提交 | 用户 | age
|
bfc108
|
1 |
/* ----------------------------------------------------------------------
|
Q |
2 |
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
|
3 |
*
|
|
4 |
* $Date: 19. March 2015
|
|
5 |
* $Revision: V.1.4.5
|
|
6 |
*
|
|
7 |
* Project: CMSIS DSP Library
|
|
8 |
* Title: arm_fir_f32.c
|
|
9 |
*
|
|
10 |
* Description: Floating-point FIR filter processing function.
|
|
11 |
*
|
|
12 |
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
|
13 |
*
|
|
14 |
* Redistribution and use in source and binary forms, with or without
|
|
15 |
* modification, are permitted provided that the following conditions
|
|
16 |
* are met:
|
|
17 |
* - Redistributions of source code must retain the above copyright
|
|
18 |
* notice, this list of conditions and the following disclaimer.
|
|
19 |
* - Redistributions in binary form must reproduce the above copyright
|
|
20 |
* notice, this list of conditions and the following disclaimer in
|
|
21 |
* the documentation and/or other materials provided with the
|
|
22 |
* distribution.
|
|
23 |
* - Neither the name of ARM LIMITED nor the names of its contributors
|
|
24 |
* may be used to endorse or promote products derived from this
|
|
25 |
* software without specific prior written permission.
|
|
26 |
*
|
|
27 |
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
28 |
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
29 |
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
30 |
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
31 |
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
32 |
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
33 |
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
34 |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
35 |
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
36 |
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
37 |
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
38 |
* POSSIBILITY OF SUCH DAMAGE.
|
|
39 |
* -------------------------------------------------------------------- */
|
|
40 |
|
|
41 |
#include "arm_math.h"
|
|
42 |
|
|
43 |
/**
|
|
44 |
* @ingroup groupFilters
|
|
45 |
*/
|
|
46 |
|
|
47 |
/**
|
|
48 |
* @defgroup FIR Finite Impulse Response (FIR) Filters
|
|
49 |
*
|
|
50 |
* This set of functions implements Finite Impulse Response (FIR) filters
|
|
51 |
* for Q7, Q15, Q31, and floating-point data types. Fast versions of Q15 and Q31 are also provided.
|
|
52 |
* The functions operate on blocks of input and output data and each call to the function processes
|
|
53 |
* <code>blockSize</code> samples through the filter. <code>pSrc</code> and
|
|
54 |
* <code>pDst</code> points to input and output arrays containing <code>blockSize</code> values.
|
|
55 |
*
|
|
56 |
* \par Algorithm:
|
|
57 |
* The FIR filter algorithm is based upon a sequence of multiply-accumulate (MAC) operations.
|
|
58 |
* Each filter coefficient <code>b[n]</code> is multiplied by a state variable which equals a previous input sample <code>x[n]</code>.
|
|
59 |
* <pre>
|
|
60 |
* y[n] = b[0] * x[n] + b[1] * x[n-1] + b[2] * x[n-2] + ...+ b[numTaps-1] * x[n-numTaps+1]
|
|
61 |
* </pre>
|
|
62 |
* \par
|
|
63 |
* \image html FIR.gif "Finite Impulse Response filter"
|
|
64 |
* \par
|
|
65 |
* <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>.
|
|
66 |
* Coefficients are stored in time reversed order.
|
|
67 |
* \par
|
|
68 |
* <pre>
|
|
69 |
* {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}
|
|
70 |
* </pre>
|
|
71 |
* \par
|
|
72 |
* <code>pState</code> points to a state array of size <code>numTaps + blockSize - 1</code>.
|
|
73 |
* Samples in the state buffer are stored in the following order.
|
|
74 |
* \par
|
|
75 |
* <pre>
|
|
76 |
* {x[n-numTaps+1], x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2]....x[0], x[1], ..., x[blockSize-1]}
|
|
77 |
* </pre>
|
|
78 |
* \par
|
|
79 |
* Note that the length of the state buffer exceeds the length of the coefficient array by <code>blockSize-1</code>.
|
|
80 |
* The increased state buffer length allows circular addressing, which is traditionally used in the FIR filters,
|
|
81 |
* to be avoided and yields a significant speed improvement.
|
|
82 |
* The state variables are updated after each block of data is processed; the coefficients are untouched.
|
|
83 |
* \par Instance Structure
|
|
84 |
* The coefficients and state variables for a filter are stored together in an instance data structure.
|
|
85 |
* A separate instance structure must be defined for each filter.
|
|
86 |
* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.
|
|
87 |
* There are separate instance structure declarations for each of the 4 supported data types.
|
|
88 |
*
|
|
89 |
* \par Initialization Functions
|
|
90 |
* There is also an associated initialization function for each data type.
|
|
91 |
* The initialization function performs the following operations:
|
|
92 |
* - Sets the values of the internal structure fields.
|
|
93 |
* - Zeros out the values in the state buffer.
|
|
94 |
* To do this manually without calling the init function, assign the follow subfields of the instance structure:
|
|
95 |
* numTaps, pCoeffs, pState. Also set all of the values in pState to zero.
|
|
96 |
*
|
|
97 |
* \par
|
|
98 |
* Use of the initialization function is optional.
|
|
99 |
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.
|
|
100 |
* To place an instance structure into a const data section, the instance structure must be manually initialized.
|
|
101 |
* Set the values in the state buffer to zeros before static initialization.
|
|
102 |
* The code below statically initializes each of the 4 different data type filter instance structures
|
|
103 |
* <pre>
|
|
104 |
*arm_fir_instance_f32 S = {numTaps, pState, pCoeffs};
|
|
105 |
*arm_fir_instance_q31 S = {numTaps, pState, pCoeffs};
|
|
106 |
*arm_fir_instance_q15 S = {numTaps, pState, pCoeffs};
|
|
107 |
*arm_fir_instance_q7 S = {numTaps, pState, pCoeffs};
|
|
108 |
* </pre>
|
|
109 |
*
|
|
110 |
* where <code>numTaps</code> is the number of filter coefficients in the filter; <code>pState</code> is the address of the state buffer;
|
|
111 |
* <code>pCoeffs</code> is the address of the coefficient buffer.
