提交 | 用户 | age
|
bfc108
|
1 |
/* ----------------------------------------------------------------------
|
Q |
2 |
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
|
3 |
*
|
|
4 |
* $Date: 19. March 2015
|
|
5 |
* $Revision: V.1.4.5
|
|
6 |
*
|
|
7 |
* Project: CMSIS DSP Library
|
|
8 |
* Title: arm_rfft_f32.c
|
|
9 |
*
|
|
10 |
* Description: RFFT & RIFFT Floating point process function
|
|
11 |
*
|
|
12 |
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
|
13 |
*
|
|
14 |
* Redistribution and use in source and binary forms, with or without
|
|
15 |
* modification, are permitted provided that the following conditions
|
|
16 |
* are met:
|
|
17 |
* - Redistributions of source code must retain the above copyright
|
|
18 |
* notice, this list of conditions and the following disclaimer.
|
|
19 |
* - Redistributions in binary form must reproduce the above copyright
|
|
20 |
* notice, this list of conditions and the following disclaimer in
|
|
21 |
* the documentation and/or other materials provided with the
|
|
22 |
* distribution.
|
|
23 |
* - Neither the name of ARM LIMITED nor the names of its contributors
|
|
24 |
* may be used to endorse or promote products derived from this
|
|
25 |
* software without specific prior written permission.
|
|
26 |
*
|
|
27 |
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
28 |
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
29 |
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
30 |
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
31 |
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
32 |
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
33 |
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
34 |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
35 |
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
36 |
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
37 |
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
38 |
* POSSIBILITY OF SUCH DAMAGE.
|
|
39 |
* -------------------------------------------------------------------- */
|
|
40 |
|
|
41 |
#include "arm_math.h"
|
|
42 |
|
|
43 |
extern void arm_radix4_butterfly_f32(
|
|
44 |
float32_t * pSrc,
|
|
45 |
uint16_t fftLen,
|
|
46 |
float32_t * pCoef,
|
|
47 |
uint16_t twidCoefModifier);
|
|
48 |
|
|
49 |
extern void arm_radix4_butterfly_inverse_f32(
|
|
50 |
float32_t * pSrc,
|
|
51 |
uint16_t fftLen,
|
|
52 |
float32_t * pCoef,
|
|
53 |
uint16_t twidCoefModifier,
|
|
54 |
float32_t onebyfftLen);
|
|
55 |
|
|
56 |
extern void arm_bitreversal_f32(
|
|
57 |
float32_t * pSrc,
|
|
58 |
uint16_t fftSize,
|
|
59 |
uint16_t bitRevFactor,
|
|
60 |
uint16_t * pBitRevTab);
|
|
61 |
|
|
62 |
/**
|
|
63 |
* @ingroup groupTransforms
|
|
64 |
*/
|
|
65 |
|
|
66 |
/*--------------------------------------------------------------------
|
|
67 |
* Internal functions prototypes
|
|
68 |
*--------------------------------------------------------------------*/
|
|
69 |
|
|
70 |
void arm_split_rfft_f32(
|
|
71 |
float32_t * pSrc,
|
|
72 |
uint32_t fftLen,
|
|
73 |
float32_t * pATable,
|
|
74 |
float32_t * pBTable,
|
|
75 |
float32_t * pDst,
|
|
76 |
uint32_t modifier);
|
|
77 |
void arm_split_rifft_f32(
|
|
78 |
float32_t * pSrc,
|
|
79 |
uint32_t fftLen,
|
|
80 |
float32_t * pATable,
|
|
81 |
float32_t * pBTable,
|
|
82 |
float32_t * pDst,
|
|
83 |
uint32_t modifier);
|
|
84 |
|
|
85 |
/**
|
|
86 |
* @addtogroup RealFFT
|
|
87 |
* @{
|
|
88 |
*/
|
|
89 |
|
|
90 |
/**
|
|
91 |
* @brief Processing function for the floating-point RFFT/RIFFT.
|
|
92 |
* @deprecated Do not use this function. It has been superceded by \ref arm_rfft_fast_f32 and will be removed
|
|
93 |
* in the future.
