提交 | 用户 | age
|
bfc108
|
1 |
/**************************************************************************//**
|
Q |
2 |
* @file cmsis_gcc.h
|
|
3 |
* @brief CMSIS Cortex-M Core Function/Instruction Header File
|
|
4 |
* @version V4.30
|
|
5 |
* @date 20. October 2015
|
|
6 |
******************************************************************************/
|
|
7 |
/* Copyright (c) 2009 - 2015 ARM LIMITED
|
|
8 |
|
|
9 |
All rights reserved.
|
|
10 |
Redistribution and use in source and binary forms, with or without
|
|
11 |
modification, are permitted provided that the following conditions are met:
|
|
12 |
- Redistributions of source code must retain the above copyright
|
|
13 |
notice, this list of conditions and the following disclaimer.
|
|
14 |
- Redistributions in binary form must reproduce the above copyright
|
|
15 |
notice, this list of conditions and the following disclaimer in the
|
|
16 |
documentation and/or other materials provided with the distribution.
|
|
17 |
- Neither the name of ARM nor the names of its contributors may be used
|
|
18 |
to endorse or promote products derived from this software without
|
|
19 |
specific prior written permission.
|
|
20 |
*
|
|
21 |
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
22 |
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
23 |
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
24 |
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
|
|
25 |
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
26 |
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
27 |
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
28 |
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
29 |
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
30 |
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
31 |
POSSIBILITY OF SUCH DAMAGE.
|
|
32 |
---------------------------------------------------------------------------*/
|
|
33 |
|
|
34 |
|
|
35 |
#ifndef __CMSIS_GCC_H
|
|
36 |
#define __CMSIS_GCC_H
|
|
37 |
|
|
38 |
/* ignore some GCC warnings */
|
|
39 |
#if defined ( __GNUC__ )
|
|
40 |
#pragma GCC diagnostic push
|
|
41 |
#pragma GCC diagnostic ignored "-Wsign-conversion"
|
|
42 |
#pragma GCC diagnostic ignored "-Wconversion"
|
|
43 |
#pragma GCC diagnostic ignored "-Wunused-parameter"
|
|
44 |
#endif
|
|
45 |
|
|
46 |
|
|
47 |
/* ########################### Core Function Access ########################### */
|
|
48 |
/** \ingroup CMSIS_Core_FunctionInterface
|
|
49 |
\defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
|
|
50 |
@{
|
|
51 |
*/
|
|
52 |
|
|
53 |
/**
|
|
54 |
\brief Enable IRQ Interrupts
|
|
55 |
\details Enables IRQ interrupts by clearing the I-bit in the CPSR.
|
|
56 |
Can only be executed in Privileged modes.
|
|
57 |
*/
|
|
58 |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_irq(void)
|
|
59 |
{
|
|
60 |
__ASM volatile ("cpsie i" : : : "memory");
|
|
61 |
}
|
|
62 |
|
|
63 |
|
|
64 |
/**
|
|
65 |
\brief Disable IRQ Interrupts
|
|
66 |
\details Disables IRQ interrupts by setting the I-bit in the CPSR.
|
|
67 |
Can only be executed in Privileged modes.
|
|
68 |
*/
|
|
69 |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_irq(void)
|
|
70 |
{
|
|
71 |
__ASM volatile ("cpsid i" : : : "memory");
|
|
72 |
}
|
|
73 |
|
|
74 |
|
|
75 |
/**
|
|
76 |
\brief Get Control Register
|
|
77 |
\details Returns the content of the Control Register.
|
|
78 |
\return Control Register value
|
|
79 |
*/
|
|
80 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CONTROL(void)
|
|
81 |
{
|
|
82 |
uint32_t result;
|
|
83 |
|
|
84 |
__ASM volatile ("MRS %0, control" : "=r" (result) );
|
|
85 |
return(result);
|
|
86 |
}
|
|
87 |
|
|
88 |
|
|
89 |
/**
|
|
90 |
\brief Set Control Register
|
|
91 |
\details Writes the given value to the Control Register.
