提交 | 用户 | age
|
bfc108
|
1 |
/* ----------------------------------------------------------------------
|
Q |
2 |
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
|
3 |
*
|
|
4 |
* $Date: 19. March 2015
|
|
5 |
* $Revision: V.1.4.5
|
|
6 |
*
|
|
7 |
* Project: CMSIS DSP Library
|
|
8 |
* Title: arm_fir_q31.c
|
|
9 |
*
|
|
10 |
* Description: Q31 FIR filter processing function.
|
|
11 |
*
|
|
12 |
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
|
13 |
*
|
|
14 |
* Redistribution and use in source and binary forms, with or without
|
|
15 |
* modification, are permitted provided that the following conditions
|
|
16 |
* are met:
|
|
17 |
* - Redistributions of source code must retain the above copyright
|
|
18 |
* notice, this list of conditions and the following disclaimer.
|
|
19 |
* - Redistributions in binary form must reproduce the above copyright
|
|
20 |
* notice, this list of conditions and the following disclaimer in
|
|
21 |
* the documentation and/or other materials provided with the
|
|
22 |
* distribution.
|
|
23 |
* - Neither the name of ARM LIMITED nor the names of its contributors
|
|
24 |
* may be used to endorse or promote products derived from this
|
|
25 |
* software without specific prior written permission.
|
|
26 |
*
|
|
27 |
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
28 |
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
29 |
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
30 |
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
31 |
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
32 |
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
33 |
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
34 |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
35 |
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
36 |
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
37 |
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
38 |
* POSSIBILITY OF SUCH DAMAGE.
|
|
39 |
* -------------------------------------------------------------------- */
|
|
40 |
|
|
41 |
#include "arm_math.h"
|
|
42 |
|
|
43 |
/**
|
|
44 |
* @ingroup groupFilters
|
|
45 |
*/
|
|
46 |
|
|
47 |
/**
|
|
48 |
* @addtogroup FIR
|
|
49 |
* @{
|
|
50 |
*/
|
|
51 |
|
|
52 |
/**
|
|
53 |
* @param[in] *S points to an instance of the Q31 FIR filter structure.
|
|
54 |
* @param[in] *pSrc points to the block of input data.
|
|
55 |
* @param[out] *pDst points to the block of output data.
|
|
56 |
* @param[in] blockSize number of samples to process per call.
|
|
57 |
* @return none.
|
|
58 |
*
|
|
59 |
* @details
|
|
60 |
* <b>Scaling and Overflow Behavior:</b>
|
|
61 |
* \par
|
|
62 |
* The function is implemented using an internal 64-bit accumulator.
|
|
63 |
* The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
|
|
64 |
* Thus, if the accumulator result overflows it wraps around rather than clip.
|
|
65 |
* In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits.
|
|
66 |
* After all multiply-accumulates are performed, the 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
|
|
67 |
*
|
|
68 |
* \par
|
|
69 |
* Refer to the function <code>arm_fir_fast_q31()</code> for a faster but less precise implementation of this filter for Cortex-M3 and Cortex-M4.
|
|
70 |
*/
|
|
71 |
|
|
72 |
void arm_fir_q31(
|
|
73 |
const arm_fir_instance_q31 * S,
|
|
74 |
q31_t * pSrc,
|
|
75 |
q31_t * pDst,
|
|
76 |
uint32_t blockSize)
|
|
77 |
{
|
|
78 |
q31_t *pState = S->pState; /* State pointer */
|
|
79 |
q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
|
|
80 |
q31_t *pStateCurnt; /* Points to the current sample of the state */
|
|
81 |
|
|
82 |
|
|
83 |
#ifndef ARM_MATH_CM0_FAMILY
|
|
84 |
|
|
85 |
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
|
86 |
|
|
87 |
q31_t x0, x1, x2; /* Temporary variables to hold state */
|
|
88 |
q31_t c0; /* Temporary variable to hold coefficient value */
|
|
89 |
q31_t *px; /* Temporary pointer for state */
|
|
90 |
q31_t *pb; /* Temporary pointer for coefficient buffer */
|
|
91 |
q63_t acc0, acc1, acc2; /* Accumulators */
|
|
92 |
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
|
|
93 |
uint32_t i, tapCnt, blkCnt, tapCntN3; /* Loop counters */
|
|
94 |
|
|
95 |
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
|
|
96 |
/* pStateCurnt points to the location where the new input data should be written */
|
|
97 |
pStateCurnt = &(S->pState[(numTaps - 1u)]);
|
|
98 |
|
|
99 |
/* Apply loop unrolling and compute 4 output values simultaneously.