|
|
112 |
*
|
|
113 |
* \par Fixed-Point Behavior
|
|
114 |
* Care must be taken when using the fixed-point versions of the FIR filter functions.
|
|
115 |
* In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
|
|
116 |
* Refer to the function specific documentation below for usage guidelines.
|
|
117 |
*/
|
|
118 |
|
|
119 |
/**
|
|
120 |
* @addtogroup FIR
|
|
121 |
* @{
|
|
122 |
*/
|
|
123 |
|
|
124 |
/**
|
|
125 |
*
|
|
126 |
* @param[in] *S points to an instance of the floating-point FIR filter structure.
|
|
127 |
* @param[in] *pSrc points to the block of input data.
|
|
128 |
* @param[out] *pDst points to the block of output data.
|
|
129 |
* @param[in] blockSize number of samples to process per call.
|
|
130 |
* @return none.
|
|
131 |
*
|
|
132 |
*/
|
|
133 |
|
|
134 |
#if defined(ARM_MATH_CM7)
|
|
135 |
|
|
136 |
void arm_fir_f32(
|
|
137 |
const arm_fir_instance_f32 * S,
|
|
138 |
float32_t * pSrc,
|
|
139 |
float32_t * pDst,
|
|
140 |
uint32_t blockSize)
|
|
141 |
{
|
|
142 |
float32_t *pState = S->pState; /* State pointer */
|
|
143 |
float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
|
|
144 |
float32_t *pStateCurnt; /* Points to the current sample of the state */
|
|
145 |
float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
|
|
146 |
float32_t acc0, acc1, acc2, acc3, acc4, acc5, acc6, acc7; /* Accumulators */
|
|
147 |
float32_t x0, x1, x2, x3, x4, x5, x6, x7, c0; /* Temporary variables to hold state and coefficient values */
|
|
148 |
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
|
|
149 |
uint32_t i, tapCnt, blkCnt; /* Loop counters */
|
|
150 |
|
|
151 |
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
|
|
152 |
/* pStateCurnt points to the location where the new input data should be written */
|
|
153 |
pStateCurnt = &(S->pState[(numTaps - 1u)]);
|
|
154 |
|
|
155 |
/* Apply loop unrolling and compute 8 output values simultaneously.
|
|
156 |
* The variables acc0 ... acc7 hold output values that are being computed:
|
|
157 |
*
|
|
158 |
* acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
|
|
159 |
* acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
|
|
160 |
* acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
|
|
161 |
* acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
|
|
162 |
*/
|
|
163 |
blkCnt = blockSize >> 3;
|
|
164 |
|
|
165 |
/* First part of the processing with loop unrolling. Compute 8 outputs at a time.
|
|
166 |
** a second loop below computes the remaining 1 to 7 samples. */
|
|
167 |
while(blkCnt > 0u)
|
|
168 |
{
|
|
169 |
/* Copy four new input samples into the state buffer */
|
|
170 |
*pStateCurnt++ = *pSrc++;
|
|
171 |
*pStateCurnt++ = *pSrc++;
|
|
172 |
*pStateCurnt++ = *pSrc++;
|
|
173 |
*pStateCurnt++ = *pSrc++;
|
|
174 |
|
|
175 |
/* Set all accumulators to zero */
|
|
176 |
acc0 = 0.0f;
|
|
177 |
acc1 = 0.0f;
|
|
178 |
acc2 = 0.0f;
|
|
179 |
acc3 = 0.0f;
|
|
180 |
acc4 = 0.0f;
|
|
181 |
acc5 = 0.0f;
|
|
182 |
acc6 = 0.0f;
|
|
183 |
acc7 = 0.0f;
|
|
184 |
|
|
185 |
/* Initialize state pointer */
|
|
186 |
px = pState;
|
|
187 |
|
|
188 |
/* Initialize coeff pointer */
|
|
189 |
pb = (pCoeffs);
|
|
190 |
|
|
191 |
/* This is separated from the others to avoid
|
|
192 |
* a call to __aeabi_memmove which would be slower
|
|
193 |
*/
|
|
194 |
*pStateCurnt++ = *pSrc++;
|
|
195 |
*pStateCurnt++ = *pSrc++;
|
|
196 |
*pStateCurnt++ = *pSrc++;
|
|
197 |
*pStateCurnt++ = *pSrc++;
|
|
198 |
|
|
199 |
/* Read the first seven samples from the state buffer: x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
|
|
200 |
x0 = *px++;
|
|
201 |
x1 = *px++;
|
|
202 |
x2 = *px++;
|
|
203 |
x3 = *px++;
|
|
204 |
x4 = *px++;
|
|
205 |
x5 = *px++;
|
|
206 |
x6 = *px++;
|
|
207 |
|
|
208 |
/* Loop unrolling. Process 8 taps at a time. */
|
|
209 |
tapCnt = numTaps >> 3u;
|
|
210 |
|
|
211 |
/* Loop over the number of taps. Unroll by a factor of 8.
