 |
/* pIbeta is calculated by adding the intermediate products */
|
|
5032 |
*pIbeta = __QADD(product1, product2);
|
|
5033 |
}
|
|
5034 |
|
|
5035 |
/**
|
|
5036 |
* @} end of clarke group
|
|
5037 |
*/
|
|
5038 |
|
|
5039 |
/**
|
|
5040 |
* @brief Converts the elements of the Q7 vector to Q31 vector.
|
|
5041 |
* @param[in] pSrc input pointer
|
|
5042 |
* @param[out] pDst output pointer
|
|
5043 |
* @param[in] blockSize number of samples to process
|
|
5044 |
*/
|
|
5045 |
void arm_q7_to_q31(
|
|
5046 |
q7_t * pSrc,
|
|
5047 |
q31_t * pDst,
|
|
5048 |
uint32_t blockSize);
|
|
5049 |
|
|
5050 |
|
|
5051 |
|
|
5052 |
/**
|
|
5053 |
* @ingroup groupController
|
|
5054 |
*/
|
|
5055 |
|
|
5056 |
/**
|
|
5057 |
* @defgroup inv_clarke Vector Inverse Clarke Transform
|
|
5058 |
* Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
|
|
5059 |
*
|
|
5060 |
* The function operates on a single sample of data and each call to the function returns the processed output.
|
|
5061 |
* The library provides separate functions for Q31 and floating-point data types.
|
|
5062 |
* \par Algorithm
|
|
5063 |
* \image html clarkeInvFormula.gif
|
|
5064 |
* where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
|
|
5065 |
* <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
|
|
5066 |
* \par Fixed-Point Behavior
|
|
5067 |
* Care must be taken when using the Q31 version of the Clarke transform.
|
|
5068 |
* In particular, the overflow and saturation behavior of the accumulator used must be considered.
|
|
5069 |
* Refer to the function specific documentation below for usage guidelines.
|
|
5070 |
*/
|
|
5071 |
|
|
5072 |
/**
|
|
5073 |
* @addtogroup inv_clarke
|
|
5074 |
* @{
|
|
5075 |
*/
|
|
5076 |
|
|
5077 |
/**
|
|
5078 |
* @brief Floating-point Inverse Clarke transform
|
|
5079 |
* @param[in] Ialpha input two-phase orthogonal vector axis alpha
|
|
5080 |
* @param[in] Ibeta input two-phase orthogonal vector axis beta
|
|
5081 |
* @param[out] pIa points to output three-phase coordinate <code>a</code>
|
|
5082 |
* @param[out] pIb points to output three-phase coordinate <code>b</code>
|
|
5083 |
*/
|
|
5084 |
static __INLINE void arm_inv_clarke_f32(
|
|
5085 |
float32_t Ialpha,
|
|
5086 |
float32_t Ibeta,
|
|
5087 |
float32_t * pIa,
|
|
5088 |
float32_t * pIb)
|
|
5089 |
{
|
|
5090 |
/* Calculating pIa from Ialpha by equation pIa = Ialpha */
|
|
5091 |
*pIa = Ialpha;
|
|
5092 |
|
|
5093 |
/* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
|
|
5094 |
*pIb = -0.5f * Ialpha + 0.8660254039f * Ibeta;
|
|
5095 |
}
|
|
5096 |
|
|
5097 |
|
|
5098 |
/**
|
|
5099 |
* @brief Inverse Clarke transform for Q31 version
|
|
5100 |
* @param[in] Ialpha input two-phase orthogonal vector axis alpha
|
|
5101 |
* @param[in] Ibeta input two-phase orthogonal vector axis beta
|
|
5102 |
* @param[out] pIa points to output three-phase coordinate <code>a</code>
|
|
5103 |
* @param[out] pIb points to output three-phase coordinate <code>b</code>
|
|
5104 |
*
|
|
5105 |
* <b>Scaling and Overflow Behavior:</b>
|
|
5106 |
* \par
|
|
5107 |
* The function is implemented using an internal 32-bit accumulator.
|
|
5108 |
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
|
|
5109 |
* There is saturation on the subtraction, hence there is no risk of overflow.
|
|
5110 |
*/
|
|
5111 |
static __INLINE void arm_inv_clarke_q31(
|
|
5112 |
q31_t Ialpha,
|
|
5113 |
q31_t Ibeta,
|
|
5114 |
q31_t * pIa,
|
|
5115 |
q31_t * pIb)
|
|
5116 |
{
|
|
5117 |
q31_t product1, product2; /* Temporary variables used to store intermediate results */
|
|
5118 |
|
|
5119 |
/* Calculating pIa from Ialpha by equation pIa = Ialpha */
|
|
5120 |
*pIa = Ialpha;
|
|
5121 |
|
|
5122 |
/* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
|
|
5123 |
product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
|
|
5124 |
|
|
5125 |
/* Intermediate product is calculated by (1/sqrt(3) * pIb) */
|
|
5126 |
product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
|
|
5127 |
|
|
5128 |
/* pIb is calculated by subtracting the products */
|
|
5129 |
*pIb = __QSUB(product2, product1);
|
|
5130 |
}
|
|
5131 |
|
|
5132 |
/**
|
|
5133 |
* @} end of inv_clarke group
|
|
5134 |
*/
|
|
5135 |
|
|
5136 |
/**
|
|
5137 |
* @brief Converts the elements of the Q7 vector to Q15 vector.
|
|
5138 |
* @param[in] pSrc input pointer
|
|
5139 |
* @param[out] pDst output pointer
|
|
5140 |
* @param[in] blockSize number of samples to process
|
|
5141 |
*/
|
|
5142 |
void arm_q7_to_q15(
|
|
5143 |
q7_t * pSrc,
|
|
5144 |
q15_t * pDst,
|
|
5145 |
uint32_t blockSize);
|
|
5146 |
|
|
5147 |
|
|
5148 |
|
|
5149 |
/**
|
|
5150 |
* @ingroup groupController
|
|
5151 |
*/
|
|
5152 |
|
|
5153 |
/**
|
|
5154 |
* @defgroup park Vector Park Transform
|
|
5155 |
*
|
|
5156 |
* Forward Park transform converts the input two-coordinate vector to flux and torque components.
|
|
5157 |
* The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
|
|
5158 |
* from the stationary to the moving reference frame and control the spatial relationship between
|
|
5159 |
* the stator vector current and rotor flux vector.
|
|
5160 |
* If we consider the d axis aligned with the rotor flux, the diagram below shows the
|
|
5161 |
* current vector and the relationship from the two reference frames:
|
|
5162 |
* \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
|
|
5163 |
*
|
|
5164 |
* The function operates on a single sample of data and each call to the function returns the processed output.
|
|
5165 |
* The library provides separate functions for Q31 and floating-point data types.
|
|
5166 |
* \par Algorithm
|
|
5167 |
* \image html parkFormula.gif
|
|
5168 |
* where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
|
|
5169 |
* <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
|
|
5170 |
* cosine and sine values of theta (rotor flux position).
|
|
5171 |
* \par Fixed-Point Behavior
|
|
5172 |
* Care must be taken when using the Q31 version of the Park transform.
|
|
5173 |
* In particular, the overflow and saturation behavior of the accumulator used must be considered.
|
|
5174 |
* Refer to the function specific documentation below for usage guidelines.
|
|
5175 |
*/
|
|
5176 |
|
|
5177 |
/**
|
|
5178 |
* @addtogroup park
|
|
5179 |
* @{
|
|
5180 |
*/
|
|
5181 |
|
|
5182 |
/**
|
|
5183 |
* @brief Floating-point Park transform
|
|
5184 |
* @param[in] Ialpha input two-phase vector coordinate alpha
|
|
5185 |
* @param[in] Ibeta input two-phase vector coordinate beta
|
|
5186 |
* @param[out] pId points to output rotor reference frame d
|
|
5187 |
* @param[out] pIq points to output rotor reference frame q
|
|
5188 |
* @param[in] sinVal sine value of rotation angle theta
|
|
5189 |
* @param[in] cosVal cosine value of rotation angle theta
|
|
5190 |
*
|
|
5191 |
* The function implements the forward Park transform.
|
|
5192 |
*
|
|
5193 |
*/
|
|
5194 |
static __INLINE void arm_park_f32(
|
|
5195 |
float32_t Ialpha,
|
|
5196 |
float32_t Ibeta,
|
|
5197 |
float32_t * pId,
|
|
5198 |
float32_t * pIq,
|
|
5199 |
float32_t sinVal,
|
|
5200 |
float32_t cosVal)
|
|
5201 |
{
|
|
5202 |
/* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
|
|
5203 |
*pId = Ialpha * cosVal + Ibeta * sinVal;
|
|
5204 |
|
|
5205 |
/* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
|
|
5206 |
*pIq = -Ialpha * sinVal + Ibeta * cosVal;
|
|
5207 |
}
|
|
5208 |
|
|
5209 |
|
|
5210 |
/**
|
|
5211 |
* @brief Park transform for Q31 version
|
|
5212 |
* @param[in] Ialpha input two-phase vector coordinate alpha
|
|
5213 |
* @param[in] Ibeta input two-phase vector coordinate beta
|
|
5214 |
* @param[out] pId points to output rotor reference frame d
|
|
5215 |
* @param[out] pIq points to output rotor reference frame q
|
|
5216 |
* @param[in] sinVal sine value of rotation angle theta
|
|
5217 |
* @param[in] cosVal cosine value of rotation angle theta
|
|
5218 |
*
|
|
5219 |
* <b>Scaling and Overflow Behavior:</b>
|
|
5220 |
* \par
|
|
5221 |
* The function is implemented using an internal 32-bit accumulator.
|
|
5222 |
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
|
|
5223 |
* There is saturation on the addition and subtraction, hence there is no risk of overflow.
|
|
5224 |
*/
|
|
5225 |
static __INLINE void arm_park_q31(
|
|
5226 |
q31_t Ialpha,
|
|
5227 |
q31_t Ibeta,
|
|
5228 |
q31_t * pId,
|
|
5229 |
q31_t * pIq,
|
|
5230 |
q31_t sinVal,
|
|
5231 |
q31_t cosVal)
|
|
5232 |
{
|
|
5233 |
q31_t product1, product2; /* Temporary variables used to store intermediate results */
|
|
5234 |
q31_t product3, product4; /* Temporary variables used to store intermediate results */
|
|
5235 |
|
|
5236 |
/* Intermediate product is calculated by (Ialpha * cosVal) */
|
|
5237 |
product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
|
|
5238 |
|
|
5239 |
/* Intermediate product is calculated by (Ibeta * sinVal) */
|
|
5240 |
product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
|
|
5241 |
|
|
5242 |
|
|
5243 |
/* Intermediate product is calculated by (Ialpha * sinVal) */
|
|
5244 |
product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
|
|
5245 |
|
|
5246 |
/* Intermediate product is calculated by (Ibeta * cosVal) */
|
|
5247 |
product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
|
|
5248 |
|
|
5249 |
/* Calculate pId by adding the two intermediate products 1 and 2 */
|
|
5250 |
*pId = __QADD(product1, product2);
|
|
5251 |
|
|
5252 |
/* Calculate pIq by subtracting the two intermediate products 3 from 4 */
|
|
5253 |
*pIq = __QSUB(product4, product3);
|
|
5254 |
}
|
|
5255 |
|
|
5256 |
/**
|
|
5257 |
* @} end of park group
|
|
5258 |
*/
|
|
5259 |
|
|
5260 |
/**
|
|
5261 |
* @brief Converts the elements of the Q7 vector to floating-point vector.
|
|
5262 |
* @param[in] pSrc is input pointer
|
|
5263 |
* @param[out] pDst is output pointer
|
|
5264 |
* @param[in] blockSize is the number of samples to process
|
|
5265 |
*/
|
|
5266 |
void arm_q7_to_float(
|
|
5267 |
q7_t * pSrc,
|
|
5268 |
float32_t * pDst,
|
|
5269 |
uint32_t blockSize);
|
|
5270 |
|
|
5271 |
|
|
5272 |
/**
|
|
5273 |
* @ingroup groupController
|
|
5274 |
*/
|
|
5275 |
|
|
5276 |
/**
|
|
5277 |
* @defgroup inv_park Vector Inverse Park transform
|
|
5278 |
* Inverse Park transform converts the input flux and torque components to two-coordinate vector.
|
|
5279 |
*
|
|
5280 |
* The function operates on a single sample of data and each call to the function returns the processed output.
|
|
5281 |
* The library provides separate functions for Q31 and floating-point data types.
|
|
5282 |
* \par Algorithm
|
|
5283 |
* \image html parkInvFormula.gif
|
|
5284 |
* where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
|
|
5285 |
* <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
|
|
5286 |
* cosine and sine values of theta (rotor flux position).
