提交 | 用户 | age
|
bfc108
|
1 |
/* ----------------------------------------------------------------------
|
Q |
2 |
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
|
3 |
*
|
|
4 |
* $Date: 19. March 2015
|
|
5 |
* $Revision: V.1.4.5
|
|
6 |
*
|
|
7 |
* Project: CMSIS DSP Library
|
|
8 |
* Title: arm_rfft_q15.c
|
|
9 |
*
|
|
10 |
* Description: RFFT & RIFFT Q15 process function
|
|
11 |
*
|
|
12 |
*
|
|
13 |
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
|
14 |
*
|
|
15 |
* Redistribution and use in source and binary forms, with or without
|
|
16 |
* modification, are permitted provided that the following conditions
|
|
17 |
* are met:
|
|
18 |
* - Redistributions of source code must retain the above copyright
|
|
19 |
* notice, this list of conditions and the following disclaimer.
|
|
20 |
* - Redistributions in binary form must reproduce the above copyright
|
|
21 |
* notice, this list of conditions and the following disclaimer in
|
|
22 |
* the documentation and/or other materials provided with the
|
|
23 |
* distribution.
|
|
24 |
* - Neither the name of ARM LIMITED nor the names of its contributors
|
|
25 |
* may be used to endorse or promote products derived from this
|
|
26 |
* software without specific prior written permission.
|
|
27 |
*
|
|
28 |
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
29 |
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
30 |
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
31 |
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
32 |
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
33 |
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
34 |
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
35 |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
36 |
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
37 |
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
38 |
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
39 |
* POSSIBILITY OF SUCH DAMAGE.
|
|
40 |
* -------------------------------------------------------------------- */
|
|
41 |
|
|
42 |
#include "arm_math.h"
|
|
43 |
|
|
44 |
/*--------------------------------------------------------------------
|
|
45 |
* Internal functions prototypes
|
|
46 |
--------------------------------------------------------------------*/
|
|
47 |
|
|
48 |
void arm_split_rfft_q15(
|
|
49 |
q15_t * pSrc,
|
|
50 |
uint32_t fftLen,
|
|
51 |
q15_t * pATable,
|
|
52 |
q15_t * pBTable,
|
|
53 |
q15_t * pDst,
|
|
54 |
uint32_t modifier);
|
|
55 |
|
|
56 |
void arm_split_rifft_q15(
|
|
57 |
q15_t * pSrc,
|
|
58 |
uint32_t fftLen,
|
|
59 |
q15_t * pATable,
|
|
60 |
q15_t * pBTable,
|
|
61 |
q15_t * pDst,
|
|
62 |
uint32_t modifier);
|
|
63 |
|
|
64 |
/**
|
|
65 |
* @addtogroup RealFFT
|
|
66 |
* @{
|
|
67 |
*/
|
|
68 |
|
|
69 |
/**
|
|
70 |
* @brief Processing function for the Q15 RFFT/RIFFT.
|
|
71 |
* @param[in] *S points to an instance of the Q15 RFFT/RIFFT structure.
|
|
72 |
* @param[in] *pSrc points to the input buffer.
|
|
73 |
* @param[out] *pDst points to the output buffer.
|
|
74 |
* @return none.
|
|
75 |
*
|
|
76 |
* \par Input an output formats:
|
|
77 |
* \par
|
|
78 |
* Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process.
|
|
79 |
* Hence the output format is different for different RFFT sizes.