|
|
94 |
* @param[in] *S points to an instance of the floating-point RFFT/RIFFT structure.
|
|
95 |
* @param[in] *pSrc points to the input buffer.
|
|
96 |
* @param[out] *pDst points to the output buffer.
|
|
97 |
* @return none.
|
|
98 |
*/
|
|
99 |
|
|
100 |
void arm_rfft_f32(
|
|
101 |
const arm_rfft_instance_f32 * S,
|
|
102 |
float32_t * pSrc,
|
|
103 |
float32_t * pDst)
|
|
104 |
{
|
|
105 |
const arm_cfft_radix4_instance_f32 *S_CFFT = S->pCfft;
|
|
106 |
|
|
107 |
|
|
108 |
/* Calculation of Real IFFT of input */
|
|
109 |
if(S->ifftFlagR == 1u)
|
|
110 |
{
|
|
111 |
/* Real IFFT core process */
|
|
112 |
arm_split_rifft_f32(pSrc, S->fftLenBy2, S->pTwiddleAReal,
|
|
113 |
S->pTwiddleBReal, pDst, S->twidCoefRModifier);
|
|
114 |
|
|
115 |
|
|
116 |
/* Complex radix-4 IFFT process */
|
|
117 |
arm_radix4_butterfly_inverse_f32(pDst, S_CFFT->fftLen,
|
|
118 |
S_CFFT->pTwiddle,
|
|
119 |
S_CFFT->twidCoefModifier,
|
|
120 |
S_CFFT->onebyfftLen);
|
|
121 |
|
|
122 |
/* Bit reversal process */
|
|
123 |
if(S->bitReverseFlagR == 1u)
|
|
124 |
{
|
|
125 |
arm_bitreversal_f32(pDst, S_CFFT->fftLen,
|
|
126 |
S_CFFT->bitRevFactor, S_CFFT->pBitRevTable);
|
|
127 |
}
|
|
128 |
}
|
|
129 |
else
|
|
130 |
{
|
|
131 |
|
|
132 |
/* Calculation of RFFT of input */
|
|
133 |
|
|
134 |
/* Complex radix-4 FFT process */
|
|
135 |
arm_radix4_butterfly_f32(pSrc, S_CFFT->fftLen,
|
|
136 |
S_CFFT->pTwiddle, S_CFFT->twidCoefModifier);
|
|
137 |
|
|
138 |
/* Bit reversal process */
|
|
139 |
if(S->bitReverseFlagR == 1u)
|
|
140 |
{
|
|
141 |
arm_bitreversal_f32(pSrc, S_CFFT->fftLen,
|
|
142 |
S_CFFT->bitRevFactor, S_CFFT->pBitRevTable);
|
|
143 |
}
|
|
144 |
|
|
145 |
|
|
146 |
/* Real FFT core process */
|
|
147 |
arm_split_rfft_f32(pSrc, S->fftLenBy2, S->pTwiddleAReal,
|
|
148 |
S->pTwiddleBReal, pDst, S->twidCoefRModifier);
|
|
149 |
}
|
|
150 |
|
|
151 |
}
|
|
152 |
|
|
153 |
/**
|
|
154 |
* @} end of RealFFT group
|
|
155 |
*/
|
|
156 |
|
|
157 |
/**
|
|
158 |
* @brief Core Real FFT process
|
|
159 |
* @param[in] *pSrc points to the input buffer.
|
|
160 |
* @param[in] fftLen length of FFT.
|
|
161 |
* @param[in] *pATable points to the twiddle Coef A buffer.
|
|
162 |
* @param[in] *pBTable points to the twiddle Coef B buffer.
|
|
163 |
* @param[out] *pDst points to the output buffer.
|
|
164 |
* @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
|
|
165 |
* @return none.