|
|
5287 |
* \par Fixed-Point Behavior
|
|
5288 |
* Care must be taken when using the Q31 version of the Park transform.
|
|
5289 |
* In particular, the overflow and saturation behavior of the accumulator used must be considered.
|
|
5290 |
* Refer to the function specific documentation below for usage guidelines.
|
|
5291 |
*/
|
|
5292 |
|
|
5293 |
/**
|
|
5294 |
* @addtogroup inv_park
|
|
5295 |
* @{
|
|
5296 |
*/
|
|
5297 |
|
|
5298 |
/**
|
|
5299 |
* @brief Floating-point Inverse Park transform
|
|
5300 |
* @param[in] Id input coordinate of rotor reference frame d
|
|
5301 |
* @param[in] Iq input coordinate of rotor reference frame q
|
|
5302 |
* @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
|
|
5303 |
* @param[out] pIbeta points to output two-phase orthogonal vector axis beta
|
|
5304 |
* @param[in] sinVal sine value of rotation angle theta
|
|
5305 |
* @param[in] cosVal cosine value of rotation angle theta
|
|
5306 |
*/
|
|
5307 |
static __INLINE void arm_inv_park_f32(
|
|
5308 |
float32_t Id,
|
|
5309 |
float32_t Iq,
|
|
5310 |
float32_t * pIalpha,
|
|
5311 |
float32_t * pIbeta,
|
|
5312 |
float32_t sinVal,
|
|
5313 |
float32_t cosVal)
|
|
5314 |
{
|
|
5315 |
/* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
|
|
5316 |
*pIalpha = Id * cosVal - Iq * sinVal;
|
|
5317 |
|
|
5318 |
/* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
|
|
5319 |
*pIbeta = Id * sinVal + Iq * cosVal;
|
|
5320 |
}
|
|
5321 |
|
|
5322 |
|
|
5323 |
/**
|
|
5324 |
* @brief Inverse Park transform for Q31 version
|
|
5325 |
* @param[in] Id input coordinate of rotor reference frame d
|
|
5326 |
* @param[in] Iq input coordinate of rotor reference frame q
|
|
5327 |
* @param[out] pIalpha points to output two-phase orthogonal vector axis alpha
|
|
5328 |
* @param[out] pIbeta points to output two-phase orthogonal vector axis beta
|
|
5329 |
* @param[in] sinVal sine value of rotation angle theta
|
|
5330 |
* @param[in] cosVal cosine value of rotation angle theta
|
|
5331 |
*
|
|
5332 |
* <b>Scaling and Overflow Behavior:</b>
|
|
5333 |
* \par
|
|
5334 |
* The function is implemented using an internal 32-bit accumulator.
|
|
5335 |
* The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
|
|
5336 |
* There is saturation on the addition, hence there is no risk of overflow.
|
|
5337 |
*/
|
|
5338 |
static __INLINE void arm_inv_park_q31(
|
|
5339 |
q31_t Id,
|
|
5340 |
q31_t Iq,
|
|
5341 |
q31_t * pIalpha,
|
|
5342 |
q31_t * pIbeta,
|
|
5343 |
q31_t sinVal,
|
|
5344 |
q31_t cosVal)
|
|
5345 |
{
|
|
5346 |
q31_t product1, product2; /* Temporary variables used to store intermediate results */
|
|
5347 |
q31_t product3, product4; /* Temporary variables used to store intermediate results */
|
|
5348 |
|
|
5349 |
/* Intermediate product is calculated by (Id * cosVal) */
|
|
5350 |
product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
|
|
5351 |
|
|
5352 |
/* Intermediate product is calculated by (Iq * sinVal) */
|
|
5353 |
product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
|
|
5354 |
|
|
5355 |
|
|
5356 |
/* Intermediate product is calculated by (Id * sinVal) */
|
|
5357 |
product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
|
|
5358 |
|
|
5359 |
/* Intermediate product is calculated by (Iq * cosVal) */
|
|
5360 |
product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
|
|
5361 |
|
|
5362 |
/* Calculate pIalpha by using the two intermediate products 1 and 2 */
|
|
5363 |
*pIalpha = __QSUB(product1, product2);
|
|
5364 |
|
|
5365 |
/* Calculate pIbeta by using the two intermediate products 3 and 4 */
|
|
5366 |
*pIbeta = __QADD(product4, product3);
|
|
5367 |
}
|
|
5368 |
|
|
5369 |
/**
|
|
5370 |
* @} end of Inverse park group
|
|
5371 |
*/
|
|
5372 |
|
|
5373 |
|
|
5374 |
/**
|
|
5375 |
* @brief Converts the elements of the Q31 vector to floating-point vector.
|
|
5376 |
* @param[in] pSrc is input pointer
|
|
5377 |
* @param[out] pDst is output pointer
|
|
5378 |
* @param[in] blockSize is the number of samples to process
|
|
5379 |
*/
|
|
5380 |
void arm_q31_to_float(
|
|
5381 |
q31_t * pSrc,
|
|
5382 |
float32_t * pDst,
|
|
5383 |
uint32_t blockSize);
|
|
5384 |
|
|
5385 |
/**
|
|
5386 |
* @ingroup groupInterpolation
|
|
5387 |
*/
|
|
5388 |
|
|
5389 |
/**
|
|
5390 |
* @defgroup LinearInterpolate Linear Interpolation
|
|
5391 |
*
|
|
5392 |
* Linear interpolation is a method of curve fitting using linear polynomials.
|
|
5393 |
* Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
|
|
5394 |
*
|
|
5395 |
* \par
|
|
5396 |
* \image html LinearInterp.gif "Linear interpolation"
|
|
5397 |
*
|
|
5398 |
* \par
|
|
5399 |
* A Linear Interpolate function calculates an output value(y), for the input(x)
|
|
5400 |
* using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
|
|
5401 |
*
|
|
5402 |
* \par Algorithm:
|
|
5403 |
* <pre>
|
|
5404 |
* y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
|
|
5405 |
* where x0, x1 are nearest values of input x
|
|
5406 |
* y0, y1 are nearest values to output y
|
|
5407 |
* </pre>
|
|
5408 |
*
|
|
5409 |
* \par
|
|
5410 |
* This set of functions implements Linear interpolation process
|
|
5411 |
* for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
|
|
5412 |
* sample of data and each call to the function returns a single processed value.
|
|
5413 |
* <code>S</code> points to an instance of the Linear Interpolate function data structure.
|
|
5414 |
* <code>x</code> is the input sample value. The functions returns the output value.
|
|
5415 |
*
|
|
5416 |
* \par
|
|
5417 |
* if x is outside of the table boundary, Linear interpolation returns first value of the table
|
|
5418 |
* if x is below input range and returns last value of table if x is above range.
|
|
5419 |
*/
|
|
5420 |
|
|
5421 |
/**
|
|
5422 |
* @addtogroup LinearInterpolate
|
|
5423 |
* @{
|
|
5424 |
*/
|
|
5425 |
|
|
5426 |
/**
|
|
5427 |
* @brief Process function for the floating-point Linear Interpolation Function.
|
|
5428 |
* @param[in,out] S is an instance of the floating-point Linear Interpolation structure
|
|
5429 |
* @param[in] x input sample to process
|
|
5430 |
* @return y processed output sample.
|
|
5431 |
*
|
|
5432 |
*/
|
|
5433 |
static __INLINE float32_t arm_linear_interp_f32(
|
|
5434 |
arm_linear_interp_instance_f32 * S,
|
|
5435 |
float32_t x)
|
|
5436 |
{
|
|
5437 |
float32_t y;
|
|
5438 |
float32_t x0, x1; /* Nearest input values */
|
|
5439 |
float32_t y0, y1; /* Nearest output values */
|
|
5440 |
float32_t xSpacing = S->xSpacing; /* spacing between input values */
|
|
5441 |
int32_t i; /* Index variable */
|
|
5442 |
float32_t *pYData = S->pYData; /* pointer to output table */
|
|
5443 |
|
|
5444 |
/* Calculation of index */
|
|
5445 |
i = (int32_t) ((x - S->x1) / xSpacing);
|
|
5446 |
|
|
5447 |
if(i < 0)
|
|
5448 |
{
|
|
5449 |
/* Iniatilize output for below specified range as least output value of table */
|
|
5450 |
y = pYData[0];
|
|
5451 |
}
|
|
5452 |
else if((uint32_t)i >= S->nValues)
|
|
5453 |
{
|
|
5454 |
/* Iniatilize output for above specified range as last output value of table */
|
|
5455 |
y = pYData[S->nValues - 1];
|
|
5456 |
}
|
|
5457 |
else
|
|
5458 |
{
|
|
5459 |
/* Calculation of nearest input values */
|
|
5460 |
x0 = S->x1 + i * xSpacing;
|
|
5461 |
x1 = S->x1 + (i + 1) * xSpacing;
|
|
5462 |
|
|
5463 |
/* Read of nearest output values */
|
|
5464 |
y0 = pYData[i];
|
|
5465 |
y1 = pYData[i + 1];
|
|
5466 |
|
|
5467 |
/* Calculation of output */
|
|
5468 |
y = y0 + (x - x0) * ((y1 - y0) / (x1 - x0));
|
|
5469 |
|
|
5470 |
}
|
|
5471 |
|
|
5472 |
/* returns output value */
|
|
5473 |
return (y);
|
|
5474 |
}
|
|
5475 |
|
|
5476 |
|
|
5477 |
/**
|
|
5478 |
*
|
|
5479 |
* @brief Process function for the Q31 Linear Interpolation Function.
|
|
5480 |
* @param[in] pYData pointer to Q31 Linear Interpolation table
|
|
5481 |
* @param[in] x input sample to process
|
|
5482 |
* @param[in] nValues number of table values
|
|
5483 |
* @return y processed output sample.
|
|
5484 |
*
|
|
5485 |
* \par
|
|
5486 |
* Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
|
|
5487 |
* This function can support maximum of table size 2^12.
|
|
5488 |
*
|
|
5489 |
*/
|
|
5490 |
static __INLINE q31_t arm_linear_interp_q31(
|
|
5491 |
q31_t * pYData,
|
|
5492 |
q31_t x,
|
|
5493 |
uint32_t nValues)
|
|
5494 |
{
|
|
5495 |
q31_t y; /* output */
|
|
5496 |
q31_t y0, y1; /* Nearest output values */
|
|
5497 |
q31_t fract; /* fractional part */
|
|
5498 |
int32_t index; /* Index to read nearest output values */
|
|
5499 |
|
|
5500 |
/* Input is in 12.20 format */
|
|
5501 |
/* 12 bits for the table index */
|
|
5502 |
/* Index value calculation */
|
|
5503 |
index = ((x & (q31_t)0xFFF00000) >> 20);
|
|
5504 |
|
|
5505 |
if(index >= (int32_t)(nValues - 1))
|
|
5506 |
{
|
|
5507 |
return (pYData[nValues - 1]);
|
|
5508 |
}
|
|
5509 |
else if(index < 0)
|
|
5510 |
{
|
|
5511 |
return (pYData[0]);
|
|
5512 |
}
|
|
5513 |
else
|
|
5514 |
{
|
|
5515 |
/* 20 bits for the fractional part */
|
|
5516 |
/* shift left by 11 to keep fract in 1.31 format */
|
|
5517 |
fract = (x & 0x000FFFFF) << 11;
|
|
5518 |
|
|
5519 |
/* Read two nearest output values from the index in 1.31(q31) format */
|
|
5520 |
y0 = pYData[index];
|
|
5521 |
y1 = pYData[index + 1];
|
|
5522 |
|
|
5523 |
/* Calculation of y0 * (1-fract) and y is in 2.30 format */
|
|
5524 |
y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
|
|
5525 |
|
|
5526 |
/* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
|
|
5527 |
y += ((q31_t) (((q63_t) y1 * fract) >> 32));
|
|
5528 |
|
|
5529 |
/* Convert y to 1.31 format */
|
|
5530 |
return (y << 1u);
|
|
5531 |
}
|
|
5532 |
}
|
|
5533 |
|
|
5534 |
|
|
5535 |
/**
|
|
5536 |
*
|
|
5537 |
* @brief Process function for the Q15 Linear Interpolation Function.
|
|
5538 |
* @param[in] pYData pointer to Q15 Linear Interpolation table
|
|
5539 |
* @param[in] x input sample to process
|
|
5540 |
* @param[in] nValues number of table values
|
|
5541 |
* @return y processed output sample.
|
|
5542 |
*
|
|
5543 |
* \par
|
|
5544 |
* Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
|
|
5545 |
* This function can support maximum of table size 2^12.