|
|
100 |
* The variables acc0 ... acc3 hold output values that are being computed:
|
|
101 |
*
|
|
102 |
* acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
|
|
103 |
* acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
|
|
104 |
* acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
|
|
105 |
* acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
|
|
106 |
*/
|
|
107 |
blkCnt = blockSize / 3;
|
|
108 |
blockSize = blockSize - (3 * blkCnt);
|
|
109 |
|
|
110 |
tapCnt = numTaps / 3;
|
|
111 |
tapCntN3 = numTaps - (3 * tapCnt);
|
|
112 |
|
|
113 |
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
|
114 |
** a second loop below computes the remaining 1 to 3 samples. */
|
|
115 |
while(blkCnt > 0u)
|
|
116 |
{
|
|
117 |
/* Copy three new input samples into the state buffer */
|
|
118 |
*pStateCurnt++ = *pSrc++;
|
|
119 |
*pStateCurnt++ = *pSrc++;
|
|
120 |
*pStateCurnt++ = *pSrc++;
|
|
121 |
|
|
122 |
/* Set all accumulators to zero */
|
|
123 |
acc0 = 0;
|
|
124 |
acc1 = 0;
|
|
125 |
acc2 = 0;
|
|
126 |
|
|
127 |
/* Initialize state pointer */
|
|
128 |
px = pState;
|
|
129 |
|
|
130 |
/* Initialize coefficient pointer */
|
|
131 |
pb = pCoeffs;
|
|
132 |
|
|
133 |
/* Read the first two samples from the state buffer:
|
|
134 |
* x[n-numTaps], x[n-numTaps-1] */
|
|
135 |
x0 = *(px++);
|
|
136 |
x1 = *(px++);
|
|
137 |
|
|
138 |
/* Loop unrolling. Process 3 taps at a time. */
|
|
139 |
i = tapCnt;
|
|
140 |
|
|
141 |
while(i > 0u)
|
|
142 |
{
|
|
143 |
/* Read the b[numTaps] coefficient */
|
|
144 |
c0 = *pb;
|
|
145 |
|
|
146 |
/* Read x[n-numTaps-2] sample */
|
|
147 |
x2 = *(px++);
|
|
148 |
|
|
149 |
/* Perform the multiply-accumulates */
|
|
150 |
acc0 += ((q63_t) x0 * c0);
|
|
151 |
acc1 += ((q63_t) x1 * c0);
|
|
152 |
acc2 += ((q63_t) x2 * c0);
|
|
153 |
|
|
154 |
/* Read the coefficient and state */
|
|
155 |
c0 = *(pb + 1u);
|
|
156 |
x0 = *(px++);
|
|
157 |
|
|
158 |
/* Perform the multiply-accumulates */
|
|
159 |
acc0 += ((q63_t) x1 * c0);
|
|
160 |
acc1 += ((q63_t) x2 * c0);
|
|
161 |
acc2 += ((q63_t) x0 * c0);
|
|
162 |
|
|
163 |
/* Read the coefficient and state */
|
|
164 |
c0 = *(pb + 2u);
|
|
165 |
x1 = *(px++);
|
|
166 |
|
|
167 |
/* update coefficient pointer */
|
|
168 |
pb += 3u;
|
|
169 |
|
|
170 |
/* Perform the multiply-accumulates */
|
|
171 |
acc0 += ((q63_t) x2 * c0);
|
|
172 |
acc1 += ((q63_t) x0 * c0);
|
|
173 |
acc2 += ((q63_t) x1 * c0);