|
|
166 |
*/
|
|
167 |
|
|
168 |
void arm_split_rfft_f32(
|
|
169 |
float32_t * pSrc,
|
|
170 |
uint32_t fftLen,
|
|
171 |
float32_t * pATable,
|
|
172 |
float32_t * pBTable,
|
|
173 |
float32_t * pDst,
|
|
174 |
uint32_t modifier)
|
|
175 |
{
|
|
176 |
uint32_t i; /* Loop Counter */
|
|
177 |
float32_t outR, outI; /* Temporary variables for output */
|
|
178 |
float32_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
|
|
179 |
float32_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */
|
|
180 |
float32_t *pDst1 = &pDst[2], *pDst2 = &pDst[(4u * fftLen) - 1u]; /* temp pointers for output buffer */
|
|
181 |
float32_t *pSrc1 = &pSrc[2], *pSrc2 = &pSrc[(2u * fftLen) - 1u]; /* temp pointers for input buffer */
|
|
182 |
|
|
183 |
/* Init coefficient pointers */
|
|
184 |
pCoefA = &pATable[modifier * 2u];
|
|
185 |
pCoefB = &pBTable[modifier * 2u];
|
|
186 |
|
|
187 |
i = fftLen - 1u;
|
|
188 |
|
|
189 |
while(i > 0u)
|
|
190 |
{
|
|
191 |
/*
|
|
192 |
outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
|
|
193 |
+ pSrc[2 * n - 2 * i] * pBTable[2 * i] +
|
|
194 |
pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
|
|
195 |
*/
|
|
196 |
|
|
197 |
/* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
|
|
198 |
pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
|
|
199 |
pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */
|
|
200 |
|
|
201 |
/* read pATable[2 * i] */
|
|
202 |
CoefA1 = *pCoefA++;
|
|
203 |
/* pATable[2 * i + 1] */
|
|
204 |
CoefA2 = *pCoefA;
|
|
205 |
|
|
206 |
/* pSrc[2 * i] * pATable[2 * i] */
|
|
207 |
outR = *pSrc1 * CoefA1;
|
|
208 |
/* pSrc[2 * i] * CoefA2 */
|
|
209 |
outI = *pSrc1++ * CoefA2;
|
|
210 |
|
|
211 |
/* (pSrc[2 * i + 1] + pSrc[2 * fftLen - 2 * i + 1]) * CoefA2 */
|
|
212 |
outR -= (*pSrc1 + *pSrc2) * CoefA2;
|
|
213 |
/* pSrc[2 * i + 1] * CoefA1 */
|
|
214 |
outI += *pSrc1++ * CoefA1;
|
|
215 |
|
|
216 |
CoefB1 = *pCoefB;
|
|
217 |
|
|
218 |
/* pSrc[2 * fftLen - 2 * i + 1] * CoefB1 */
|
|
219 |
outI -= *pSrc2-- * CoefB1;
|
|
220 |
/* pSrc[2 * fftLen - 2 * i] * CoefA2 */
|
|
221 |
outI -= *pSrc2 * CoefA2;
|
|
222 |
|
|
223 |
/* pSrc[2 * fftLen - 2 * i] * CoefB1 */
|
|
224 |
outR += *pSrc2-- * CoefB1;
|
|
225 |
|
|
226 |
/* write output */
|
|
227 |
*pDst1++ = outR;
|
|
228 |
*pDst1++ = outI;
|
|
229 |
|
|
230 |
/* write complex conjugate output */
|
|
231 |
*pDst2-- = -outI;
|
|
232 |
*pDst2-- = outR;
|
|
233 |
|
|
234 |
/* update coefficient pointer */
|
|
235 |
pCoefB = pCoefB + (modifier * 2u);
|
|
236 |
pCoefA = pCoefA + ((modifier * 2u) - 1u);
|
|
237 |
|
|
238 |
i--;
|
|
239 |
|
|
240 |
}
|
|
241 |
|
|
242 |
pDst[2u * fftLen] = pSrc[0] - pSrc[1];
|
|
243 |
pDst[(2u * fftLen) + 1u] = 0.0f;
|
|
244 |
|
|
245 |
pDst[0] = pSrc[0] + pSrc[1];
|
|
246 |
pDst[1] = 0.0f;
|
|
247 |
|
|
248 |
}
|
|
249 |
|
|
250 |
|
|
251 |
/**
|
|
252 |
* @brief Core Real IFFT process
|
|
253 |
* @param[in] *pSrc points to the input buffer.