|
|
5546 |
*
|
|
5547 |
*/
|
|
5548 |
static __INLINE q15_t arm_linear_interp_q15(
|
|
5549 |
q15_t * pYData,
|
|
5550 |
q31_t x,
|
|
5551 |
uint32_t nValues)
|
|
5552 |
{
|
|
5553 |
q63_t y; /* output */
|
|
5554 |
q15_t y0, y1; /* Nearest output values */
|
|
5555 |
q31_t fract; /* fractional part */
|
|
5556 |
int32_t index; /* Index to read nearest output values */
|
|
5557 |
|
|
5558 |
/* Input is in 12.20 format */
|
|
5559 |
/* 12 bits for the table index */
|
|
5560 |
/* Index value calculation */
|
|
5561 |
index = ((x & (int32_t)0xFFF00000) >> 20);
|
|
5562 |
|
|
5563 |
if(index >= (int32_t)(nValues - 1))
|
|
5564 |
{
|
|
5565 |
return (pYData[nValues - 1]);
|
|
5566 |
}
|
|
5567 |
else if(index < 0)
|
|
5568 |
{
|
|
5569 |
return (pYData[0]);
|
|
5570 |
}
|
|
5571 |
else
|
|
5572 |
{
|
|
5573 |
/* 20 bits for the fractional part */
|
|
5574 |
/* fract is in 12.20 format */
|
|
5575 |
fract = (x & 0x000FFFFF);
|
|
5576 |
|
|
5577 |
/* Read two nearest output values from the index */
|
|
5578 |
y0 = pYData[index];
|
|
5579 |
y1 = pYData[index + 1];
|
|
5580 |
|
|
5581 |
/* Calculation of y0 * (1-fract) and y is in 13.35 format */
|
|
5582 |
y = ((q63_t) y0 * (0xFFFFF - fract));
|
|
5583 |
|
|
5584 |
/* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
|
|
5585 |
y += ((q63_t) y1 * (fract));
|
|
5586 |
|
|
5587 |
/* convert y to 1.15 format */
|
|
5588 |
return (q15_t) (y >> 20);
|
|
5589 |
}
|
|
5590 |
}
|
|
5591 |
|
|
5592 |
|
|
5593 |
/**
|
|
5594 |
*
|
|
5595 |
* @brief Process function for the Q7 Linear Interpolation Function.
|
|
5596 |
* @param[in] pYData pointer to Q7 Linear Interpolation table
|
|
5597 |
* @param[in] x input sample to process
|
|
5598 |
* @param[in] nValues number of table values
|
|
5599 |
* @return y processed output sample.
|
|
5600 |
*
|
|
5601 |
* \par
|
|
5602 |
* Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
|
|
5603 |
* This function can support maximum of table size 2^12.
|
|
5604 |
*/
|
|
5605 |
static __INLINE q7_t arm_linear_interp_q7(
|
|
5606 |
q7_t * pYData,
|
|
5607 |
q31_t x,
|
|
5608 |
uint32_t nValues)
|
|
5609 |
{
|
|
5610 |
q31_t y; /* output */
|
|
5611 |
q7_t y0, y1; /* Nearest output values */
|
|
5612 |
q31_t fract; /* fractional part */
|
|
5613 |
uint32_t index; /* Index to read nearest output values */
|
|
5614 |
|
|
5615 |
/* Input is in 12.20 format */
|
|
5616 |
/* 12 bits for the table index */
|
|
5617 |
/* Index value calculation */
|
|
5618 |
if (x < 0)
|
|
5619 |
{
|
|
5620 |
return (pYData[0]);
|
|
5621 |
}
|
|
5622 |
index = (x >> 20) & 0xfff;
|
|
5623 |
|
|
5624 |
if(index >= (nValues - 1))
|
|
5625 |
{
|
|
5626 |
return (pYData[nValues - 1]);
|
|
5627 |
}
|
|
5628 |
else
|
|
5629 |
{
|
|
5630 |
/* 20 bits for the fractional part */
|
|
5631 |
/* fract is in 12.20 format */
|
|
5632 |
fract = (x & 0x000FFFFF);
|
|
5633 |
|
|
5634 |
/* Read two nearest output values from the index and are in 1.7(q7) format */
|
|
5635 |
y0 = pYData[index];
|
|
5636 |
y1 = pYData[index + 1];
|
|
5637 |
|
|
5638 |
/* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
|
|
5639 |
y = ((y0 * (0xFFFFF - fract)));
|
|
5640 |
|
|
5641 |
/* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
|
|
5642 |
y += (y1 * fract);
|
|
5643 |
|
|
5644 |
/* convert y to 1.7(q7) format */
|
|
5645 |
return (q7_t) (y >> 20);
|
|
5646 |
}
|
|
5647 |
}
|
|
5648 |
|
|
5649 |
/**
|
|
5650 |
* @} end of LinearInterpolate group
|
|
5651 |
*/
|
|
5652 |
|
|
5653 |
/**
|
|
5654 |
* @brief Fast approximation to the trigonometric sine function for floating-point data.
|
|
5655 |
* @param[in] x input value in radians.
|
|
5656 |
* @return sin(x).
|
|
5657 |
*/
|
|
5658 |
float32_t arm_sin_f32(
|
|
5659 |
float32_t x);
|
|
5660 |
|
|
5661 |
|
|
5662 |
/**
|
|
5663 |
* @brief Fast approximation to the trigonometric sine function for Q31 data.
|
|
5664 |
* @param[in] x Scaled input value in radians.
|
|
5665 |
* @return sin(x).
|
|
5666 |
*/
|
|
5667 |
q31_t arm_sin_q31(
|
|
5668 |
q31_t x);
|
|
5669 |
|
|
5670 |
|
|
5671 |
/**
|
|
5672 |
* @brief Fast approximation to the trigonometric sine function for Q15 data.
|
|
5673 |
* @param[in] x Scaled input value in radians.
|
|
5674 |
* @return sin(x).
|
|
5675 |
*/
|
|
5676 |
q15_t arm_sin_q15(
|
|
5677 |
q15_t x);
|
|
5678 |
|
|
5679 |
|
|
5680 |
/**
|
|
5681 |
* @brief Fast approximation to the trigonometric cosine function for floating-point data.
|
|
5682 |
* @param[in] x input value in radians.
|
|
5683 |
* @return cos(x).
|
|
5684 |
*/
|
|
5685 |
float32_t arm_cos_f32(
|
|
5686 |
float32_t x);
|
|
5687 |
|
|
5688 |
|
|
5689 |
/**
|
|
5690 |
* @brief Fast approximation to the trigonometric cosine function for Q31 data.
|
|
5691 |
* @param[in] x Scaled input value in radians.
|
|
5692 |
* @return cos(x).
|
|
5693 |
*/
|
|
5694 |
q31_t arm_cos_q31(
|
|
5695 |
q31_t x);
|
|
5696 |
|
|
5697 |
|
|
5698 |
/**
|
|
5699 |
* @brief Fast approximation to the trigonometric cosine function for Q15 data.
|
|
5700 |
* @param[in] x Scaled input value in radians.
|
|
5701 |
* @return cos(x).
|
|
5702 |
*/
|
|
5703 |
q15_t arm_cos_q15(
|
|
5704 |
q15_t x);
|
|
5705 |
|
|
5706 |
|
|
5707 |
/**
|
|
5708 |
* @ingroup groupFastMath
|
|
5709 |
*/
|
|
5710 |
|
|
5711 |
|
|
5712 |
/**
|
|
5713 |
* @defgroup SQRT Square Root
|
|
5714 |
*
|
|
5715 |
* Computes the square root of a number.
|
|
5716 |
* There are separate functions for Q15, Q31, and floating-point data types.
|
|
5717 |
* The square root function is computed using the Newton-Raphson algorithm.
|
|
5718 |
* This is an iterative algorithm of the form:
|
|
5719 |
* <pre>
|
|
5720 |
* x1 = x0 - f(x0)/f'(x0)
|
|
5721 |
* </pre>
|
|
5722 |
* where <code>x1</code> is the current estimate,
|
|
5723 |
* <code>x0</code> is the previous estimate, and
|
|
5724 |
* <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
|
|
5725 |
* For the square root function, the algorithm reduces to:
|
|
5726 |
* <pre>
|
|
5727 |
* x0 = in/2 [initial guess]
|
|
5728 |
* x1 = 1/2 * ( x0 + in / x0) [each iteration]
|
|
5729 |
* </pre>
|
|
5730 |
*/
|
|
5731 |
|
|
5732 |
|
|
5733 |
/**
|
|
5734 |
* @addtogroup SQRT
|
|
5735 |
* @{
|
|
5736 |
*/
|
|
5737 |
|
|
5738 |
/**
|
|
5739 |
* @brief Floating-point square root function.
|
|
5740 |
* @param[in] in input value.
|
|
5741 |
* @param[out] pOut square root of input value.
|
|
5742 |
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
|
|
5743 |
* <code>in</code> is negative value and returns zero output for negative values.
|
|
5744 |
*/
|
|
5745 |
static __INLINE arm_status arm_sqrt_f32(
|
|
5746 |
float32_t in,
|
|
5747 |
float32_t * pOut)
|
|
5748 |
{
|
|
5749 |
if(in >= 0.0f)
|
|
5750 |
{
|
|
5751 |
|
|
5752 |
#if (__FPU_USED == 1) && defined ( __CC_ARM )
|
|
5753 |
*pOut = __sqrtf(in);
|
|
5754 |
#elif (__FPU_USED == 1) && (defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050))
|
|
5755 |
*pOut = __builtin_sqrtf(in);
|
|
5756 |
#elif (__FPU_USED == 1) && defined(__GNUC__)
|
|
5757 |
*pOut = __builtin_sqrtf(in);
|
|
5758 |
#elif (__FPU_USED == 1) && defined ( __ICCARM__ ) && (__VER__ >= 6040000)
|
|
5759 |
__ASM("VSQRT.F32 %0,%1" : "=t"(*pOut) : "t"(in));
|
|
5760 |
#else
|
|
5761 |
*pOut = sqrtf(in);
|
|
5762 |
#endif
|
|
5763 |
|
|
5764 |
return (ARM_MATH_SUCCESS);
|
|
5765 |
}
|
|
5766 |
else
|
|
5767 |
{
|
|
5768 |
*pOut = 0.0f;
|
|
5769 |
return (ARM_MATH_ARGUMENT_ERROR);
|
|
5770 |
}
|
|
5771 |
}
|
|
5772 |
|
|
5773 |
|
|
5774 |
/**
|
|
5775 |
* @brief Q31 square root function.
|
|
5776 |
* @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
|
|
5777 |
* @param[out] pOut square root of input value.
|
|
5778 |
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
|
|
5779 |
* <code>in</code> is negative value and returns zero output for negative values.
|
|
5780 |
*/
|
|
5781 |
arm_status arm_sqrt_q31(
|
|
5782 |
q31_t in,
|
|
5783 |
q31_t * pOut);
|
|
5784 |
|
|
5785 |
|
|
5786 |
/**
|
|
5787 |
* @brief Q15 square root function.
|
|
5788 |
* @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
|
|
5789 |
* @param[out] pOut square root of input value.
|
|
5790 |
* @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
|
|
5791 |
* <code>in</code> is negative value and returns zero output for negative values.
|
|
5792 |
*/
|
|
5793 |
arm_status arm_sqrt_q15(
|
|
5794 |
q15_t in,
|
|
5795 |
q15_t * pOut);
|
|
5796 |
|
|
5797 |
/**
|
|
5798 |
* @} end of SQRT group
|
|
5799 |
*/
|
|
5800 |
|
|
5801 |
|
|
5802 |
/**
|
|
5803 |
* @brief floating-point Circular write function.
|
|
5804 |
*/
|
|
5805 |
static __INLINE void arm_circularWrite_f32(
|
|
5806 |
int32_t * circBuffer,
|
|
5807 |
int32_t L,
|
|
5808 |
uint16_t * writeOffset,
|
|
5809 |
int32_t bufferInc,
|
|
5810 |
const int32_t * src,
|
|
5811 |
int32_t srcInc,
|
|
5812 |
uint32_t blockSize)
|
|
5813 |
{
|
|
5814 |
uint32_t i = 0u;
|
|
5815 |
int32_t wOffset;
|
|
5816 |
|
|
5817 |
/* Copy the value of Index pointer that points
|
|
5818 |
* to the current location where the input samples to be copied */
|
|
5819 |
wOffset = *writeOffset;
|
|
5820 |
|
|
5821 |
/* Loop over the blockSize */
|
|
5822 |
i = blockSize;
|
|
5823 |
|
|
5824 |
while(i > 0u)
|
|
5825 |
{
|
|
5826 |
/* copy the input sample to the circular buffer */
|
|
5827 |
circBuffer[wOffset] = *src;
|
|
5828 |
|
|
5829 |
/* Update the input pointer */
|
|
5830 |
src += srcInc;
|
|
5831 |
|
|
5832 |
/* Circularly update wOffset. Watch out for positive and negative value */
|
|
5833 |
wOffset += bufferInc;
|
|
5834 |
if(wOffset >= L)
|
|
5835 |
wOffset -= L;
|
|
5836 |
|
|
5837 |
/* Decrement the loop counter */
|
|
5838 |
i--;
|
|
5839 |
}
|
|
5840 |
|
|
5841 |
/* Update the index pointer */
|
|
5842 |
*writeOffset = (uint16_t)wOffset;
|
|
5843 |
}
|
|
5844 |
|
|
5845 |
|
|
5846 |
|
|
5847 |
/**
|
|
5848 |
* @brief floating-point Circular Read function.