|
|
212 |
** Repeat until we've computed numTaps-8 coefficients. */
|
|
213 |
while(tapCnt > 0u)
|
|
214 |
{
|
|
215 |
/* Read the b[numTaps-1] coefficient */
|
|
216 |
c0 = *(pb++);
|
|
217 |
|
|
218 |
/* Read x[n-numTaps-3] sample */
|
|
219 |
x7 = *(px++);
|
|
220 |
|
|
221 |
/* acc0 += b[numTaps-1] * x[n-numTaps] */
|
|
222 |
acc0 += x0 * c0;
|
|
223 |
|
|
224 |
/* acc1 += b[numTaps-1] * x[n-numTaps-1] */
|
|
225 |
acc1 += x1 * c0;
|
|
226 |
|
|
227 |
/* acc2 += b[numTaps-1] * x[n-numTaps-2] */
|
|
228 |
acc2 += x2 * c0;
|
|
229 |
|
|
230 |
/* acc3 += b[numTaps-1] * x[n-numTaps-3] */
|
|
231 |
acc3 += x3 * c0;
|
|
232 |
|
|
233 |
/* acc4 += b[numTaps-1] * x[n-numTaps-4] */
|
|
234 |
acc4 += x4 * c0;
|
|
235 |
|
|
236 |
/* acc1 += b[numTaps-1] * x[n-numTaps-5] */
|
|
237 |
acc5 += x5 * c0;
|
|
238 |
|
|
239 |
/* acc2 += b[numTaps-1] * x[n-numTaps-6] */
|
|
240 |
acc6 += x6 * c0;
|
|
241 |
|
|
242 |
/* acc3 += b[numTaps-1] * x[n-numTaps-7] */
|
|
243 |
acc7 += x7 * c0;
|
|
244 |
|
|
245 |
/* Read the b[numTaps-2] coefficient */
|
|
246 |
c0 = *(pb++);
|
|
247 |
|
|
248 |
/* Read x[n-numTaps-4] sample */
|
|
249 |
x0 = *(px++);
|
|
250 |
|
|
251 |
/* Perform the multiply-accumulate */
|
|
252 |
acc0 += x1 * c0;
|
|
253 |
acc1 += x2 * c0;
|
|
254 |
acc2 += x3 * c0;
|
|
255 |
acc3 += x4 * c0;
|
|
256 |
acc4 += x5 * c0;
|
|
257 |
acc5 += x6 * c0;
|
|
258 |
acc6 += x7 * c0;
|
|
259 |
acc7 += x0 * c0;
|
|
260 |
|
|
261 |
/* Read the b[numTaps-3] coefficient */
|
|
262 |
c0 = *(pb++);
|
|
263 |
|
|
264 |
/* Read x[n-numTaps-5] sample */
|
|
265 |
x1 = *(px++);
|
|
266 |
|
|
267 |
/* Perform the multiply-accumulates */
|
|
268 |
acc0 += x2 * c0;
|
|
269 |
acc1 += x3 * c0;
|
|
270 |
acc2 += x4 * c0;
|
|
271 |
acc3 += x5 * c0;
|
|
272 |
acc4 += x6 * c0;
|
|
273 |
acc5 += x7 * c0;
|
|
274 |
acc6 += x0 * c0;
|
|
275 |
acc7 += x1 * c0;
|
|
276 |
|
|
277 |
/* Read the b[numTaps-4] coefficient */
|
|
278 |
c0 = *(pb++);
|
|
279 |
|
|
280 |
/* Read x[n-numTaps-6] sample */
|
|
281 |
x2 = *(px++);
|
|
282 |
|
|
283 |
/* Perform the multiply-accumulates */
|
|
284 |
acc0 += x3 * c0;
|
|
285 |
acc1 += x4 * c0;
|
|
286 |
acc2 += x5 * c0;
|
|
287 |
acc3 += x6 * c0;
|
|
288 |
acc4 += x7 * c0;
|
|
289 |
acc5 += x0 * c0;
|
|
290 |
acc6 += x1 * c0;
|
|
291 |
acc7 += x2 * c0;
|
|
292 |
|
|
293 |
/* Read the b[numTaps-4] coefficient */
|
|
294 |
c0 = *(pb++);
|
|
295 |
|
|
296 |
/* Read x[n-numTaps-6] sample */
|
|
297 |
x3 = *(px++);
|
|
298 |
/* Perform the multiply-accumulates */
|
|
299 |
acc0 += x4 * c0;
|
|
300 |
acc1 += x5 * c0;
|
|
301 |
acc2 += x6 * c0;
|
|
302 |
acc3 += x7 * c0;
|
|
303 |
acc4 += x0 * c0;
|
|
304 |
acc5 += x1 * c0;
|
|
305 |
acc6 += x2 * c0;
|
|
306 |
acc7 += x3 * c0;
|
|
307 |
|
|
308 |
/* Read the b[numTaps-4] coefficient */
|
|
309 |
c0 = *(pb++);
|
|
310 |
|
|
311 |
/* Read x[n-numTaps-6] sample */
|
|
312 |
x4 = *(px++);
|
|
313 |
|
|
314 |
/* Perform the multiply-accumulates */
|
|
315 |
acc0 += x5 * c0;
|
|
316 |
acc1 += x6 * c0;
|
|
317 |
acc2 += x7 * c0;
|
|
318 |
acc3 += x0 * c0;
|
|
319 |
acc4 += x1 * c0;
|
|
320 |
acc5 += x2 * c0;
|
|
321 |
acc6 += x3 * c0;
|
|
322 |
acc7 += x4 * c0;
|
|
323 |
|
|
324 |
/* Read the b[numTaps-4] coefficient */
|
|
325 |
c0 = *(pb++);
|
|