|
|
80 |
* The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT:
|
|
81 |
* \par
|
|
82 |
* \image html RFFTQ15.gif "Input and Output Formats for Q15 RFFT"
|
|
83 |
* \par
|
|
84 |
* \image html RIFFTQ15.gif "Input and Output Formats for Q15 RIFFT"
|
|
85 |
*/
|
|
86 |
|
|
87 |
void arm_rfft_q15(
|
|
88 |
const arm_rfft_instance_q15 * S,
|
|
89 |
q15_t * pSrc,
|
|
90 |
q15_t * pDst)
|
|
91 |
{
|
|
92 |
const arm_cfft_instance_q15 *S_CFFT = S->pCfft;
|
|
93 |
uint32_t i;
|
|
94 |
uint32_t L2 = S->fftLenReal >> 1;
|
|
95 |
|
|
96 |
/* Calculation of RIFFT of input */
|
|
97 |
if(S->ifftFlagR == 1u)
|
|
98 |
{
|
|
99 |
/* Real IFFT core process */
|
|
100 |
arm_split_rifft_q15(pSrc, L2, S->pTwiddleAReal,
|
|
101 |
S->pTwiddleBReal, pDst, S->twidCoefRModifier);
|
|
102 |
|
|
103 |
/* Complex IFFT process */
|
|
104 |
arm_cfft_q15(S_CFFT, pDst, S->ifftFlagR, S->bitReverseFlagR);
|
|
105 |
|
|
106 |
for(i=0;i<S->fftLenReal;i++)
|
|
107 |
{
|
|
108 |
pDst[i] = pDst[i] << 1;
|
|
109 |
}
|
|
110 |
}
|
|
111 |
else
|
|
112 |
{
|
|
113 |
/* Calculation of RFFT of input */
|
|
114 |
|
|
115 |
/* Complex FFT process */
|
|
116 |
arm_cfft_q15(S_CFFT, pSrc, S->ifftFlagR, S->bitReverseFlagR);
|
|
117 |
|
|
118 |
/* Real FFT core process */
|
|
119 |
arm_split_rfft_q15(pSrc, L2, S->pTwiddleAReal,
|
|
120 |
S->pTwiddleBReal, pDst, S->twidCoefRModifier);
|
|
121 |
}
|
|
122 |
}
|
|
123 |
|
|
124 |
/**
|
|
125 |
* @} end of RealFFT group
|
|
126 |
*/
|
|
127 |
|
|
128 |
/**
|
|
129 |
* @brief Core Real FFT process
|
|
130 |
* @param *pSrc points to the input buffer.
|
|
131 |
* @param fftLen length of FFT.
|
|
132 |
* @param *pATable points to the A twiddle Coef buffer.
|
|
133 |
* @param *pBTable points to the B twiddle Coef buffer.
|
|
134 |
* @param *pDst points to the output buffer.
|
|
135 |
* @param modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
|
|
136 |
* @return none.
|
|
137 |
* The function implements a Real FFT
|
|
138 |
*/
|
|
139 |
|
|
140 |
void arm_split_rfft_q15(
|
|
141 |
q15_t * pSrc,
|
|
142 |
uint32_t fftLen,
|
|
143 |
q15_t * pATable,
|
|
144 |
q15_t * pBTable,
|
|
145 |
q15_t * pDst,
|
|
146 |
uint32_t modifier)
|
|
147 |
{
|
|
148 |
uint32_t i; /* Loop Counter */
|
|
149 |
q31_t outR, outI; /* Temporary variables for output */
|
|
150 |
q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
|
|
151 |
q15_t *pSrc1, *pSrc2;
|
|
152 |
#ifndef ARM_MATH_CM0_FAMILY
|
|
153 |
q15_t *pD1, *pD2;
|
|
154 |
#endif
|
|
155 |
|
|
156 |
// pSrc[2u * fftLen] = pSrc[0];
|
|
157 |
// pSrc[(2u * fftLen) + 1u] = pSrc[1];
|
|
158 |
|
|
159 |
pCoefA = &pATable[modifier * 2u];
|
|
160 |
pCoefB = &pBTable[modifier * 2u];
|
|
161 |
|
|
162 |
pSrc1 = &pSrc[2];
|
|
163 |
pSrc2 = &pSrc[(2u * fftLen) - 2u];
|
|
164 |
|
|
165 |
#ifndef ARM_MATH_CM0_FAMILY
|
|
166 |
|
|
167 |
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
|
168 |
i = 1u;
|
|
169 |
pD1 = pDst + 2;
|
|
170 |
pD2 = pDst + (4u * fftLen) - 2;
|
|
171 |
|
|
172 |
for(i = fftLen - 1; i > 0; i--)
|
|
173 |
{
|
|
174 |
/*
|
|
175 |
outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