|
|
254 |
* @param[in] fftLen length of FFT.
|
|
255 |
* @param[in] *pATable points to the twiddle Coef A buffer.
|
|
256 |
* @param[in] *pBTable points to the twiddle Coef B buffer.
|
|
257 |
* @param[out] *pDst points to the output buffer.
|
|
258 |
* @param[in] modifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
|
|
259 |
* @return none.
|
|
260 |
*/
|
|
261 |
|
|
262 |
void arm_split_rifft_f32(
|
|
263 |
float32_t * pSrc,
|
|
264 |
uint32_t fftLen,
|
|
265 |
float32_t * pATable,
|
|
266 |
float32_t * pBTable,
|
|
267 |
float32_t * pDst,
|
|
268 |
uint32_t modifier)
|
|
269 |
{
|
|
270 |
float32_t outR, outI; /* Temporary variables for output */
|
|
271 |
float32_t *pCoefA, *pCoefB; /* Temporary pointers for twiddle factors */
|
|
272 |
float32_t CoefA1, CoefA2, CoefB1; /* Temporary variables for twiddle coefficients */
|
|
273 |
float32_t *pSrc1 = &pSrc[0], *pSrc2 = &pSrc[(2u * fftLen) + 1u];
|
|
274 |
|
|
275 |
pCoefA = &pATable[0];
|
|
276 |
pCoefB = &pBTable[0];
|
|
277 |
|
|
278 |
while(fftLen > 0u)
|
|
279 |
{
|
|
280 |
/*
|
|
281 |
outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
|
|
282 |
pIn[2 * n - 2 * i] * pBTable[2 * i] -
|
|
283 |
pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
|
|
284 |
|
|
285 |
outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
|
|
286 |
pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
|
|
287 |
pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
|
|
288 |
|
|
289 |
*/
|
|
290 |
|
|
291 |
CoefA1 = *pCoefA++;
|
|
292 |
CoefA2 = *pCoefA;
|
|
293 |
|
|
294 |
/* outR = (pSrc[2 * i] * CoefA1 */
|
|
295 |
outR = *pSrc1 * CoefA1;
|
|
296 |
|
|
297 |
/* - pSrc[2 * i] * CoefA2 */
|
|
298 |
outI = -(*pSrc1++) * CoefA2;
|
|
299 |
|
|
300 |
/* (pSrc[2 * i + 1] + pSrc[2 * fftLen - 2 * i + 1]) * CoefA2 */
|
|
301 |
outR += (*pSrc1 + *pSrc2) * CoefA2;
|
|
302 |
|
|
303 |
/* pSrc[2 * i + 1] * CoefA1 */
|
|
304 |
outI += (*pSrc1++) * CoefA1;
|
|
305 |
|
|
306 |
CoefB1 = *pCoefB;
|
|
307 |
|
|
308 |
/* - pSrc[2 * fftLen - 2 * i + 1] * CoefB1 */
|
|
309 |
outI -= *pSrc2-- * CoefB1;
|
|
310 |
|
|
311 |
/* pSrc[2 * fftLen - 2 * i] * CoefB1 */
|
|
312 |
outR += *pSrc2 * CoefB1;
|
|
313 |
|
|
314 |
/* pSrc[2 * fftLen - 2 * i] * CoefA2 */
|
|
315 |
outI += *pSrc2-- * CoefA2;
|
|
316 |
|
|
317 |
/* write output */
|
|
318 |
*pDst++ = outR;
|
|
319 |
*pDst++ = outI;
|
|
320 |
|
|
321 |
/* update coefficient pointer */
|
|
322 |
pCoefB = pCoefB + (modifier * 2u);
|
|
323 |
pCoefA = pCoefA + ((modifier * 2u) - 1u);
|
|
324 |
|
|
325 |
/* Decrement loop count */
|
|
326 |
fftLen--;
|
|
327 |
}
|
|
328 |
|
|
329 |
}
|