|
|
5849 |
*/
|
|
5850 |
static __INLINE void arm_circularRead_f32(
|
|
5851 |
int32_t * circBuffer,
|
|
5852 |
int32_t L,
|
|
5853 |
int32_t * readOffset,
|
|
5854 |
int32_t bufferInc,
|
|
5855 |
int32_t * dst,
|
|
5856 |
int32_t * dst_base,
|
|
5857 |
int32_t dst_length,
|
|
5858 |
int32_t dstInc,
|
|
5859 |
uint32_t blockSize)
|
|
5860 |
{
|
|
5861 |
uint32_t i = 0u;
|
|
5862 |
int32_t rOffset, dst_end;
|
|
5863 |
|
|
5864 |
/* Copy the value of Index pointer that points
|
|
5865 |
* to the current location from where the input samples to be read */
|
|
5866 |
rOffset = *readOffset;
|
|
5867 |
dst_end = (int32_t) (dst_base + dst_length);
|
|
5868 |
|
|
5869 |
/* Loop over the blockSize */
|
|
5870 |
i = blockSize;
|
|
5871 |
|
|
5872 |
while(i > 0u)
|
|
5873 |
{
|
|
5874 |
/* copy the sample from the circular buffer to the destination buffer */
|
|
5875 |
*dst = circBuffer[rOffset];
|
|
5876 |
|
|
5877 |
/* Update the input pointer */
|
|
5878 |
dst += dstInc;
|
|
5879 |
|
|
5880 |
if(dst == (int32_t *) dst_end)
|
|
5881 |
{
|
|
5882 |
dst = dst_base;
|
|
5883 |
}
|
|
5884 |
|
|
5885 |
/* Circularly update rOffset. Watch out for positive and negative value */
|
|
5886 |
rOffset += bufferInc;
|
|
5887 |
|
|
5888 |
if(rOffset >= L)
|
|
5889 |
{
|
|
5890 |
rOffset -= L;
|
|
5891 |
}
|
|
5892 |
|
|
5893 |
/* Decrement the loop counter */
|
|
5894 |
i--;
|
|
5895 |
}
|
|
5896 |
|
|
5897 |
/* Update the index pointer */
|
|
5898 |
*readOffset = rOffset;
|
|
5899 |
}
|
|
5900 |
|
|
5901 |
|
|
5902 |
/**
|
|
5903 |
* @brief Q15 Circular write function.
|
|
5904 |
*/
|
|
5905 |
static __INLINE void arm_circularWrite_q15(
|
|
5906 |
q15_t * circBuffer,
|
|
5907 |
int32_t L,
|
|
5908 |
uint16_t * writeOffset,
|
|
5909 |
int32_t bufferInc,
|
|
5910 |
const q15_t * src,
|
|
5911 |
int32_t srcInc,
|
|
5912 |
uint32_t blockSize)
|
|
5913 |
{
|
|
5914 |
uint32_t i = 0u;
|
|
5915 |
int32_t wOffset;
|
|
5916 |
|
|
5917 |
/* Copy the value of Index pointer that points
|
|
5918 |
* to the current location where the input samples to be copied */
|
|
5919 |
wOffset = *writeOffset;
|
|
5920 |
|
|
5921 |
/* Loop over the blockSize */
|
|
5922 |
i = blockSize;
|
|
5923 |
|
|
5924 |
while(i > 0u)
|
|
5925 |
{
|
|
5926 |
/* copy the input sample to the circular buffer */
|
|
5927 |
circBuffer[wOffset] = *src;
|
|
5928 |
|
|
5929 |
/* Update the input pointer */
|
|
5930 |
src += srcInc;
|
|
5931 |
|
|
5932 |
/* Circularly update wOffset. Watch out for positive and negative value */
|
|
5933 |
wOffset += bufferInc;
|
|
5934 |
if(wOffset >= L)
|
|
5935 |
wOffset -= L;
|
|
5936 |
|
|
5937 |
/* Decrement the loop counter */
|
|
5938 |
i--;
|
|
5939 |
}
|
|
5940 |
|
|
5941 |
/* Update the index pointer */
|
|
5942 |
*writeOffset = (uint16_t)wOffset;
|
|
5943 |
}
|
|
5944 |
|
|
5945 |
|
|
5946 |
/**
|
|
5947 |
* @brief Q15 Circular Read function.
|
|
5948 |
*/
|
|
5949 |
static __INLINE void arm_circularRead_q15(
|
|
5950 |
q15_t * circBuffer,
|
|
5951 |
int32_t L,
|
|
5952 |
int32_t * readOffset,
|
|
5953 |
int32_t bufferInc,
|
|
5954 |
q15_t * dst,
|
|
5955 |
q15_t * dst_base,
|
|
5956 |
int32_t dst_length,
|
|
5957 |
int32_t dstInc,
|
|
5958 |
uint32_t blockSize)
|
|
5959 |
{
|
|
5960 |
uint32_t i = 0;
|
|
5961 |
int32_t rOffset, dst_end;
|
|
5962 |
|
|
5963 |
/* Copy the value of Index pointer that points
|
|
5964 |
* to the current location from where the input samples to be read */
|
|
5965 |
rOffset = *readOffset;
|
|
5966 |
|
|
5967 |
dst_end = (int32_t) (dst_base + dst_length);
|
|
5968 |
|
|
5969 |
/* Loop over the blockSize */
|
|
5970 |
i = blockSize;
|
|
5971 |
|
|
5972 |
while(i > 0u)
|
|
5973 |
{
|
|
5974 |
/* copy the sample from the circular buffer to the destination buffer */
|
|
5975 |
*dst = circBuffer[rOffset];
|
|
5976 |
|
|
5977 |
/* Update the input pointer */
|
|
5978 |
dst += dstInc;
|
|
5979 |
|
|
5980 |
if(dst == (q15_t *) dst_end)
|
|
5981 |
{
|
|
5982 |
dst = dst_base;
|
|
5983 |
}
|
|
5984 |
|
|
5985 |
/* Circularly update wOffset. Watch out for positive and negative value */
|
|
5986 |
rOffset += bufferInc;
|
|
5987 |
|
|
5988 |
if(rOffset >= L)
|
|
5989 |
{
|
|
5990 |
rOffset -= L;
|
|
5991 |
}
|
|
5992 |
|
|
5993 |
/* Decrement the loop counter */
|
|
5994 |
i--;
|
|
5995 |
}
|
|
5996 |
|
|
5997 |
/* Update the index pointer */
|
|
5998 |
*readOffset = rOffset;
|
|
5999 |
}
|
|
6000 |
|
|
6001 |
|
|
6002 |
/**
|
|
6003 |
* @brief Q7 Circular write function.
|
|
6004 |
*/
|
|
6005 |
static __INLINE void arm_circularWrite_q7(
|
|
6006 |
q7_t * circBuffer,
|
|
6007 |
int32_t L,
|
|
6008 |
uint16_t * writeOffset,
|
|
6009 |
int32_t bufferInc,
|
|
6010 |
const q7_t * src,
|
|
6011 |
int32_t srcInc,
|
|
6012 |
uint32_t blockSize)
|
|
6013 |
{
|
|
6014 |
uint32_t i = 0u;
|
|
6015 |
int32_t wOffset;
|
|
6016 |
|
|
6017 |
/* Copy the value of Index pointer that points
|
|
6018 |
* to the current location where the input samples to be copied */
|
|
6019 |
wOffset = *writeOffset;
|
|
6020 |
|
|
6021 |
/* Loop over the blockSize */
|
|
6022 |
i = blockSize;
|
|
6023 |
|
|
6024 |
while(i > 0u)
|
|
6025 |
{
|
|
6026 |
/* copy the input sample to the circular buffer */
|
|
6027 |
circBuffer[wOffset] = *src;
|
|
6028 |
|
|
6029 |
/* Update the input pointer */
|
|
6030 |
src += srcInc;
|
|
6031 |
|
|
6032 |
/* Circularly update wOffset. Watch out for positive and negative value */
|
|
6033 |
wOffset += bufferInc;
|
|
6034 |
if(wOffset >= L)
|
|
6035 |
wOffset -= L;
|
|
6036 |
|
|
6037 |
/* Decrement the loop counter */
|
|
6038 |
i--;
|
|
6039 |
}
|
|
6040 |
|
|
6041 |
/* Update the index pointer */
|
|
6042 |
*writeOffset = (uint16_t)wOffset;
|
|
6043 |
}
|
|
6044 |
|
|
6045 |
|
|
6046 |
/**
|
|
6047 |
* @brief Q7 Circular Read function.
|
|
6048 |
*/
|
|
6049 |
static __INLINE void arm_circularRead_q7(
|
|
6050 |
q7_t * circBuffer,
|
|
6051 |
int32_t L,
|
|
6052 |
int32_t * readOffset,
|
|
6053 |
int32_t bufferInc,
|
|
6054 |
q7_t * dst,
|
|
6055 |
q7_t * dst_base,
|
|
6056 |
int32_t dst_length,
|
|
6057 |
int32_t dstInc,
|
|
6058 |
uint32_t blockSize)
|
|
6059 |
{
|
|
6060 |
uint32_t i = 0;
|
|
6061 |
int32_t rOffset, dst_end;
|
|
6062 |
|
|
6063 |
/* Copy the value of Index pointer that points
|
|
6064 |
* to the current location from where the input samples to be read */
|
|
6065 |
rOffset = *readOffset;
|
|
6066 |
|
|
6067 |
dst_end = (int32_t) (dst_base + dst_length);
|
|
6068 |
|
|
6069 |
/* Loop over the blockSize */
|
|
6070 |
i = blockSize;
|
|
6071 |
|
|
6072 |
while(i > 0u)
|
|
6073 |
{
|
|
6074 |
/* copy the sample from the circular buffer to the destination buffer */
|
|
6075 |
*dst = circBuffer[rOffset];
|
|
6076 |
|
|
6077 |
/* Update the input pointer */
|
|
6078 |
dst += dstInc;
|
|
6079 |
|
|
6080 |
if(dst == (q7_t *) dst_end)
|
|
6081 |
{
|
|
6082 |
dst = dst_base;
|
|
6083 |
}
|
|
6084 |
|
|
6085 |
/* Circularly update rOffset. Watch out for positive and negative value */
|
|
6086 |
rOffset += bufferInc;
|
|
6087 |
|
|
6088 |
if(rOffset >= L)
|
|
6089 |
{
|
|
6090 |
rOffset -= L;
|
|
6091 |
}
|
|
6092 |
|
|
6093 |
/* Decrement the loop counter */
|
|
6094 |
i--;
|
|
6095 |
}
|
|
6096 |
|
|
6097 |
/* Update the index pointer */
|
|
6098 |
*readOffset = rOffset;
|
|
6099 |
}
|
|
6100 |
|
|
6101 |
|
|
6102 |
/**
|
|
6103 |
* @brief Sum of the squares of the elements of a Q31 vector.
|
|
6104 |
* @param[in] pSrc is input pointer
|
|
6105 |
* @param[in] blockSize is the number of samples to process
|
|
6106 |
* @param[out] pResult is output value.
|
|
6107 |
*/
|
|
6108 |
void arm_power_q31(
|
|
6109 |
q31_t * pSrc,
|
|
6110 |
uint32_t blockSize,
|
|
6111 |
q63_t * pResult);
|
|
6112 |
|
|
6113 |
|
|
6114 |
/**
|
|
6115 |
* @brief Sum of the squares of the elements of a floating-point vector.
|
|
6116 |
* @param[in] pSrc is input pointer
|
|
6117 |
* @param[in] blockSize is the number of samples to process
|
|
6118 |
* @param[out] pResult is output value.