|
|
176 |
+ pSrc[2 * n - 2 * i] * pBTable[2 * i] +
|
|
177 |
pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
|
|
178 |
*/
|
|
179 |
|
|
180 |
/* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
|
|
181 |
pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
|
|
182 |
pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */
|
|
183 |
|
|
184 |
|
|
185 |
#ifndef ARM_MATH_BIG_ENDIAN
|
|
186 |
|
|
187 |
/* pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] */
|
|
188 |
outR = __SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA));
|
|
189 |
|
|
190 |
#else
|
|
191 |
|
|
192 |
/* -(pSrc[2 * i + 1] * pATable[2 * i + 1] - pSrc[2 * i] * pATable[2 * i]) */
|
|
193 |
outR = -(__SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA)));
|
|
194 |
|
|
195 |
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
196 |
|
|
197 |
/* pSrc[2 * n - 2 * i] * pBTable[2 * i] +
|
|
198 |
pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
|
|
199 |
outR = __SMLAD(*__SIMD32(pSrc2), *__SIMD32(pCoefB), outR) >> 16u;
|
|
200 |
|
|
201 |
/* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
|
|
202 |
pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
|
|
203 |
|
|
204 |
#ifndef ARM_MATH_BIG_ENDIAN
|
|
205 |
|
|
206 |
outI = __SMUSDX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));
|
|
207 |
|
|
208 |
#else
|
|
209 |
|
|
210 |
outI = __SMUSDX(*__SIMD32(pCoefB), *__SIMD32(pSrc2)--);
|
|
211 |
|
|
212 |
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
213 |
|
|
214 |
/* (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] */
|
|
215 |
outI = __SMLADX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), outI);
|
|
216 |
|
|
217 |
/* write output */
|
|
218 |
*pD1++ = (q15_t) outR;
|
|
219 |
*pD1++ = outI >> 16u;
|
|
220 |
|
|
221 |
/* write complex conjugate output */
|
|
222 |
pD2[0] = (q15_t) outR;
|
|
223 |
pD2[1] = -(outI >> 16u);
|
|
224 |
pD2 -= 2;
|
|
225 |
|
|
226 |
/* update coefficient pointer */
|
|
227 |
pCoefB = pCoefB + (2u * modifier);
|
|
228 |
pCoefA = pCoefA + (2u * modifier);
|
|
229 |
}
|
|
230 |
|
|
231 |
pDst[2u * fftLen] = (pSrc[0] - pSrc[1]) >> 1;
|
|
232 |
pDst[(2u * fftLen) + 1u] = 0;
|
|
233 |
|
|
234 |
pDst[0] = (pSrc[0] + pSrc[1]) >> 1;
|
|
235 |
pDst[1] = 0;
|
|
236 |
|
|
237 |
#else
|
|
238 |
|
|
239 |
/* Run the below code for Cortex-M0 */
|
|
240 |
i = 1u;
|
|
241 |
|
|
242 |
while(i < fftLen)
|
|
243 |
{
|
|
244 |
/*
|
|
245 |
outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
|
|
246 |
+ pSrc[2 * n - 2 * i] * pBTable[2 * i] +
|
|
247 |
pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
|
|
248 |
*/
|
|
249 |
|
|
250 |
outR = *pSrc1 * *pCoefA;
|
|
251 |
outR = outR - (*(pSrc1 + 1) * *(pCoefA + 1));
|
|
252 |
outR = outR + (*pSrc2 * *pCoefB);
|
|
253 |
outR = (outR + (*(pSrc2 + 1) * *(pCoefB + 1))) >> 16;
|
|
254 |
|
|
255 |
|
|
256 |
/* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
|
|
257 |
pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
|
|
258 |
pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
|
|
259 |
*/