326 |
|
|
327 |
/* Read x[n-numTaps-6] sample */
|
|
328 |
x5 = *(px++);
|
|
329 |
|
|
330 |
/* Perform the multiply-accumulates */
|
|
331 |
acc0 += x6 * c0;
|
|
332 |
acc1 += x7 * c0;
|
|
333 |
acc2 += x0 * c0;
|
|
334 |
acc3 += x1 * c0;
|
|
335 |
acc4 += x2 * c0;
|
|
336 |
acc5 += x3 * c0;
|
|
337 |
acc6 += x4 * c0;
|
|
338 |
acc7 += x5 * c0;
|
|
339 |
|
|
340 |
/* Read the b[numTaps-4] coefficient */
|
|
341 |
c0 = *(pb++);
|
|
342 |
|
|
343 |
/* Read x[n-numTaps-6] sample */
|
|
344 |
x6 = *(px++);
|
|
345 |
|
|
346 |
/* Perform the multiply-accumulates */
|
|
347 |
acc0 += x7 * c0;
|
|
348 |
acc1 += x0 * c0;
|
|
349 |
acc2 += x1 * c0;
|
|
350 |
acc3 += x2 * c0;
|
|
351 |
acc4 += x3 * c0;
|
|
352 |
acc5 += x4 * c0;
|
|
353 |
acc6 += x5 * c0;
|
|
354 |
acc7 += x6 * c0;
|
|
355 |
|
|
356 |
tapCnt--;
|
|
357 |
}
|
|
358 |
|
|
359 |
/* If the filter length is not a multiple of 8, compute the remaining filter taps */
|
|
360 |
tapCnt = numTaps % 0x8u;
|
|
361 |
|
|
362 |
while(tapCnt > 0u)
|
|
363 |
{
|
|
364 |
/* Read coefficients */
|
|
365 |
c0 = *(pb++);
|
|
366 |
|
|
367 |
/* Fetch 1 state variable */
|
|
368 |
x7 = *(px++);
|
|
369 |
|
|
370 |
/* Perform the multiply-accumulates */
|
|
371 |
acc0 += x0 * c0;
|
|
372 |
acc1 += x1 * c0;
|
|
373 |
acc2 += x2 * c0;
|
|
374 |
acc3 += x3 * c0;
|
|
375 |
acc4 += x4 * c0;
|
|
376 |
acc5 += x5 * c0;
|
|
377 |
acc6 += x6 * c0;
|
|
378 |
acc7 += x7 * c0;
|
|
379 |
|
|
380 |
/* Reuse the present sample states for next sample */
|
|
381 |
x0 = x1;
|
|
382 |
x1 = x2;
|
|
383 |
x2 = x3;
|
|
384 |
x3 = x4;
|
|
385 |
x4 = x5;
|
|
386 |
x5 = x6;
|
|
387 |
x6 = x7;
|
|
388 |
|
|
389 |
/* Decrement the loop counter */
|
|
390 |
tapCnt--;
|
|
391 |
}
|
|
392 |
|
|
393 |
/* Advance the state pointer by 8 to process the next group of 8 samples */
|
|
394 |
pState = pState + 8;
|
|
395 |
|
|
396 |
/* The results in the 8 accumulators, store in the destination buffer. */
|
|
397 |
*pDst++ = acc0;
|
|
398 |
*pDst++ = acc1;
|
|
399 |
*pDst++ = acc2;
|
|
400 |
*pDst++ = acc3;
|
|
401 |
*pDst++ = acc4;
|
|
402 |
*pDst++ = acc5;
|
|
403 |
*pDst++ = acc6;
|
|
404 |
*pDst++ = acc7;
|
|
405 |
|
|
406 |
blkCnt--;
|
|
407 |
}
|
|
408 |
|
|
409 |
/* If the blockSize is not a multiple of 8, compute any remaining output samples here.
|
|
410 |
** No loop unrolling is used. */
|
|
411 |
blkCnt = blockSize % 0x8u;
|
|
412 |
|
|
413 |
while(blkCnt > 0u)
|
|
414 |
{
|
|
415 |
/* Copy one sample at a time into state buffer */
|
|
416 |
*pStateCurnt++ = *pSrc++;
|
|
417 |
|
|
418 |
/* Set the accumulator to zero */
|
|
419 |
acc0 = 0.0f;
|
|
420 |
|
|
421 |
/* Initialize state pointer */
|
|
422 |
px = pState;
|
|
423 |
|
|
424 |
/* Initialize Coefficient pointer */
|
|
425 |
pb = (pCoeffs);
|
|
426 |
|
|
427 |
i = numTaps;
|
|
428 |
|
|
429 |
/* Perform the multiply-accumulates */
|
|
430 |
do
|
|
431 |
{
|
|
432 |
acc0 += *px++ * *pb++;
|
|
433 |
i--;
|
|
434 |
|
|
435 |
} while(i > 0u);
|
|
436 |
|
|
437 |
/* The result is store in the destination buffer. */
|
|
438 |
*pDst++ = acc0;
|
|
439 |
|
|
440 |
/* Advance state pointer by 1 for the next sample */
|
|
441 |
pState = pState + 1;
|
|
442 |
|
|
443 |
blkCnt--;
|
|
444 |
}
|
|
445 |
|
|
446 |
/* Processing is complete.