|
|
6119 |
*/
|
|
6120 |
void arm_power_f32(
|
|
6121 |
float32_t * pSrc,
|
|
6122 |
uint32_t blockSize,
|
|
6123 |
float32_t * pResult);
|
|
6124 |
|
|
6125 |
|
|
6126 |
/**
|
|
6127 |
* @brief Sum of the squares of the elements of a Q15 vector.
|
|
6128 |
* @param[in] pSrc is input pointer
|
|
6129 |
* @param[in] blockSize is the number of samples to process
|
|
6130 |
* @param[out] pResult is output value.
|
|
6131 |
*/
|
|
6132 |
void arm_power_q15(
|
|
6133 |
q15_t * pSrc,
|
|
6134 |
uint32_t blockSize,
|
|
6135 |
q63_t * pResult);
|
|
6136 |
|
|
6137 |
|
|
6138 |
/**
|
|
6139 |
* @brief Sum of the squares of the elements of a Q7 vector.
|
|
6140 |
* @param[in] pSrc is input pointer
|
|
6141 |
* @param[in] blockSize is the number of samples to process
|
|
6142 |
* @param[out] pResult is output value.
|
|
6143 |
*/
|
|
6144 |
void arm_power_q7(
|
|
6145 |
q7_t * pSrc,
|
|
6146 |
uint32_t blockSize,
|
|
6147 |
q31_t * pResult);
|
|
6148 |
|
|
6149 |
|
|
6150 |
/**
|
|
6151 |
* @brief Mean value of a Q7 vector.
|
|
6152 |
* @param[in] pSrc is input pointer
|
|
6153 |
* @param[in] blockSize is the number of samples to process
|
|
6154 |
* @param[out] pResult is output value.
|
|
6155 |
*/
|
|
6156 |
void arm_mean_q7(
|
|
6157 |
q7_t * pSrc,
|
|
6158 |
uint32_t blockSize,
|
|
6159 |
q7_t * pResult);
|
|
6160 |
|
|
6161 |
|
|
6162 |
/**
|
|
6163 |
* @brief Mean value of a Q15 vector.
|
|
6164 |
* @param[in] pSrc is input pointer
|
|
6165 |
* @param[in] blockSize is the number of samples to process
|
|
6166 |
* @param[out] pResult is output value.
|
|
6167 |
*/
|
|
6168 |
void arm_mean_q15(
|
|
6169 |
q15_t * pSrc,
|
|
6170 |
uint32_t blockSize,
|
|
6171 |
q15_t * pResult);
|
|
6172 |
|
|
6173 |
|
|
6174 |
/**
|
|
6175 |
* @brief Mean value of a Q31 vector.
|
|
6176 |
* @param[in] pSrc is input pointer
|
|
6177 |
* @param[in] blockSize is the number of samples to process
|
|
6178 |
* @param[out] pResult is output value.
|
|
6179 |
*/
|
|
6180 |
void arm_mean_q31(
|
|
6181 |
q31_t * pSrc,
|
|
6182 |
uint32_t blockSize,
|
|
6183 |
q31_t * pResult);
|
|
6184 |
|
|
6185 |
|
|
6186 |
/**
|
|
6187 |
* @brief Mean value of a floating-point vector.
|
|
6188 |
* @param[in] pSrc is input pointer
|
|
6189 |
* @param[in] blockSize is the number of samples to process
|
|
6190 |
* @param[out] pResult is output value.
|
|
6191 |
*/
|
|
6192 |
void arm_mean_f32(
|
|
6193 |
float32_t * pSrc,
|
|
6194 |
uint32_t blockSize,
|
|
6195 |
float32_t * pResult);
|
|
6196 |
|
|
6197 |
|
|
6198 |
/**
|
|
6199 |
* @brief Variance of the elements of a floating-point vector.
|
|
6200 |
* @param[in] pSrc is input pointer
|
|
6201 |
* @param[in] blockSize is the number of samples to process
|
|
6202 |
* @param[out] pResult is output value.
|
|
6203 |
*/
|
|
6204 |
void arm_var_f32(
|
|
6205 |
float32_t * pSrc,
|
|
6206 |
uint32_t blockSize,
|
|
6207 |
float32_t * pResult);
|
|
6208 |
|
|
6209 |
|
|
6210 |
/**
|
|
6211 |
* @brief Variance of the elements of a Q31 vector.
|
|
6212 |
* @param[in] pSrc is input pointer
|
|
6213 |
* @param[in] blockSize is the number of samples to process
|
|
6214 |
* @param[out] pResult is output value.
|
|
6215 |
*/
|
|
6216 |
void arm_var_q31(
|
|
6217 |
q31_t * pSrc,
|
|
6218 |
uint32_t blockSize,
|
|
6219 |
q31_t * pResult);
|
|
6220 |
|
|
6221 |
|
|
6222 |
/**
|
|
6223 |
* @brief Variance of the elements of a Q15 vector.
|
|
6224 |
* @param[in] pSrc is input pointer
|
|
6225 |
* @param[in] blockSize is the number of samples to process
|
|
6226 |
* @param[out] pResult is output value.
|
|
6227 |
*/
|
|
6228 |
void arm_var_q15(
|
|
6229 |
q15_t * pSrc,
|
|
6230 |
uint32_t blockSize,
|
|
6231 |
q15_t * pResult);
|
|
6232 |
|
|
6233 |
|
|
6234 |
/**
|
|
6235 |
* @brief Root Mean Square of the elements of a floating-point vector.
|
|
6236 |
* @param[in] pSrc is input pointer
|
|
6237 |
* @param[in] blockSize is the number of samples to process
|
|
6238 |
* @param[out] pResult is output value.
|
|
6239 |
*/
|
|
6240 |
void arm_rms_f32(
|
|
6241 |
float32_t * pSrc,
|
|
6242 |
uint32_t blockSize,
|
|
6243 |
float32_t * pResult);
|
|
6244 |
|
|
6245 |
|
|
6246 |
/**
|
|
6247 |
* @brief Root Mean Square of the elements of a Q31 vector.
|
|
6248 |
* @param[in] pSrc is input pointer
|
|
6249 |
* @param[in] blockSize is the number of samples to process
|
|
6250 |
* @param[out] pResult is output value.
|
|
6251 |
*/
|
|
6252 |
void arm_rms_q31(
|
|
6253 |
q31_t * pSrc,
|
|
6254 |
uint32_t blockSize,
|
|
6255 |
q31_t * pResult);
|
|
6256 |
|
|
6257 |
|
|
6258 |
/**
|
|
6259 |
* @brief Root Mean Square of the elements of a Q15 vector.
|
|
6260 |
* @param[in] pSrc is input pointer
|
|
6261 |
* @param[in] blockSize is the number of samples to process
|
|
6262 |
* @param[out] pResult is output value.
|
|
6263 |
*/
|
|
6264 |
void arm_rms_q15(
|
|
6265 |
q15_t * pSrc,
|
|
6266 |
uint32_t blockSize,
|
|
6267 |
q15_t * pResult);
|
|
6268 |
|
|
6269 |
|
|
6270 |
/**
|
|
6271 |
* @brief Standard deviation of the elements of a floating-point vector.
|
|
6272 |
* @param[in] pSrc is input pointer
|
|
6273 |
* @param[in] blockSize is the number of samples to process
|
|
6274 |
* @param[out] pResult is output value.
|
|
6275 |
*/
|
|
6276 |
void arm_std_f32(
|
|
6277 |
float32_t * pSrc,
|
|
6278 |
uint32_t blockSize,
|
|
6279 |
float32_t * pResult);
|
|
6280 |
|
|
6281 |
|
|
6282 |
/**
|
|
6283 |
* @brief Standard deviation of the elements of a Q31 vector.
|
|
6284 |
* @param[in] pSrc is input pointer
|
|
6285 |
* @param[in] blockSize is the number of samples to process
|
|
6286 |
* @param[out] pResult is output value.
|
|
6287 |
*/
|
|
6288 |
void arm_std_q31(
|
|
6289 |
q31_t * pSrc,
|
|
6290 |
uint32_t blockSize,
|
|
6291 |
q31_t * pResult);
|
|
6292 |
|
|
6293 |
|
|
6294 |
/**
|
|
6295 |
* @brief Standard deviation of the elements of a Q15 vector.
|
|
6296 |
* @param[in] pSrc is input pointer
|
|
6297 |
* @param[in] blockSize is the number of samples to process
|
|
6298 |
* @param[out] pResult is output value.
|
|
6299 |
*/
|
|
6300 |
void arm_std_q15(
|
|
6301 |
q15_t * pSrc,
|
|
6302 |
uint32_t blockSize,
|
|
6303 |
q15_t * pResult);
|
|
6304 |
|
|
6305 |
|
|
6306 |
/**
|
|
6307 |
* @brief Floating-point complex magnitude
|
|
6308 |
* @param[in] pSrc points to the complex input vector
|
|
6309 |
* @param[out] pDst points to the real output vector
|
|
6310 |
* @param[in] numSamples number of complex samples in the input vector
|
|
6311 |
*/
|
|
6312 |
void arm_cmplx_mag_f32(
|
|
6313 |
float32_t * pSrc,
|
|
6314 |
float32_t * pDst,
|
|
6315 |
uint32_t numSamples);
|
|
6316 |
|
|
6317 |
|
|
6318 |
/**
|
|
6319 |
* @brief Q31 complex magnitude
|
|
6320 |
* @param[in] pSrc points to the complex input vector
|
|
6321 |
* @param[out] pDst points to the real output vector
|
|
6322 |
* @param[in] numSamples number of complex samples in the input vector
|
|
6323 |
*/
|
|
6324 |
void arm_cmplx_mag_q31(
|
|
6325 |
q31_t * pSrc,
|
|
6326 |
q31_t * pDst,
|
|
6327 |
uint32_t numSamples);
|
|
6328 |
|
|
6329 |
|
|
6330 |
/**
|
|
6331 |
* @brief Q15 complex magnitude
|
|
6332 |
* @param[in] pSrc points to the complex input vector
|
|
6333 |
* @param[out] pDst points to the real output vector
|
|
6334 |
* @param[in] numSamples number of complex samples in the input vector
|
|
6335 |
*/
|
|
6336 |
void arm_cmplx_mag_q15(
|
|
6337 |
q15_t * pSrc,
|
|
6338 |
q15_t * pDst,
|
|
6339 |
uint32_t numSamples);
|
|
6340 |
|
|
6341 |
|
|
6342 |
/**
|
|
6343 |
* @brief Q15 complex dot product
|
|
6344 |
* @param[in] pSrcA points to the first input vector
|
|
6345 |
* @param[in] pSrcB points to the second input vector
|
|
6346 |
* @param[in] numSamples number of complex samples in each vector
|
|
6347 |
* @param[out] realResult real part of the result returned here
|
|
6348 |
* @param[out] imagResult imaginary part of the result returned here
|
|
6349 |
*/
|
|
6350 |
void arm_cmplx_dot_prod_q15(
|
|
6351 |
q15_t * pSrcA,
|
|
6352 |
q15_t * pSrcB,
|
|
6353 |
uint32_t numSamples,
|
|
6354 |
q31_t * realResult,
|
|
6355 |
q31_t * imagResult);
|
|
6356 |
|
|
6357 |
|
|
6358 |
/**
|
|
6359 |
* @brief Q31 complex dot product
|
|
6360 |
* @param[in] pSrcA points to the first input vector
|
|
6361 |
* @param[in] pSrcB points to the second input vector
|
|
6362 |
* @param[in] numSamples number of complex samples in each vector
|
|
6363 |
* @param[out] realResult real part of the result returned here
|
|
6364 |
* @param[out] imagResult imaginary part of the result returned here
|
|
6365 |
*/
|
|
6366 |
void arm_cmplx_dot_prod_q31(
|
|
6367 |
q31_t * pSrcA,
|
|
6368 |
q31_t * pSrcB,
|
|
6369 |
uint32_t numSamples,
|
|
6370 |
q63_t * realResult,
|
|
6371 |
q63_t * imagResult);
|
|
6372 |
|
|
6373 |
|
|
6374 |
/**
|
|
6375 |
* @brief Floating-point complex dot product
|
|
6376 |
* @param[in] pSrcA points to the first input vector
|
|
6377 |
* @param[in] pSrcB points to the second input vector
|
|
6378 |
* @param[in] numSamples number of complex samples in each vector
|
|
6379 |
* @param[out] realResult real part of the result returned here
|
|
6380 |
* @param[out] imagResult imaginary part of the result returned here
|
|
6381 |
*/
|
|
6382 |
void arm_cmplx_dot_prod_f32(
|
|
6383 |
float32_t * pSrcA,
|
|
6384 |
float32_t * pSrcB,
|
|
6385 |
uint32_t numSamples,
|
|
6386 |
float32_t * realResult,
|
|
6387 |
float32_t * imagResult);
|
|
6388 |
|
|
6389 |
|
|
6390 |
/**
|
|
6391 |
* @brief Q15 complex-by-real multiplication
|
|
6392 |
* @param[in] pSrcCmplx points to the complex input vector
|
|
6393 |
* @param[in] pSrcReal points to the real input vector
|
|
6394 |
* @param[out] pCmplxDst points to the complex output vector
|
|
6395 |
* @param[in] numSamples number of samples in each vector
|
|
6396 |
*/
|
|
6397 |
void arm_cmplx_mult_real_q15(
|
|
6398 |
q15_t * pSrcCmplx,
|
|
6399 |
q15_t * pSrcReal,
|
|
6400 |
q15_t * pCmplxDst,
|
|
6401 |
uint32_t numSamples);
|
|
6402 |
|
|
6403 |
|
|
6404 |
/**
|
|
6405 |
* @brief Q31 complex-by-real multiplication
|
|
6406 |
* @param[in] pSrcCmplx points to the complex input vector
|
|
6407 |
* @param[in] pSrcReal points to the real input vector
|
|
6408 |
* @param[out] pCmplxDst points to the complex output vector
|
|
6409 |
* @param[in] numSamples number of samples in each vector
|
|
6410 |
*/
|
|
6411 |
void arm_cmplx_mult_real_q31(
|
|
6412 |
q31_t * pSrcCmplx,
|
|
6413 |
q31_t * pSrcReal,
|
|
6414 |
q31_t * pCmplxDst,
|
|
6415 |
uint32_t numSamples);
|
|
6416 |
|
|
6417 |
|
|
6418 |
/**
|
|
6419 |
* @brief Floating-point complex-by-real multiplication
|
|
6420 |
* @param[in] pSrcCmplx points to the complex input vector
|
|
6421 |
* @param[in] pSrcReal points to the real input vector
|
|
6422 |
* @param[out] pCmplxDst points to the complex output vector
|
|
6423 |
* @param[in] numSamples number of samples in each vector
|
|
6424 |
*/
|
|
6425 |
void arm_cmplx_mult_real_f32(
|
|
6426 |
float32_t * pSrcCmplx,
|
|
6427 |
float32_t * pSrcReal,
|
|
6428 |
float32_t * pCmplxDst,
|
|
6429 |
uint32_t numSamples);
|
|
6430 |
|
|
6431 |
|
|
6432 |
/**
|
|
6433 |
* @brief Minimum value of a Q7 vector.