|
|
174 |
|
|
175 |
/* Decrement the loop counter */
|
|
176 |
i--;
|
|
177 |
}
|
|
178 |
|
|
179 |
/* If the filter length is not a multiple of 3, compute the remaining filter taps */
|
|
180 |
|
|
181 |
i = tapCntN3;
|
|
182 |
|
|
183 |
while(i > 0u)
|
|
184 |
{
|
|
185 |
/* Read coefficients */
|
|
186 |
c0 = *(pb++);
|
|
187 |
|
|
188 |
/* Fetch 1 state variable */
|
|
189 |
x2 = *(px++);
|
|
190 |
|
|
191 |
/* Perform the multiply-accumulates */
|
|
192 |
acc0 += ((q63_t) x0 * c0);
|
|
193 |
acc1 += ((q63_t) x1 * c0);
|
|
194 |
acc2 += ((q63_t) x2 * c0);
|
|
195 |
|
|
196 |
/* Reuse the present sample states for next sample */
|
|
197 |
x0 = x1;
|
|
198 |
x1 = x2;
|
|
199 |
|
|
200 |
/* Decrement the loop counter */
|
|
201 |
i--;
|
|
202 |
}
|
|
203 |
|
|
204 |
/* Advance the state pointer by 3 to process the next group of 3 samples */
|
|
205 |
pState = pState + 3;
|
|
206 |
|
|
207 |
/* The results in the 3 accumulators are in 2.30 format. Convert to 1.31
|
|
208 |
** Then store the 3 outputs in the destination buffer. */
|
|
209 |
*pDst++ = (q31_t) (acc0 >> 31u);
|
|
210 |
*pDst++ = (q31_t) (acc1 >> 31u);
|
|
211 |
*pDst++ = (q31_t) (acc2 >> 31u);
|
|
212 |
|
|
213 |
/* Decrement the samples loop counter */
|
|
214 |
blkCnt--;
|
|
215 |
}
|
|
216 |
|
|
217 |
/* If the blockSize is not a multiple of 3, compute any remaining output samples here.
|
|
218 |
** No loop unrolling is used. */
|
|
219 |
|
|
220 |
while(blockSize > 0u)
|
|
221 |
{
|
|
222 |
/* Copy one sample at a time into state buffer */
|
|
223 |
*pStateCurnt++ = *pSrc++;
|
|
224 |
|
|
225 |
/* Set the accumulator to zero */
|
|
226 |
acc0 = 0;
|
|
227 |
|
|
228 |
/* Initialize state pointer */
|
|
229 |
px = pState;
|
|
230 |
|
|
231 |
/* Initialize Coefficient pointer */
|
|
232 |
pb = (pCoeffs);
|
|
233 |
|
|
234 |
i = numTaps;
|
|
235 |
|
|
236 |
/* Perform the multiply-accumulates */
|
|
237 |
do
|
|
238 |
{
|
|
239 |
acc0 += (q63_t) * (px++) * (*(pb++));
|
|
240 |
i--;
|
|
241 |
} while(i > 0u);
|
|
242 |
|
|
243 |
/* The result is in 2.62 format. Convert to 1.31
|
|
244 |
** Then store the output in the destination buffer. */
|
|
245 |
*pDst++ = (q31_t) (acc0 >> 31u);
|
|
246 |
|
|
247 |
/* Advance state pointer by 1 for the next sample */
|
|
248 |
pState = pState + 1;
|
|
249 |
|
|
250 |
/* Decrement the samples loop counter */
|
|
251 |
blockSize--;
|
|
252 |
}
|
|
253 |
|
|
254 |
/* Processing is complete.