|
|
260 |
|
|
261 |
outI = *pSrc2 * *(pCoefB + 1);
|
|
262 |
outI = outI - (*(pSrc2 + 1) * *pCoefB);
|
|
263 |
outI = outI + (*(pSrc1 + 1) * *pCoefA);
|
|
264 |
outI = outI + (*pSrc1 * *(pCoefA + 1));
|
|
265 |
|
|
266 |
/* update input pointers */
|
|
267 |
pSrc1 += 2u;
|
|
268 |
pSrc2 -= 2u;
|
|
269 |
|
|
270 |
/* write output */
|
|
271 |
pDst[2u * i] = (q15_t) outR;
|
|
272 |
pDst[(2u * i) + 1u] = outI >> 16u;
|
|
273 |
|
|
274 |
/* write complex conjugate output */
|
|
275 |
pDst[(4u * fftLen) - (2u * i)] = (q15_t) outR;
|
|
276 |
pDst[((4u * fftLen) - (2u * i)) + 1u] = -(outI >> 16u);
|
|
277 |
|
|
278 |
/* update coefficient pointer */
|
|
279 |
pCoefB = pCoefB + (2u * modifier);
|
|
280 |
pCoefA = pCoefA + (2u * modifier);
|
|
281 |
|
|
282 |
i++;
|
|
283 |
}
|
|
284 |
|
|
285 |
pDst[2u * fftLen] = (pSrc[0] - pSrc[1]) >> 1;
|
|
286 |
pDst[(2u * fftLen) + 1u] = 0;
|
|
287 |
|
|
288 |
pDst[0] = (pSrc[0] + pSrc[1]) >> 1;
|
|
289 |
pDst[1] = 0;
|
|
290 |
|
|
291 |
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
|
|
292 |
}
|
|
293 |
|
|
294 |
|
|
295 |
/**
|
|
296 |
* @brief Core Real IFFT process
|
|
297 |
* @param[in] *pSrc points to the input buffer.
|
|
298 |
* @param[in] fftLen length of FFT.
|
|
299 |
* @param[in] *pATable points to the twiddle Coef A buffer.
|
|
300 |
* @param[in] *pBTable points to the twiddle Coef B buffer.
|
|
301 |
* @param[out] *pDst points to the output buffer.
|
|
302 |
* @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
|
|
303 |
* @return none.
|
|
304 |
* The function implements a Real IFFT
|
|
305 |
*/
|
|
306 |
void arm_split_rifft_q15(
|
|
307 |
q15_t * pSrc,
|
|
308 |
uint32_t fftLen,
|
|
309 |
q15_t * pATable,
|
|
310 |
q15_t * pBTable,
|
|
311 |
q15_t * pDst,
|
|
312 |
uint32_t modifier)
|
|
313 |
{
|
|
314 |
uint32_t i; /* Loop Counter */
|
|
315 |
q31_t outR, outI; /* Temporary variables for output */
|
|
316 |
q15_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
|
|
317 |
q15_t *pSrc1, *pSrc2;
|
|
318 |
q15_t *pDst1 = &pDst[0];
|
|
319 |
|
|
320 |
pCoefA = &pATable[0];
|
|
321 |
pCoefB = &pBTable[0];
|
|
322 |
|
|
323 |
pSrc1 = &pSrc[0];
|
|
324 |
pSrc2 = &pSrc[2u * fftLen];
|
|
325 |
|
|
326 |
#ifndef ARM_MATH_CM0_FAMILY
|
|
327 |
|
|
328 |
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
|
329 |
i = fftLen;
|
|
330 |
|
|
331 |
while(i > 0u)
|
|
332 |
{
|
|
333 |
/*
|
|
334 |
outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
|
|
335 |
pIn[2 * n - 2 * i] * pBTable[2 * i] -
|
|
336 |
pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
|
|
337 |
|
|
338 |
outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
|
|
339 |
pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
|
|
340 |
pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
|
|
341 |
*/
|
|
342 |
|
|
343 |
|
|
344 |
#ifndef ARM_MATH_BIG_ENDIAN
|
|
345 |
|
|
346 |
/* pIn[2 * n - 2 * i] * pBTable[2 * i] -
|
|
347 |
pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
|
|
348 |
outR = __SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB));
|
|
349 |
|
|
350 |
#else
|
|