|
|
6434 |
* @param[in] pSrc is input pointer
|
|
6435 |
* @param[in] blockSize is the number of samples to process
|
|
6436 |
* @param[out] result is output pointer
|
|
6437 |
* @param[in] index is the array index of the minimum value in the input buffer.
|
|
6438 |
*/
|
|
6439 |
void arm_min_q7(
|
|
6440 |
q7_t * pSrc,
|
|
6441 |
uint32_t blockSize,
|
|
6442 |
q7_t * result,
|
|
6443 |
uint32_t * index);
|
|
6444 |
|
|
6445 |
|
|
6446 |
/**
|
|
6447 |
* @brief Minimum value of a Q15 vector.
|
|
6448 |
* @param[in] pSrc is input pointer
|
|
6449 |
* @param[in] blockSize is the number of samples to process
|
|
6450 |
* @param[out] pResult is output pointer
|
|
6451 |
* @param[in] pIndex is the array index of the minimum value in the input buffer.
|
|
6452 |
*/
|
|
6453 |
void arm_min_q15(
|
|
6454 |
q15_t * pSrc,
|
|
6455 |
uint32_t blockSize,
|
|
6456 |
q15_t * pResult,
|
|
6457 |
uint32_t * pIndex);
|
|
6458 |
|
|
6459 |
|
|
6460 |
/**
|
|
6461 |
* @brief Minimum value of a Q31 vector.
|
|
6462 |
* @param[in] pSrc is input pointer
|
|
6463 |
* @param[in] blockSize is the number of samples to process
|
|
6464 |
* @param[out] pResult is output pointer
|
|
6465 |
* @param[out] pIndex is the array index of the minimum value in the input buffer.
|
|
6466 |
*/
|
|
6467 |
void arm_min_q31(
|
|
6468 |
q31_t * pSrc,
|
|
6469 |
uint32_t blockSize,
|
|
6470 |
q31_t * pResult,
|
|
6471 |
uint32_t * pIndex);
|
|
6472 |
|
|
6473 |
|
|
6474 |
/**
|
|
6475 |
* @brief Minimum value of a floating-point vector.
|
|
6476 |
* @param[in] pSrc is input pointer
|
|
6477 |
* @param[in] blockSize is the number of samples to process
|
|
6478 |
* @param[out] pResult is output pointer
|
|
6479 |
* @param[out] pIndex is the array index of the minimum value in the input buffer.
|
|
6480 |
*/
|
|
6481 |
void arm_min_f32(
|
|
6482 |
float32_t * pSrc,
|
|
6483 |
uint32_t blockSize,
|
|
6484 |
float32_t * pResult,
|
|
6485 |
uint32_t * pIndex);
|
|
6486 |
|
|
6487 |
|
|
6488 |
/**
|
|
6489 |
* @brief Maximum value of a Q7 vector.
|
|
6490 |
* @param[in] pSrc points to the input buffer
|
|
6491 |
* @param[in] blockSize length of the input vector
|
|
6492 |
* @param[out] pResult maximum value returned here
|
|
6493 |
* @param[out] pIndex index of maximum value returned here
|
|
6494 |
*/
|
|
6495 |
void arm_max_q7(
|
|
6496 |
q7_t * pSrc,
|
|
6497 |
uint32_t blockSize,
|
|
6498 |
q7_t * pResult,
|
|
6499 |
uint32_t * pIndex);
|
|
6500 |
|
|
6501 |
|
|
6502 |
/**
|
|
6503 |
* @brief Maximum value of a Q15 vector.
|
|
6504 |
* @param[in] pSrc points to the input buffer
|
|
6505 |
* @param[in] blockSize length of the input vector
|
|
6506 |
* @param[out] pResult maximum value returned here
|
|
6507 |
* @param[out] pIndex index of maximum value returned here
|
|
6508 |
*/
|
|
6509 |
void arm_max_q15(
|
|
6510 |
q15_t * pSrc,
|
|
6511 |
uint32_t blockSize,
|
|
6512 |
q15_t * pResult,
|
|
6513 |
uint32_t * pIndex);
|
|
6514 |
|
|
6515 |
|
|
6516 |
/**
|
|
6517 |
* @brief Maximum value of a Q31 vector.
|
|
6518 |
* @param[in] pSrc points to the input buffer
|
|
6519 |
* @param[in] blockSize length of the input vector
|
|
6520 |
* @param[out] pResult maximum value returned here
|
|
6521 |
* @param[out] pIndex index of maximum value returned here
|
|
6522 |
*/
|
|
6523 |
void arm_max_q31(
|
|
6524 |
q31_t * pSrc,
|
|
6525 |
uint32_t blockSize,
|
|
6526 |
q31_t * pResult,
|
|
6527 |
uint32_t * pIndex);
|
|
6528 |
|
|
6529 |
|
|
6530 |
/**
|
|
6531 |
* @brief Maximum value of a floating-point vector.
|
|
6532 |
* @param[in] pSrc points to the input buffer
|
|
6533 |
* @param[in] blockSize length of the input vector
|
|
6534 |
* @param[out] pResult maximum value returned here
|
|
6535 |
* @param[out] pIndex index of maximum value returned here
|
|
6536 |
*/
|
|
6537 |
void arm_max_f32(
|
|
6538 |
float32_t * pSrc,
|
|
6539 |
uint32_t blockSize,
|
|
6540 |
float32_t * pResult,
|
|
6541 |
uint32_t * pIndex);
|
|
6542 |
|
|
6543 |
|
|
6544 |
/**
|
|
6545 |
* @brief Q15 complex-by-complex multiplication
|
|
6546 |
* @param[in] pSrcA points to the first input vector
|
|
6547 |
* @param[in] pSrcB points to the second input vector
|
|
6548 |
* @param[out] pDst points to the output vector
|
|
6549 |
* @param[in] numSamples number of complex samples in each vector
|
|
6550 |
*/
|
|
6551 |
void arm_cmplx_mult_cmplx_q15(
|
|
6552 |
q15_t * pSrcA,
|
|
6553 |
q15_t * pSrcB,
|
|
6554 |
q15_t * pDst,
|
|
6555 |
uint32_t numSamples);
|
|
6556 |
|
|
6557 |
|
|
6558 |
/**
|
|
6559 |
* @brief Q31 complex-by-complex multiplication
|
|
6560 |
* @param[in] pSrcA points to the first input vector
|
|
6561 |
* @param[in] pSrcB points to the second input vector
|
|
6562 |
* @param[out] pDst points to the output vector
|
|
6563 |
* @param[in] numSamples number of complex samples in each vector
|
|
6564 |
*/
|
|
6565 |
void arm_cmplx_mult_cmplx_q31(
|
|
6566 |
q31_t * pSrcA,
|
|
6567 |
q31_t * pSrcB,
|
|
6568 |
q31_t * pDst,
|
|
6569 |
uint32_t numSamples);
|
|
6570 |
|
|
6571 |
|
|
6572 |
/**
|
|
6573 |
* @brief Floating-point complex-by-complex multiplication
|
|
6574 |
* @param[in] pSrcA points to the first input vector
|
|
6575 |
* @param[in] pSrcB points to the second input vector
|
|
6576 |
* @param[out] pDst points to the output vector
|
|
6577 |
* @param[in] numSamples number of complex samples in each vector
|
|
6578 |
*/
|
|
6579 |
void arm_cmplx_mult_cmplx_f32(
|
|
6580 |
float32_t * pSrcA,
|
|
6581 |
float32_t * pSrcB,
|
|
6582 |
float32_t * pDst,
|
|
6583 |
uint32_t numSamples);
|
|
6584 |
|
|
6585 |
|
|
6586 |
/**
|
|
6587 |
* @brief Converts the elements of the floating-point vector to Q31 vector.
|
|
6588 |
* @param[in] pSrc points to the floating-point input vector
|
|
6589 |
* @param[out] pDst points to the Q31 output vector
|
|
6590 |
* @param[in] blockSize length of the input vector
|
|
6591 |
*/
|
|
6592 |
void arm_float_to_q31(
|
|
6593 |
float32_t * pSrc,
|
|
6594 |
q31_t * pDst,
|
|
6595 |
uint32_t blockSize);
|
|
6596 |
|
|
6597 |
|
|
6598 |
/**
|
|
6599 |
* @brief Converts the elements of the floating-point vector to Q15 vector.
|
|
6600 |
* @param[in] pSrc points to the floating-point input vector
|
|
6601 |
* @param[out] pDst points to the Q15 output vector
|
|
6602 |
* @param[in] blockSize length of the input vector
|
|
6603 |
*/
|
|
6604 |
void arm_float_to_q15(
|
|
6605 |
float32_t * pSrc,
|
|
6606 |
q15_t * pDst,
|
|
6607 |
uint32_t blockSize);
|
|
6608 |
|
|
6609 |
|
|
6610 |
/**
|
|
6611 |
* @brief Converts the elements of the floating-point vector to Q7 vector.
|
|
6612 |
* @param[in] pSrc points to the floating-point input vector
|
|
6613 |
* @param[out] pDst points to the Q7 output vector
|
|
6614 |
* @param[in] blockSize length of the input vector
|
|
6615 |
*/
|
|
6616 |
void arm_float_to_q7(
|
|
6617 |
float32_t * pSrc,
|
|
6618 |
q7_t * pDst,
|
|
6619 |
uint32_t blockSize);
|
|
6620 |
|
|
6621 |
|
|
6622 |
/**
|
|
6623 |
* @brief Converts the elements of the Q31 vector to Q15 vector.
|
|
6624 |
* @param[in] pSrc is input pointer
|
|
6625 |
* @param[out] pDst is output pointer
|
|
6626 |
* @param[in] blockSize is the number of samples to process
|
|
6627 |
*/
|
|
6628 |
void arm_q31_to_q15(
|
|
6629 |
q31_t * pSrc,
|
|
6630 |
q15_t * pDst,
|
|
6631 |
uint32_t blockSize);
|
|
6632 |
|
|
6633 |
|
|
6634 |
/**
|
|
6635 |
* @brief Converts the elements of the Q31 vector to Q7 vector.