|
|
255 |
** Now copy the last numTaps - 1 samples to the satrt of the state buffer.
|
|
256 |
** This prepares the state buffer for the next function call. */
|
|
257 |
|
|
258 |
/* Points to the start of the state buffer */
|
|
259 |
pStateCurnt = S->pState;
|
|
260 |
|
|
261 |
tapCnt = (numTaps - 1u) >> 2u;
|
|
262 |
|
|
263 |
/* copy data */
|
|
264 |
while(tapCnt > 0u)
|
|
265 |
{
|
|
266 |
*pStateCurnt++ = *pState++;
|
|
267 |
*pStateCurnt++ = *pState++;
|
|
268 |
*pStateCurnt++ = *pState++;
|
|
269 |
*pStateCurnt++ = *pState++;
|
|
270 |
|
|
271 |
/* Decrement the loop counter */
|
|
272 |
tapCnt--;
|
|
273 |
}
|
|
274 |
|
|
275 |
/* Calculate remaining number of copies */
|
|
276 |
tapCnt = (numTaps - 1u) % 0x4u;
|
|
277 |
|
|
278 |
/* Copy the remaining q31_t data */
|
|
279 |
while(tapCnt > 0u)
|
|
280 |
{
|
|
281 |
*pStateCurnt++ = *pState++;
|
|
282 |
|
|
283 |
/* Decrement the loop counter */
|
|
284 |
tapCnt--;
|
|
285 |
}
|
|
286 |
|
|
287 |
#else
|
|
288 |
|
|
289 |
/* Run the below code for Cortex-M0 */
|
|
290 |
|
|
291 |
q31_t *px; /* Temporary pointer for state */
|
|
292 |
q31_t *pb; /* Temporary pointer for coefficient buffer */
|
|
293 |
q63_t acc; /* Accumulator */
|
|
294 |
uint32_t numTaps = S->numTaps; /* Length of the filter */
|
|
295 |
uint32_t i, tapCnt, blkCnt; /* Loop counters */
|
|
296 |
|
|
297 |
/* S->pState buffer contains previous frame (numTaps - 1) samples */
|
|
298 |
/* pStateCurnt points to the location where the new input data should be written */
|
|
299 |
pStateCurnt = &(S->pState[(numTaps - 1u)]);
|
|
300 |
|
|
301 |
/* Initialize blkCnt with blockSize */
|
|
302 |
blkCnt = blockSize;
|
|
303 |
|
|
304 |
while(blkCnt > 0u)
|
|
305 |
{
|
|
306 |
/* Copy one sample at a time into state buffer */
|
|
307 |
*pStateCurnt++ = *pSrc++;
|
|
308 |
|
|
309 |
/* Set the accumulator to zero */
|
|
310 |
acc = 0;
|
|
311 |
|
|
312 |
/* Initialize state pointer */
|
|
313 |
px = pState;
|
|
314 |
|
|
315 |
/* Initialize Coefficient pointer */
|
|
316 |
pb = pCoeffs;
|
|
317 |
|
|
318 |
i = numTaps;
|
|
319 |
|
|
320 |
/* Perform the multiply-accumulates */
|
|
321 |
do
|
|
322 |
{
|
|
323 |
/* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
|
|
324 |
acc += (q63_t) * px++ * *pb++;
|
|
325 |
i--;
|
|
326 |
} while(i > 0u);
|
|
327 |
|
|
328 |
/* The result is in 2.62 format. Convert to 1.31
|
|
329 |
** Then store the output in the destination buffer. */
|
|
330 |
*pDst++ = (q31_t) (acc >> 31u);
|
|
331 |
|
|
332 |
/* Advance state pointer by 1 for the next sample */
|
|
333 |
pState = pState + 1;
|
|
334 |
|
|
335 |
/* Decrement the samples loop counter */
|
|
336 |
blkCnt--;
|
|
337 |
}
|
|
338 |
|
|
339 |
/* Processing is complete.
|
|
340 |
** Now copy the last numTaps - 1 samples to the starting of the state buffer.
|
|
341 |
** This prepares the state buffer for the next function call. */
|
|
342 |
|
|
343 |
/* Points to the start of the state buffer */
|
|
344 |
pStateCurnt = S->pState;
|
|
345 |
|
|
346 |
/* Copy numTaps number of values */
|
|
347 |
tapCnt = numTaps - 1u;
|
|
348 |
|
|
349 |
/* Copy the data */
|
|
350 |
while(tapCnt > 0u)
|
|
351 |
{
|
|
352 |
*pStateCurnt++ = *pState++;
|
|
353 |
|
|
354 |
/* Decrement the loop counter */
|
|
355 |
tapCnt--;
|
|
356 |
}
|
|
357 |
|
|
358 |
|
|
359 |
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
|
|
360 |
|
|
361 |
}
|
|
362 |
|
|
363 |
/**
|
|
364 |
* @} end of FIR group
|
|
365 |
*/
|