351 |
|
|
352 |
/* -(-pIn[2 * n - 2 * i] * pBTable[2 * i] +
|
|
353 |
pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1])) */
|
|
354 |
outR = -(__SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB)));
|
|
355 |
|
|
356 |
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
357 |
|
|
358 |
/* pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
|
|
359 |
pIn[2 * n - 2 * i] * pBTable[2 * i] */
|
|
360 |
outR = __SMLAD(*__SIMD32(pSrc1), *__SIMD32(pCoefA), outR) >> 16u;
|
|
361 |
|
|
362 |
/*
|
|
363 |
-pIn[2 * n - 2 * i] * pBTable[2 * i + 1] +
|
|
364 |
pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
|
|
365 |
outI = __SMUADX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));
|
|
366 |
|
|
367 |
/* pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] */
|
|
368 |
|
|
369 |
#ifndef ARM_MATH_BIG_ENDIAN
|
|
370 |
|
|
371 |
outI = __SMLSDX(*__SIMD32(pCoefA), *__SIMD32(pSrc1)++, -outI);
|
|
372 |
|
|
373 |
#else
|
|
374 |
|
|
375 |
outI = __SMLSDX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), -outI);
|
|
376 |
|
|
377 |
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
378 |
/* write output */
|
|
379 |
|
|
380 |
#ifndef ARM_MATH_BIG_ENDIAN
|
|
381 |
|
|
382 |
*__SIMD32(pDst1)++ = __PKHBT(outR, (outI >> 16u), 16);
|
|
383 |
|
|
384 |
#else
|
|
385 |
|
|
386 |
*__SIMD32(pDst1)++ = __PKHBT((outI >> 16u), outR, 16);
|
|
387 |
|
|
388 |
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
389 |
|
|
390 |
/* update coefficient pointer */
|
|
391 |
pCoefB = pCoefB + (2u * modifier);
|
|
392 |
pCoefA = pCoefA + (2u * modifier);
|
|
393 |
|
|
394 |
i--;
|
|
395 |
}
|
|
396 |
#else
|
|
397 |
/* Run the below code for Cortex-M0 */
|
|
398 |
i = fftLen;
|
|
399 |
|
|
400 |
while(i > 0u)
|
|
401 |
{
|
|
402 |
/*
|
|
403 |
outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
|
|
404 |
pIn[2 * n - 2 * i] * pBTable[2 * i] -
|
|
405 |
pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
|
|
406 |
*/
|
|
407 |
|
|
408 |
outR = *pSrc2 * *pCoefB;
|
|
409 |
outR = outR - (*(pSrc2 + 1) * *(pCoefB + 1));
|
|
410 |
outR = outR + (*pSrc1 * *pCoefA);
|
|
411 |
outR = (outR + (*(pSrc1 + 1) * *(pCoefA + 1))) >> 16;
|
|
412 |
|
|
413 |
/*
|
|
414 |
outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
|
|
415 |
pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
|
|
416 |
pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
|
|
417 |
*/
|
|
418 |
|
|
419 |
outI = *(pSrc1 + 1) * *pCoefA;
|
|
420 |
outI = outI - (*pSrc1 * *(pCoefA + 1));
|
|
421 |
outI = outI - (*pSrc2 * *(pCoefB + 1));
|
|
422 |
outI = outI - (*(pSrc2 + 1) * *(pCoefB));
|
|
423 |
|
|
424 |
/* update input pointers */
|
|
425 |
pSrc1 += 2u;
|
|
426 |
pSrc2 -= 2u;
|
|
427 |
|
|
428 |
/* write output */
|
|
429 |
*pDst1++ = (q15_t) outR;
|
|
430 |
*pDst1++ = (q15_t) (outI >> 16);
|
|
431 |
|
|
432 |
/* update coefficient pointer */
|
|
433 |
pCoefB = pCoefB + (2u * modifier);
|
|
434 |
pCoefA = pCoefA + (2u * modifier);
|
|
435 |
|
|
436 |
i--;
|
|
437 |
}
|
|
438 |
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
|
|
439 |
}
|