|
|
447 |
** Now copy the last numTaps - 1 samples to the start of the state buffer.
|
|
448 |
** This prepares the state buffer for the next function call. */
|
|
449 |
|
|
450 |
/* Points to the start of the state buffer */
|
|
451 |
pStateCurnt = S->pState;
|
|
452 |
|
|
453 |
tapCnt = (numTaps - 1u) >> 2u;
|
|
454 |
|
|
455 |
/* copy data */
|
|
456 |
while(tapCnt > 0u)
|
|
457 |
{
|
|
458 |
*pStateCurnt++ = *pState++;
|
|
459 |
*pStateCurnt++ = *pState++;
|
|
460 |
*pStateCurnt++ = *pState++;
|
|
461 |
*pStateCurnt++ = *pState++;
|
|
462 |
|
|
463 |
/* Decrement the loop counter */
|
|
464 |
tapCnt--;
|
|
465 |
}
|
|
466 |
|
|
467 |
/* Calculate remaining number of copies */
|
|
468 |
tapCnt = (numTaps - 1u) % 0x4u;
|
|
469 |
|
|
470 |
/* Copy the remaining q31_t data */
|
|
471 |
while(tapCnt > 0u)
|
|
472 |
{
|
|
473 |
*pStateCurnt++ = *pState++;
|
|
474 |
|
|
475 |
/* Decrement the loop counter */
|
|
476 |
tapCnt--;
|
|
477 |
}
|
|
478 |
}
|
|
479 |
|
|
480 |
#elif defined(ARM_MATH_CM0_FAMILY)
|
|
481 |
|
|
482 |
void arm_fir_f32(
|
|
483 |
const arm_fir_instance_f32 * S,
|
|
484 |
float32_t * pSrc,
|
|
485 |
float32_t * pDst,
|
|
486 |
uint32_t blockSize)
|
|
487 |
{
|
|
488 |
float32_t *pState = S->pState; /* State pointer */
|
|
489 |
float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
|
|
490 |
float32_t *pStateCurnt; /* Points to the current sample of the state */
|
|
491 |
float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
|
|
492 |
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
|
|
493 |
uint32_t i, tapCnt, blkCnt; /* Loop counters */
|
|
494 |
|
|
495 |
/* Run the below code for Cortex-M0 */
|
|
496 |
|
|
497 |
float32_t acc;
|
|
498 |
|
|
499 |
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
|
|
500 |
/* pStateCurnt points to the location where the new input data should be written */
|
|
501 |
pStateCurnt = &(S->pState[(numTaps - 1u)]);
|
|
502 |
|
|
503 |
/* Initialize blkCnt with blockSize */
|
|
504 |
blkCnt = blockSize;
|
|
505 |
|
|
506 |
while(blkCnt > 0u)
|
|
507 |
{
|
|
508 |
/* Copy one sample at a time into state buffer */
|
|
509 |
*pStateCurnt++ = *pSrc++;
|
|
510 |
|
|
511 |
/* Set the accumulator to zero */
|
|
512 |
acc = 0.0f;
|
|
513 |
|
|
514 |
/* Initialize state pointer */
|
|
515 |
px = pState;
|
|
516 |
|
|
517 |
/* Initialize Coefficient pointer */
|
|
518 |
pb = pCoeffs;
|
|
519 |
|
|
520 |
i = numTaps;
|
|
521 |
|
|
522 |
/* Perform the multiply-accumulates */
|
|
523 |
do
|
|
524 |
{
|
|
525 |
/* acc = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
|
|
526 |
acc += *px++ * *pb++;
|
|
527 |
i--;
|
|
528 |
|
|
529 |
} while(i > 0u);
|
|
530 |
|
|
531 |
/* The result is store in the destination buffer. */
|
|
532 |
*pDst++ = acc;
|
|
533 |
|
|
534 |
/* Advance state pointer by 1 for the next sample */
|
|
535 |
pState = pState + 1;
|
|
536 |
|
|
537 |
blkCnt--;
|
|
538 |
}
|
|
539 |
|
|
540 |
/* Processing is complete.
|
|
541 |
** Now copy the last numTaps - 1 samples to the starting of the state buffer.
|
|
542 |
** This prepares the state buffer for the next function call. */
|
|
543 |
|
|
544 |
/* Points to the start of the state buffer */
|
|
545 |
pStateCurnt = S->pState;
|
|
546 |
|
|
547 |
/* Copy numTaps number of values */
|
|
548 |
tapCnt = numTaps - 1u;
|
|
549 |
|
|
550 |
/* Copy data */
|
|
551 |
while(tapCnt > 0u)
|
|
552 |
{
|
|
553 |
*pStateCurnt++ = *pState++;
|
|
554 |
|
|
555 |
/* Decrement the loop counter */
|
|
556 |
tapCnt--;
|
|
557 |
}
|
|
558 |
|
|
559 |
}
|
|
560 |
|
|
561 |
#else
|
|
562 |
|
|
563 |
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
|
564 |
|
|
565 |
void arm_fir_f32(
|
|
566 |
const arm_fir_instance_f32 * S,
|
|
567 |
float32_t * pSrc,
|
|
568 |
float32_t * pDst,
|
|
569 |
uint32_t blockSize)
|
|
570 |
{
|
|
571 |
float32_t *pState = S->pState; /* State pointer */
|
|
572 |
float32_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
|
|
573 |
float32_t *pStateCurnt; /* Points to the current sample of the state */
|
|
574 |
float32_t *px, *pb; /* Temporary pointers for state and coefficient buffers */
|
|
575 |
float32_t acc0, acc1, acc2, acc3, acc4, acc5, acc6, acc7; /* Accumulators */
|
|
576 |
float32_t x0, x1, x2, x3, x4, x5, x6, x7, c0; /* Temporary variables to hold state and coefficient values */
|
|
577 |
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
|
|
578 |
uint32_t i, tapCnt, blkCnt; /* Loop counters */
|
|
579 |
float32_t p0,p1,p2,p3,p4,p5,p6,p7; /* Temporary product values */
|
|
580 |
|
|
581 |
/* S->pState points to state array which contains previous frame (numTaps - 1) samples */
|
|
582 |
/* pStateCurnt points to the location where the new input data should be written */
|
|
583 |
pStateCurnt = &(S->pState[(numTaps - 1u)]);
|
|
584 |
|
|
585 |
/* Apply loop unrolling and compute 8 output values simultaneously.
|
|
586 |
* The variables acc0 ... acc7 hold output values that are being computed:
|
|
587 |
*
|
|
588 |
* acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
|
|
589 |
* acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
|
|
590 |
* acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
|
|
591 |
* acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
|
|
592 |
*/
|
|
593 |
blkCnt = blockSize >> 3;
|
|
594 |
|
|
595 |
/* First part of the processing with loop unrolling. Compute 8 outputs at a time.