|
|
6636 |
* @param[in] pSrc is input pointer
|
|
6637 |
* @param[out] pDst is output pointer
|
|
6638 |
* @param[in] blockSize is the number of samples to process
|
|
6639 |
*/
|
|
6640 |
void arm_q31_to_q7(
|
|
6641 |
q31_t * pSrc,
|
|
6642 |
q7_t * pDst,
|
|
6643 |
uint32_t blockSize);
|
|
6644 |
|
|
6645 |
|
|
6646 |
/**
|
|
6647 |
* @brief Converts the elements of the Q15 vector to floating-point vector.
|
|
6648 |
* @param[in] pSrc is input pointer
|
|
6649 |
* @param[out] pDst is output pointer
|
|
6650 |
* @param[in] blockSize is the number of samples to process
|
|
6651 |
*/
|
|
6652 |
void arm_q15_to_float(
|
|
6653 |
q15_t * pSrc,
|
|
6654 |
float32_t * pDst,
|
|
6655 |
uint32_t blockSize);
|
|
6656 |
|
|
6657 |
|
|
6658 |
/**
|
|
6659 |
* @brief Converts the elements of the Q15 vector to Q31 vector.
|
|
6660 |
* @param[in] pSrc is input pointer
|
|
6661 |
* @param[out] pDst is output pointer
|
|
6662 |
* @param[in] blockSize is the number of samples to process
|
|
6663 |
*/
|
|
6664 |
void arm_q15_to_q31(
|
|
6665 |
q15_t * pSrc,
|
|
6666 |
q31_t * pDst,
|
|
6667 |
uint32_t blockSize);
|
|
6668 |
|
|
6669 |
|
|
6670 |
/**
|
|
6671 |
* @brief Converts the elements of the Q15 vector to Q7 vector.
|
|
6672 |
* @param[in] pSrc is input pointer
|
|
6673 |
* @param[out] pDst is output pointer
|
|
6674 |
* @param[in] blockSize is the number of samples to process
|
|
6675 |
*/
|
|
6676 |
void arm_q15_to_q7(
|
|
6677 |
q15_t * pSrc,
|
|
6678 |
q7_t * pDst,
|
|
6679 |
uint32_t blockSize);
|
|
6680 |
|
|
6681 |
|
|
6682 |
/**
|
|
6683 |
* @ingroup groupInterpolation
|
|
6684 |
*/
|
|
6685 |
|
|
6686 |
/**
|
|
6687 |
* @defgroup BilinearInterpolate Bilinear Interpolation
|
|
6688 |
*
|
|
6689 |
* Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
|
|
6690 |
* The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
|
|
6691 |
* determines values between the grid points.
|
|
6692 |
* Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
|
|
6693 |
* Bilinear interpolation is often used in image processing to rescale images.
|
|
6694 |
* The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
|
|
6695 |
*
|
|
6696 |
* <b>Algorithm</b>
|
|
6697 |
* \par
|
|
6698 |
* The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
|
|
6699 |
* For floating-point, the instance structure is defined as:
|
|
6700 |
* <pre>
|
|
6701 |
* typedef struct
|
|
6702 |
* {
|
|
6703 |
* uint16_t numRows;
|
|
6704 |
* uint16_t numCols;
|
|
6705 |
* float32_t *pData;
|
|
6706 |
* } arm_bilinear_interp_instance_f32;
|
|
6707 |
* </pre>
|
|
6708 |
*
|
|
6709 |
* \par
|
|
6710 |
* where <code>numRows</code> specifies the number of rows in the table;
|
|
6711 |
* <code>numCols</code> specifies the number of columns in the table;
|
|
6712 |
* and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
|
|
6713 |
* The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
|
|
6714 |
* That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
|
|
6715 |
*
|
|
6716 |
* \par
|
|
6717 |
* Let <code>(x, y)</code> specify the desired interpolation point. Then define:
|
|
6718 |
* <pre>
|
|
6719 |
* XF = floor(x)
|
|
6720 |
* YF = floor(y)
|
|
6721 |
* </pre>
|
|
6722 |
* \par
|
|
6723 |
* The interpolated output point is computed as:
|
|
6724 |
* <pre>
|
|
6725 |
* f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
|
|
6726 |
* + f(XF+1, YF) * (x-XF)*(1-(y-YF))
|
|
6727 |
* + f(XF, YF+1) * (1-(x-XF))*(y-YF)
|
|
6728 |
* + f(XF+1, YF+1) * (x-XF)*(y-YF)
|
|
6729 |
* </pre>
|
|
6730 |
* Note that the coordinates (x, y) contain integer and fractional components.
|
|
6731 |
* The integer components specify which portion of the table to use while the
|
|
6732 |
* fractional components control the interpolation processor.
|
|
6733 |
*
|
|
6734 |
* \par
|
|
6735 |
* if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
|
|
6736 |
*/
|
|
6737 |
|
|
6738 |
/**
|
|
6739 |
* @addtogroup BilinearInterpolate
|
|
6740 |
* @{
|
|
6741 |
*/
|
|
6742 |
|
|
6743 |
|
|
6744 |
/**
|
|
6745 |
*
|
|
6746 |
* @brief Floating-point bilinear interpolation.
|
|
6747 |
* @param[in,out] S points to an instance of the interpolation structure.
|
|
6748 |
* @param[in] X interpolation coordinate.
|
|
6749 |
* @param[in] Y interpolation coordinate.
|
|
6750 |
* @return out interpolated value.
|
|
6751 |
*/
|
|
6752 |
static __INLINE float32_t arm_bilinear_interp_f32(
|
|
6753 |
const arm_bilinear_interp_instance_f32 * S,
|
|
6754 |
float32_t X,
|
|
6755 |
float32_t Y)
|
|
6756 |
{
|
|
6757 |
float32_t out;
|
|
6758 |
float32_t f00, f01, f10, f11;
|
|
6759 |
float32_t *pData = S->pData;
|
|
6760 |
int32_t xIndex, yIndex, index;
|
|
6761 |
float32_t xdiff, ydiff;
|
|
6762 |
float32_t b1, b2, b3, b4;
|
|
6763 |
|
|
6764 |
xIndex = (int32_t) X;
|
|
6765 |
yIndex = (int32_t) Y;
|
|
6766 |
|
|
6767 |
/* Care taken for table outside boundary */
|
|
6768 |
/* Returns zero output when values are outside table boundary */
|
|
6769 |
if(xIndex < 0 || xIndex > (S->numRows - 1) || yIndex < 0 || yIndex > (S->numCols - 1))
|
|
6770 |
{
|
|
6771 |
return (0);
|
|
6772 |
}
|
|
6773 |
|
|
6774 |
/* Calculation of index for two nearest points in X-direction */
|
|
6775 |
index = (xIndex - 1) + (yIndex - 1) * S->numCols;
|
|
6776 |
|
|
6777 |
|
|
6778 |
/* Read two nearest points in X-direction */
|
|
6779 |
f00 = pData[index];
|
|
6780 |
f01 = pData[index + 1];
|
|
6781 |
|
|
6782 |
/* Calculation of index for two nearest points in Y-direction */
|
|
6783 |
index = (xIndex - 1) + (yIndex) * S->numCols;
|
|
6784 |
|
|
6785 |
|
|
6786 |
/* Read two nearest points in Y-direction */
|
|
6787 |
f10 = pData[index];
|
|
6788 |
f11 = pData[index + 1];
|
|
6789 |
|
|
6790 |
/* Calculation of intermediate values */
|
|
6791 |
b1 = f00;
|
|
6792 |
b2 = f01 - f00;
|
|
6793 |
b3 = f10 - f00;
|
|
6794 |
b4 = f00 - f01 - f10 + f11;
|
|
6795 |
|
|
6796 |
/* Calculation of fractional part in X */
|
|
6797 |
xdiff = X - xIndex;
|
|
6798 |
|
|
6799 |
/* Calculation of fractional part in Y */
|
|
6800 |
ydiff = Y - yIndex;
|
|
6801 |
|
|
6802 |
/* Calculation of bi-linear interpolated output */
|
|
6803 |
out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
|
|
6804 |
|
|
6805 |
/* return to application */
|
|
6806 |
return (out);
|
|
6807 |
}
|
|
6808 |
|
|
6809 |
|
|
6810 |
/**
|
|
6811 |
*
|
|
6812 |
* @brief Q31 bilinear interpolation.
|
|
6813 |
* @param[in,out] S points to an instance of the interpolation structure.
|
|
6814 |
* @param[in] X interpolation coordinate in 12.20 format.
|
|
6815 |
* @param[in] Y interpolation coordinate in 12.20 format.
|
|
6816 |
* @return out interpolated value.
|
|
6817 |
*/
|
|
6818 |
static __INLINE q31_t arm_bilinear_interp_q31(
|
|
6819 |
arm_bilinear_interp_instance_q31 * S,
|
|
6820 |
q31_t X,
|
|
6821 |
q31_t Y)
|
|
6822 |
{
|
|
6823 |
q31_t out; /* Temporary output */
|
|
6824 |
q31_t acc = 0; /* output */
|
|
6825 |
q31_t xfract, yfract; /* X, Y fractional parts */
|
|
6826 |
q31_t x1, x2, y1, y2; /* Nearest output values */
|
|
6827 |
int32_t rI, cI; /* Row and column indices */
|
|
6828 |
q31_t *pYData = S->pData; /* pointer to output table values */
|
|
6829 |
uint32_t nCols = S->numCols; /* num of rows */
|
|
6830 |
|
|
6831 |
/* Input is in 12.20 format */
|
|
6832 |
/* 12 bits for the table index */
|
|
6833 |
/* Index value calculation */
|
|
6834 |
rI = ((X & (q31_t)0xFFF00000) >> 20);
|
|
6835 |
|
|
6836 |
/* Input is in 12.20 format */
|
|
6837 |
/* 12 bits for the table index */
|
|
6838 |
/* Index value calculation */
|
|
6839 |
cI = ((Y & (q31_t)0xFFF00000) >> 20);
|
|
6840 |
|
|
6841 |
/* Care taken for table outside boundary */
|
|
6842 |
/* Returns zero output when values are outside table boundary */
|
|
6843 |
if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
|
|
6844 |
{
|
|
6845 |
return (0);
|
|
6846 |
}
|
|
6847 |
|
|
6848 |
/* 20 bits for the fractional part */
|
|
6849 |
/* shift left xfract by 11 to keep 1.31 format */
|
|
6850 |
xfract = (X & 0x000FFFFF) << 11u;
|
|
6851 |
|
|
6852 |
/* Read two nearest output values from the index */
|
|
6853 |
x1 = pYData[(rI) + (int32_t)nCols * (cI) ];
|
|
6854 |
x2 = pYData[(rI) + (int32_t)nCols * (cI) + 1];
|
|
6855 |
|
|
6856 |
/* 20 bits for the fractional part */
|
|
6857 |
/* shift left yfract by 11 to keep 1.31 format */
|
|
6858 |
yfract = (Y & 0x000FFFFF) << 11u;
|
|
6859 |
|
|
6860 |
/* Read two nearest output values from the index */
|
|
6861 |
y1 = pYData[(rI) + (int32_t)nCols * (cI + 1) ];
|
|
6862 |
y2 = pYData[(rI) + (int32_t)nCols * (cI + 1) + 1];
|
|
6863 |
|
|
6864 |
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
|
|
6865 |
out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
|
|
6866 |
acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
|
|
6867 |
|
|
6868 |
/* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
|
|
6869 |
out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
|
|
6870 |
acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
|
|
6871 |
|
|
6872 |
/* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
|
|
6873 |
out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
|
|
6874 |
acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
|
|
6875 |
|
|
6876 |
/* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
|
|
6877 |
out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
|
|
6878 |
acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
|
|
6879 |
|
|
6880 |
/* Convert acc to 1.31(q31) format */
|
|
6881 |
return ((q31_t)(acc << 2));
|
|
6882 |
}
|
|
6883 |
|
|
6884 |
|
|
6885 |
/**
|
|
6886 |
* @brief Q15 bilinear interpolation.
|
|
6887 |
* @param[in,out] S points to an instance of the interpolation structure.
|
|
6888 |
* @param[in] X interpolation coordinate in 12.20 format.
|
|
6889 |
* @param[in] Y interpolation coordinate in 12.20 format.
|
|
6890 |
* @return out interpolated value.