|
|
596 |
** a second loop below computes the remaining 1 to 7 samples. */
|
|
597 |
while(blkCnt > 0u)
|
|
598 |
{
|
|
599 |
/* Copy four new input samples into the state buffer */
|
|
600 |
*pStateCurnt++ = *pSrc++;
|
|
601 |
*pStateCurnt++ = *pSrc++;
|
|
602 |
*pStateCurnt++ = *pSrc++;
|
|
603 |
*pStateCurnt++ = *pSrc++;
|
|
604 |
|
|
605 |
/* Set all accumulators to zero */
|
|
606 |
acc0 = 0.0f;
|
|
607 |
acc1 = 0.0f;
|
|
608 |
acc2 = 0.0f;
|
|
609 |
acc3 = 0.0f;
|
|
610 |
acc4 = 0.0f;
|
|
611 |
acc5 = 0.0f;
|
|
612 |
acc6 = 0.0f;
|
|
613 |
acc7 = 0.0f;
|
|
614 |
|
|
615 |
/* Initialize state pointer */
|
|
616 |
px = pState;
|
|
617 |
|
|
618 |
/* Initialize coeff pointer */
|
|
619 |
pb = (pCoeffs);
|
|
620 |
|
|
621 |
/* This is separated from the others to avoid
|
|
622 |
* a call to __aeabi_memmove which would be slower
|
|
623 |
*/
|
|
624 |
*pStateCurnt++ = *pSrc++;
|
|
625 |
*pStateCurnt++ = *pSrc++;
|
|
626 |
*pStateCurnt++ = *pSrc++;
|
|
627 |
*pStateCurnt++ = *pSrc++;
|
|
628 |
|
|
629 |
/* Read the first seven samples from the state buffer: x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
|
|
630 |
x0 = *px++;
|
|
631 |
x1 = *px++;
|
|
632 |
x2 = *px++;
|
|
633 |
x3 = *px++;
|
|
634 |
x4 = *px++;
|
|
635 |
x5 = *px++;
|
|
636 |
x6 = *px++;
|
|
637 |
|
|
638 |
/* Loop unrolling. Process 8 taps at a time. */
|
|
639 |
tapCnt = numTaps >> 3u;
|
|
640 |
|
|
641 |
/* Loop over the number of taps. Unroll by a factor of 8.
|
|
642 |
** Repeat until we've computed numTaps-8 coefficients. */
|
|
643 |
while(tapCnt > 0u)
|
|
644 |
{
|
|
645 |
/* Read the b[numTaps-1] coefficient */
|
|
646 |
c0 = *(pb++);
|
|
647 |
|
|
648 |
/* Read x[n-numTaps-3] sample */
|
|
649 |
x7 = *(px++);
|
|
650 |
|
|
651 |
/* acc0 += b[numTaps-1] * x[n-numTaps] */
|
|
652 |
p0 = x0 * c0;
|
|
653 |
|
|
654 |
/* acc1 += b[numTaps-1] * x[n-numTaps-1] */
|
|
655 |
p1 = x1 * c0;
|
|
656 |
|
|
657 |
/* acc2 += b[numTaps-1] * x[n-numTaps-2] */
|
|
658 |
p2 = x2 * c0;
|
|
659 |
|
|
660 |
/* acc3 += b[numTaps-1] * x[n-numTaps-3] */
|
|
661 |
p3 = x3 * c0;
|
|
662 |
|
|
663 |
/* acc4 += b[numTaps-1] * x[n-numTaps-4] */
|
|
664 |
p4 = x4 * c0;
|
|
665 |
|
|
666 |
/* acc1 += b[numTaps-1] * x[n-numTaps-5] */
|
|
667 |
p5 = x5 * c0;
|
|
668 |
|
|
669 |
/* acc2 += b[numTaps-1] * x[n-numTaps-6] */
|
|
670 |
p6 = x6 * c0;
|
|
671 |
|
|
672 |
/* acc3 += b[numTaps-1] * x[n-numTaps-7] */
|
|
673 |
p7 = x7 * c0;
|
|
674 |
|
|
675 |
/* Read the b[numTaps-2] coefficient */
|
|
676 |
c0 = *(pb++);
|
|
677 |
|
|
678 |
/* Read x[n-numTaps-4] sample */
|
|
679 |
x0 = *(px++);
|
|
680 |
|
|
681 |
acc0 += p0;
|
|
682 |
acc1 += p1;
|
|
683 |
acc2 += p2;
|
|
684 |
acc3 += p3;
|
|
685 |
acc4 += p4;
|
|
686 |
acc5 += p5;
|
|
687 |
acc6 += p6;
|
|
688 |
acc7 += p7;
|
|
689 |
|
|
690 |
|
|
691 |
/* Perform the multiply-accumulate */
|
|
692 |
p0 = x1 * c0;
|
|
693 |
p1 = x2 * c0;
|
|
694 |
p2 = x3 * c0;
|
|
695 |
p3 = x4 * c0;
|
|
696 |
p4 = x5 * c0;
|
|
697 |
p5 = x6 * c0;
|
|
698 |
p6 = x7 * c0;
|
|
699 |
p7 = x0 * c0;
|
|
700 |
|
|
701 |
/* Read the b[numTaps-3] coefficient */
|
|
702 |
c0 = *(pb++);
|
|
703 |
|
|
704 |
/* Read x[n-numTaps-5] sample */
|
|
705 |
x1 = *(px++);
|
|
706 |
|
|
707 |
acc0 += p0;
|
|
708 |
acc1 += p1;
|
|
709 |
acc2 += p2;
|
|
710 |
acc3 += p3;
|
|
711 |
acc4 += p4;
|
|
712 |
acc5 += p5;
|
|
713 |
acc6 += p6;
|
|
714 |
acc7 += p7;
|
|
715 |
|
|
716 |
/* Perform the multiply-accumulates */
|
|
717 |
p0 = x2 * c0;
|
|
718 |
p1 = x3 * c0;
|
|
719 |
p2 = x4 * c0;
|
|
720 |
p3 = x5 * c0;
|
|
721 |
p4 = x6 * c0;
|
|
722 |
p5 = x7 * c0;
|
|
723 |
p6 = x0 * c0;
|
|
724 |
p7 = x1 * c0;
|
|
725 |
|
|
726 |
/* Read the b[numTaps-4] coefficient */
|
|
727 |
c0 = *(pb++);
|
|
728 |
|
|
729 |
/* Read x[n-numTaps-6] sample */
|
|
730 |
x2 = *(px++);
|
|
731 |
|
|
732 |
acc0 += p0;
|
|
733 |
acc1 += p1;
|
|
734 |
acc2 += p2;
|
|
735 |
acc3 += p3;
|
|
736 |
acc4 += p4;
|
|
737 |
acc5 += p5;
|
|
738 |
acc6 += p6;
|
|
739 |
acc7 += p7;
|
|
740 |
|
|
741 |
/* Perform the multiply-accumulates */
|
|
742 |
p0 = x3 * c0;
|
|
743 |
p1 = x4 * c0;
|
|
744 |
p2 = x5 * c0;
|
|
745 |
p3 = x6 * c0;
|
|
746 |
p4 = x7 * c0;
|
|
747 |
p5 = x0 * c0;
|
|
748 |
p6 = x1 * c0;
|
|
749 |
p7 = x2 * c0;
|
|
750 |
|
|
751 |
/* Read the b[numTaps-4] coefficient */
|
|
752 |
c0 = *(pb++);
|
|
753 |
|
|
754 |
/* Read x[n-numTaps-6] sample */
|
|
755 |
x3 = *(px++);
|
|
756 |
|
|
757 |
acc0 += p0;
|
|
758 |
acc1 += p1;
|
|
759 |
acc2 += p2;
|
|
760 |
acc3 += p3;
|
|
761 |
acc4 += p4;
|
|
762 |
acc5 += p5;
|
|
763 |
acc6 += p6;
|
|
764 |
acc7 += p7;
|
|
765 |
|
|
766 |
/* Perform the multiply-accumulates */
|
|
767 |
p0 = x4 * c0;
|
|
768 |
p1 = x5 * c0;
|
|
769 |
p2 = x6 * c0;
|
|
770 |
p3 = x7 * c0;
|
|
771 |
p4 = x0 * c0;
|
|
772 |
p5 = x1 * c0;
|
|
773 |
p6 = x2 * c0;
|
|
774 |
p7 = x3 * c0;
|
|
775 |
|
|
776 |
/* Read the b[numTaps-4] coefficient */
|
|
777 |
c0 = *(pb++);
|
|
778 |
|
|
779 |
/* Read x[n-numTaps-6] sample */
|
|
780 |
x4 = *(px++);
|
|
781 |
|
|
782 |
acc0 += p0;
|
|
783 |
acc1 += p1;
|
|
784 |
acc2 += p2;
|
|
785 |
acc3 += p3;
|
|
786 |
acc4 += p4;
|
|
787 |
acc5 += p5;
|
|
788 |
acc6 += p6;
|
|
789 |
acc7 += p7;
|
|
790 |
|
|
791 |
/* Perform the multiply-accumulates */
|
|
792 |
p0 = x5 * c0;
|
|
793 |
p1 = x6 * c0;
|
|
794 |
p2 = x7 * c0;
|
|
795 |
p3 = x0 * c0;
|
|
796 |
p4 = x1 * c0;
|
|
797 |
p5 = x2 * c0;
|
|
798 |
p6 = x3 * c0;
|
|
799 |
p7 = x4 * c0;
|
|
800 |
|
|
801 |
/* Read the b[numTaps-4] coefficient */
|
|
802 |
c0 = *(pb++);
|
|
803 |
|
|
804 |
/* Read x[n-numTaps-6] sample */
|
|
805 |
x5 = *(px++);
|
|
806 |
|
|
807 |
acc0 += p0;
|
|
808 |
acc1 += p1;
|
|
809 |
acc2 += p2;
|
|
810 |
acc3 += p3;
|
|
811 |
acc4 += p4;
|
|
812 |
acc5 += p5;
|
|
813 |
acc6 += p6;
|
|
814 |
acc7 += p7;
|
|
815 |
|
|
816 |
/* Perform the multiply-accumulates */
|
|
817 |
p0 = x6 * c0;
|
|
818 |
p1 = x7 * c0;
|
|
819 |
p2 = x0 * c0;
|
|
820 |
p3 = x1 * c0;
|
|
821 |
p4 = x2 * c0;
|
|
822 |
p5 = x3 * c0;
|
|
823 |
p6 = x4 * c0;
|
|
824 |
p7 = x5 * c0;
|
|
825 |
|
|
826 |
/* Read the b[numTaps-4] coefficient */
|
|
827 |
c0 = *(pb++);
|
|
828 |
|
|
829 |
/* Read x[n-numTaps-6] sample */
|
|
830 |
x6 = *(px++);
|
|
831 |
|
|
832 |
acc0 += p0;
|
|
833 |
acc1 += p1;
|
|
834 |
acc2 += p2;
|
|
835 |
acc3 += p3;
|
|
836 |
acc4 += p4;
|
|
837 |
acc5 += p5;
|
|
838 |
acc6 += p6;
|
|
839 |
acc7 += p7;
|
|
840 |
|
|
841 |
/* Perform the multiply-accumulates */
|
|
842 |
p0 = x7 * c0;
|
|
843 |
p1 = x0 * c0;
|
|
844 |
p2 = x1 * c0;
|
|
845 |
p3 = x2 * c0;
|
|
846 |
p4 = x3 * c0;
|
|
847 |
p5 = x4 * c0;
|
|
848 |
p6 = x5 * c0;
|
|
849 |
p7 = x6 * c0;
|
|
850 |
|
|
851 |
tapCnt--;
|
|
852 |
|
|
853 |
acc0 += p0;
|
|
854 |
acc1 += p1;
|
|
855 |
acc2 += p2;
|
|
856 |
acc3 += p3;
|
|
857 |
acc4 += p4;
|
|
858 |
acc5 += p5;
|
|
859 |
acc6 += p6;
|
|
860 |
acc7 += p7;
|
|
861 |
}
|
|
862 |
|
|
863 |
/* If the filter length is not a multiple of 8, compute the remaining filter taps */
|
|
864 |
tapCnt = numTaps % 0x8u;
|
|