|
|
6891 |
*/
|
|
6892 |
static __INLINE q15_t arm_bilinear_interp_q15(
|
|
6893 |
arm_bilinear_interp_instance_q15 * S,
|
|
6894 |
q31_t X,
|
|
6895 |
q31_t Y)
|
|
6896 |
{
|
|
6897 |
q63_t acc = 0; /* output */
|
|
6898 |
q31_t out; /* Temporary output */
|
|
6899 |
q15_t x1, x2, y1, y2; /* Nearest output values */
|
|
6900 |
q31_t xfract, yfract; /* X, Y fractional parts */
|
|
6901 |
int32_t rI, cI; /* Row and column indices */
|
|
6902 |
q15_t *pYData = S->pData; /* pointer to output table values */
|
|
6903 |
uint32_t nCols = S->numCols; /* num of rows */
|
|
6904 |
|
|
6905 |
/* Input is in 12.20 format */
|
|
6906 |
/* 12 bits for the table index */
|
|
6907 |
/* Index value calculation */
|
|
6908 |
rI = ((X & (q31_t)0xFFF00000) >> 20);
|
|
6909 |
|
|
6910 |
/* Input is in 12.20 format */
|
|
6911 |
/* 12 bits for the table index */
|
|
6912 |
/* Index value calculation */
|
|
6913 |
cI = ((Y & (q31_t)0xFFF00000) >> 20);
|
|
6914 |
|
|
6915 |
/* Care taken for table outside boundary */
|
|
6916 |
/* Returns zero output when values are outside table boundary */
|
|
6917 |
if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
|
|
6918 |
{
|
|
6919 |
return (0);
|
|
6920 |
}
|
|
6921 |
|
|
6922 |
/* 20 bits for the fractional part */
|
|
6923 |
/* xfract should be in 12.20 format */
|
|
6924 |
xfract = (X & 0x000FFFFF);
|
|
6925 |
|
|
6926 |
/* Read two nearest output values from the index */
|
|
6927 |
x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
|
|
6928 |
x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
|
|
6929 |
|
|
6930 |
/* 20 bits for the fractional part */
|
|
6931 |
/* yfract should be in 12.20 format */
|
|
6932 |
yfract = (Y & 0x000FFFFF);
|
|
6933 |
|
|
6934 |
/* Read two nearest output values from the index */
|
|
6935 |
y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
|
|
6936 |
y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
|
|
6937 |
|
|
6938 |
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
|
|
6939 |
|
|
6940 |
/* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
|
|
6941 |
/* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
|
|
6942 |
out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
|
|
6943 |
acc = ((q63_t) out * (0xFFFFF - yfract));
|
|
6944 |
|
|
6945 |
/* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
|
|
6946 |
out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
|
|
6947 |
acc += ((q63_t) out * (xfract));
|
|
6948 |
|
|
6949 |
/* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
|
|
6950 |
out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
|
|
6951 |
acc += ((q63_t) out * (yfract));
|
|
6952 |
|
|
6953 |
/* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
|
|
6954 |
out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
|
|
6955 |
acc += ((q63_t) out * (yfract));
|
|
6956 |
|
|
6957 |
/* acc is in 13.51 format and down shift acc by 36 times */
|
|
6958 |
/* Convert out to 1.15 format */
|
|
6959 |
return ((q15_t)(acc >> 36));
|
|
6960 |
}
|
|
6961 |
|
|
6962 |
|
|
6963 |
/**
|
|
6964 |
* @brief Q7 bilinear interpolation.
|
|
6965 |
* @param[in,out] S points to an instance of the interpolation structure.
|
|
6966 |
* @param[in] X interpolation coordinate in 12.20 format.
|
|
6967 |
* @param[in] Y interpolation coordinate in 12.20 format.
|
|
6968 |
* @return out interpolated value.
|
|
6969 |
*/
|
|
6970 |
static __INLINE q7_t arm_bilinear_interp_q7(
|
|
6971 |
arm_bilinear_interp_instance_q7 * S,
|
|
6972 |
q31_t X,
|
|
6973 |
q31_t Y)
|
|
6974 |
{
|
|
6975 |
q63_t acc = 0; /* output */
|
|
6976 |
q31_t out; /* Temporary output */
|
|
6977 |
q31_t xfract, yfract; /* X, Y fractional parts */
|
|
6978 |
q7_t x1, x2, y1, y2; /* Nearest output values */
|
|
6979 |
int32_t rI, cI; /* Row and column indices */
|
|
6980 |
q7_t *pYData = S->pData; /* pointer to output table values */
|
|
6981 |
uint32_t nCols = S->numCols; /* num of rows */
|
|
6982 |
|
|
6983 |
/* Input is in 12.20 format */
|
|
6984 |
/* 12 bits for the table index */
|
|
6985 |
/* Index value calculation */
|
|
6986 |
rI = ((X & (q31_t)0xFFF00000) >> 20);
|
|
6987 |
|
|
6988 |
/* Input is in 12.20 format */
|
|
6989 |
/* 12 bits for the table index */
|
|
6990 |
/* Index value calculation */
|
|
6991 |
cI = ((Y & (q31_t)0xFFF00000) >> 20);
|
|
6992 |
|
|
6993 |
/* Care taken for table outside boundary */
|
|
6994 |
/* Returns zero output when values are outside table boundary */
|
|
6995 |
if(rI < 0 || rI > (S->numRows - 1) || cI < 0 || cI > (S->numCols - 1))
|
|
6996 |
{
|
|
6997 |
return (0);
|
|
6998 |
}
|
|
6999 |
|
|
7000 |
/* 20 bits for the fractional part */
|
|
7001 |
/* xfract should be in 12.20 format */
|
|
7002 |
xfract = (X & (q31_t)0x000FFFFF);
|
|
7003 |
|
|
7004 |
/* Read two nearest output values from the index */
|
|
7005 |
x1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) ];
|
|
7006 |
x2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI) + 1];
|
|
7007 |
|
|
7008 |
/* 20 bits for the fractional part */
|
|
7009 |
/* yfract should be in 12.20 format */
|
|
7010 |
yfract = (Y & (q31_t)0x000FFFFF);
|
|
7011 |
|
|
7012 |
/* Read two nearest output values from the index */
|
|
7013 |
y1 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) ];
|
|
7014 |
y2 = pYData[((uint32_t)rI) + nCols * ((uint32_t)cI + 1) + 1];
|
|
7015 |
|
|
7016 |
/* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
|
|
7017 |
out = ((x1 * (0xFFFFF - xfract)));
|
|
7018 |
acc = (((q63_t) out * (0xFFFFF - yfract)));
|
|
7019 |
|
|
7020 |
/* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
|
|
7021 |
out = ((x2 * (0xFFFFF - yfract)));
|
|
7022 |
acc += (((q63_t) out * (xfract)));
|
|
7023 |
|
|
7024 |
/* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
|
|
7025 |
out = ((y1 * (0xFFFFF - xfract)));
|
|
7026 |
acc += (((q63_t) out * (yfract)));
|
|
7027 |
|
|
7028 |
/* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
|
|
7029 |
out = ((y2 * (yfract)));
|
|
7030 |
acc += (((q63_t) out * (xfract)));
|
|
7031 |
|
|
7032 |
/* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
|
|
7033 |
return ((q7_t)(acc >> 40));
|
|
7034 |
}
|
|
7035 |
|
|
7036 |
/**
|
|
7037 |
* @} end of BilinearInterpolate group
|
|
7038 |
*/
|
|
7039 |
|
|
7040 |
|
|
7041 |
/* SMMLAR */
|
|
7042 |
#define multAcc_32x32_keep32_R(a, x, y) \
|
|
7043 |
a = (q31_t) (((((q63_t) a) << 32) + ((q63_t) x * y) + 0x80000000LL ) >> 32)
|
|
7044 |
|
|
7045 |
/* SMMLSR */
|
|
7046 |
#define multSub_32x32_keep32_R(a, x, y) \
|
|
7047 |
a = (q31_t) (((((q63_t) a) << 32) - ((q63_t) x * y) + 0x80000000LL ) >> 32)
|
|
7048 |
|
|
7049 |
/* SMMULR */
|
|
7050 |
#define mult_32x32_keep32_R(a, x, y) \
|
|
7051 |
a = (q31_t) (((q63_t) x * y + 0x80000000LL ) >> 32)
|
|
7052 |
|
|
7053 |
/* SMMLA */
|
|
7054 |
#define multAcc_32x32_keep32(a, x, y) \
|
|
7055 |
a += (q31_t) (((q63_t) x * y) >> 32)
|
|
7056 |
|
|
7057 |
/* SMMLS */
|
|
7058 |
#define multSub_32x32_keep32(a, x, y) \
|
|
7059 |
a -= (q31_t) (((q63_t) x * y) >> 32)
|
|
7060 |
|
|
7061 |
/* SMMUL */
|
|
7062 |
#define mult_32x32_keep32(a, x, y) \
|
|
7063 |
a = (q31_t) (((q63_t) x * y ) >> 32)
|
|
7064 |
|
|
7065 |
|
|
7066 |
#if defined ( __CC_ARM )
|
|
7067 |
/* Enter low optimization region - place directly above function definition */
|
|
7068 |
#if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
|
|
7069 |
#define LOW_OPTIMIZATION_ENTER \
|
|
7070 |
_Pragma ("push") \
|
|
7071 |
_Pragma ("O1")
|
|
7072 |
#else
|
|
7073 |
#define LOW_OPTIMIZATION_ENTER
|
|
7074 |
#endif
|
|
7075 |
|
|
7076 |
/* Exit low optimization region - place directly after end of function definition */
|
|
7077 |
#if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
|
|
7078 |
#define LOW_OPTIMIZATION_EXIT \
|
|
7079 |
_Pragma ("pop")
|
|
7080 |
#else
|
|
7081 |
#define LOW_OPTIMIZATION_EXIT
|
|
7082 |
#endif
|
|
7083 |
|
|
7084 |
/* Enter low optimization region - place directly above function definition */
|
|
7085 |
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
|
|
7086 |
|
|
7087 |
/* Exit low optimization region - place directly after end of function definition */
|
|
7088 |
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
|
|
7089 |
|
|
7090 |
#elif defined(__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050)
|
|
7091 |
#define LOW_OPTIMIZATION_ENTER
|
|
7092 |
#define LOW_OPTIMIZATION_EXIT
|
|
7093 |
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
|
|
7094 |
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
|
|
7095 |
|
|
7096 |
#elif defined(__GNUC__)
|
|
7097 |
#define LOW_OPTIMIZATION_ENTER __attribute__(( optimize("-O1") ))
|
|
7098 |
#define LOW_OPTIMIZATION_EXIT
|
|
7099 |
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
|
|
7100 |
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
|
|
7101 |
|
|
7102 |
#elif defined(__ICCARM__)
|
|
7103 |
/* Enter low optimization region - place directly above function definition */
|
|
7104 |
#if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
|
|
7105 |
#define LOW_OPTIMIZATION_ENTER \
|
|
7106 |
_Pragma ("optimize=low")
|
|
7107 |
#else
|
|
7108 |
#define LOW_OPTIMIZATION_ENTER
|
|
7109 |
#endif
|
|
7110 |
|
|
7111 |
/* Exit low optimization region - place directly after end of function definition */
|
|
7112 |
#define LOW_OPTIMIZATION_EXIT
|
|
7113 |
|
|
7114 |
/* Enter low optimization region - place directly above function definition */
|
|
7115 |
#if defined( ARM_MATH_CM4 ) || defined( ARM_MATH_CM7)
|
|
7116 |
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER \
|
|
7117 |
_Pragma ("optimize=low")
|
|
7118 |
#else
|
|
7119 |
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
|
|
7120 |
#endif
|
|
7121 |
|
|
7122 |
/* Exit low optimization region - place directly after end of function definition */
|
|
7123 |
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
|
|
7124 |
|
|
7125 |
#elif defined(__CSMC__)
|
|
7126 |
#define LOW_OPTIMIZATION_ENTER
|
|
7127 |
#define LOW_OPTIMIZATION_EXIT
|
|
7128 |
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
|
|
7129 |
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
|
|
7130 |
|
|
7131 |
#elif defined(__TASKING__)
|
|
7132 |
#define LOW_OPTIMIZATION_ENTER
|
|
7133 |
#define LOW_OPTIMIZATION_EXIT
|
|
7134 |
#define IAR_ONLY_LOW_OPTIMIZATION_ENTER
|
|
7135 |
#define IAR_ONLY_LOW_OPTIMIZATION_EXIT
|
|
7136 |
|
|
7137 |
#endif
|
|
7138 |
|
|
7139 |
|
|
7140 |
#ifdef __cplusplus
|
|
7141 |
}
|
|
7142 |
#endif
|
|
7143 |
|
|
7144 |
|
|
7145 |
#if defined ( __GNUC__ )
|
|
7146 |
#pragma GCC diagnostic pop
|
|
7147 |
#endif
|
|
7148 |
|
|
7149 |
#endif /* _ARM_MATH_H */
|
|
7150 |
|
|
7151 |
/**
|
|
7152 |
*
|
|
7153 |
* End of file.
|
|
7154 |
*/
|