865 |
|
|
866 |
while(tapCnt > 0u)
|
|
867 |
{
|
|
868 |
/* Read coefficients */
|
|
869 |
c0 = *(pb++);
|
|
870 |
|
|
871 |
/* Fetch 1 state variable */
|
|
872 |
x7 = *(px++);
|
|
873 |
|
|
874 |
/* Perform the multiply-accumulates */
|
|
875 |
p0 = x0 * c0;
|
|
876 |
p1 = x1 * c0;
|
|
877 |
p2 = x2 * c0;
|
|
878 |
p3 = x3 * c0;
|
|
879 |
p4 = x4 * c0;
|
|
880 |
p5 = x5 * c0;
|
|
881 |
p6 = x6 * c0;
|
|
882 |
p7 = x7 * c0;
|
|
883 |
|
|
884 |
/* Reuse the present sample states for next sample */
|
|
885 |
x0 = x1;
|
|
886 |
x1 = x2;
|
|
887 |
x2 = x3;
|
|
888 |
x3 = x4;
|
|
889 |
x4 = x5;
|
|
890 |
x5 = x6;
|
|
891 |
x6 = x7;
|
|
892 |
|
|
893 |
acc0 += p0;
|
|
894 |
acc1 += p1;
|
|
895 |
acc2 += p2;
|
|
896 |
acc3 += p3;
|
|
897 |
acc4 += p4;
|
|
898 |
acc5 += p5;
|
|
899 |
acc6 += p6;
|
|
900 |
acc7 += p7;
|
|
901 |
|
|
902 |
/* Decrement the loop counter */
|
|
903 |
tapCnt--;
|
|
904 |
}
|
|
905 |
|
|
906 |
/* Advance the state pointer by 8 to process the next group of 8 samples */
|
|
907 |
pState = pState + 8;
|
|
908 |
|
|
909 |
/* The results in the 8 accumulators, store in the destination buffer. */
|
|
910 |
*pDst++ = acc0;
|
|
911 |
*pDst++ = acc1;
|
|
912 |
*pDst++ = acc2;
|
|
913 |
*pDst++ = acc3;
|
|
914 |
*pDst++ = acc4;
|
|
915 |
*pDst++ = acc5;
|
|
916 |
*pDst++ = acc6;
|
|
917 |
*pDst++ = acc7;
|
|
918 |
|
|
919 |
blkCnt--;
|
|
920 |
}
|
|
921 |
|
|
922 |
/* If the blockSize is not a multiple of 8, compute any remaining output samples here.
|
|
923 |
** No loop unrolling is used. */
|
|
924 |
blkCnt = blockSize % 0x8u;
|
|
925 |
|
|
926 |
while(blkCnt > 0u)
|
|
927 |
{
|
|
928 |
/* Copy one sample at a time into state buffer */
|
|
929 |
*pStateCurnt++ = *pSrc++;
|
|
930 |
|
|
931 |
/* Set the accumulator to zero */
|
|
932 |
acc0 = 0.0f;
|
|
933 |
|
|
934 |
/* Initialize state pointer */
|
|
935 |
px = pState;
|
|
936 |
|
|
937 |
/* Initialize Coefficient pointer */
|
|
938 |
pb = (pCoeffs);
|
|
939 |
|
|
940 |
i = numTaps;
|
|
941 |
|
|
942 |
/* Perform the multiply-accumulates */
|
|
943 |
do
|
|
944 |
{
|
|
945 |
acc0 += *px++ * *pb++;
|
|
946 |
i--;
|
|
947 |
|
|
948 |
} while(i > 0u);
|
|
949 |
|
|
950 |
/* The result is store in the destination buffer. */
|
|
951 |
*pDst++ = acc0;
|
|
952 |
|
|
953 |
/* Advance state pointer by 1 for the next sample */
|
|
954 |
pState = pState + 1;
|
|
955 |
|
|
956 |
blkCnt--;
|
|
957 |
}
|
|
958 |
|
|
959 |
/* Processing is complete.
|
|
960 |
** Now copy the last numTaps - 1 samples to the start of the state buffer.
|
|
961 |
** This prepares the state buffer for the next function call. */
|
|
962 |
|
|
963 |
/* Points to the start of the state buffer */
|
|
964 |
pStateCurnt = S->pState;
|
|
965 |
|
|
966 |
tapCnt = (numTaps - 1u) >> 2u;
|
|
967 |
|
|
968 |
/* copy data */
|
|
969 |
while(tapCnt > 0u)
|
|
970 |
{
|
|
971 |
*pStateCurnt++ = *pState++;
|
|
972 |
*pStateCurnt++ = *pState++;
|
|
973 |
*pStateCurnt++ = *pState++;
|
|
974 |
*pStateCurnt++ = *pState++;
|
|
975 |
|
|
976 |
/* Decrement the loop counter */
|
|
977 |
tapCnt--;
|
|
978 |
}
|
|
979 |
|
|
980 |
/* Calculate remaining number of copies */
|
|
981 |
tapCnt = (numTaps - 1u) % 0x4u;
|
|
982 |
|
|
983 |
/* Copy the remaining q31_t data */
|
|
984 |
while(tapCnt > 0u)
|
|
985 |
{
|
|
986 |
*pStateCurnt++ = *pState++;
|
|
987 |
|
|
988 |
/* Decrement the loop counter */
|
|
989 |
tapCnt--;
|
|
990 |
}
|
|
991 |
}
|
|
992 |
|
|
993 |
#endif
|
|
994 |
|
|
995 |
/**
|
|
996 |
* @} end of FIR group
|
|
997 |
*/
|