|
|
92 |
\param [in] control Control Register value to set
|
|
93 |
*/
|
|
94 |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_CONTROL(uint32_t control)
|
|
95 |
{
|
|
96 |
__ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
|
|
97 |
}
|
|
98 |
|
|
99 |
|
|
100 |
/**
|
|
101 |
\brief Get IPSR Register
|
|
102 |
\details Returns the content of the IPSR Register.
|
|
103 |
\return IPSR Register value
|
|
104 |
*/
|
|
105 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_IPSR(void)
|
|
106 |
{
|
|
107 |
uint32_t result;
|
|
108 |
|
|
109 |
__ASM volatile ("MRS %0, ipsr" : "=r" (result) );
|
|
110 |
return(result);
|
|
111 |
}
|
|
112 |
|
|
113 |
|
|
114 |
/**
|
|
115 |
\brief Get APSR Register
|
|
116 |
\details Returns the content of the APSR Register.
|
|
117 |
\return APSR Register value
|
|
118 |
*/
|
|
119 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_APSR(void)
|
|
120 |
{
|
|
121 |
uint32_t result;
|
|
122 |
|
|
123 |
__ASM volatile ("MRS %0, apsr" : "=r" (result) );
|
|
124 |
return(result);
|
|
125 |
}
|
|
126 |
|
|
127 |
|
|
128 |
/**
|
|
129 |
\brief Get xPSR Register
|
|
130 |
\details Returns the content of the xPSR Register.
|
|
131 |
|
|
132 |
\return xPSR Register value
|
|
133 |
*/
|
|
134 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_xPSR(void)
|
|
135 |
{
|
|
136 |
uint32_t result;
|
|
137 |
|
|
138 |
__ASM volatile ("MRS %0, xpsr" : "=r" (result) );
|
|
139 |
return(result);
|
|
140 |
}
|
|
141 |
|
|
142 |
|
|
143 |
/**
|
|
144 |
\brief Get Process Stack Pointer
|
|
145 |
\details Returns the current value of the Process Stack Pointer (PSP).
|
|
146 |
\return PSP Register value
|
|
147 |
*/
|
|
148 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PSP(void)
|
|
149 |
{
|
|
150 |
register uint32_t result;
|
|
151 |
|
|
152 |
__ASM volatile ("MRS %0, psp\n" : "=r" (result) );
|
|
153 |
return(result);
|
|
154 |
}
|
|
155 |
|
|
156 |
|
|
157 |
/**
|
|
158 |
\brief Set Process Stack Pointer
|
|
159 |
\details Assigns the given value to the Process Stack Pointer (PSP).
|
|
160 |
\param [in] topOfProcStack Process Stack Pointer value to set
|
|
161 |
*/
|
|
162 |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
|
|
163 |
{
|
|
164 |
__ASM volatile ("MSR psp, %0\n" : : "r" (topOfProcStack) : "sp");
|
|
165 |
}
|
|
166 |
|
|
167 |
|
|
168 |
/**
|
|
169 |
\brief Get Main Stack Pointer
|
|
170 |
\details Returns the current value of the Main Stack Pointer (MSP).
|
|
171 |
\return MSP Register value
|
|
172 |
*/
|
|
173 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_MSP(void)
|
|
174 |
{
|
|
175 |
register uint32_t result;
|
|
176 |
|
|
177 |
__ASM volatile ("MRS %0, msp\n" : "=r" (result) );
|
|
178 |
return(result);
|
|
179 |
}
|
|
180 |
|
|
181 |
|
|
182 |
/**
|
|
183 |
\brief Set Main Stack Pointer
|
|
184 |
\details Assigns the given value to the Main Stack Pointer (MSP).
|
|
185 |
|
|
186 |
\param [in] topOfMainStack Main Stack Pointer value to set
|
|
187 |
*/
|
|
188 |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
|
|
189 |
{
|
|
190 |
__ASM volatile ("MSR msp, %0\n" : : "r" (topOfMainStack) : "sp");
|
|
191 |
}
|
|
192 |
|
|
193 |
|
|
194 |
/**
|
|
195 |
\brief Get Priority Mask
|
|
196 |
\details Returns the current state of the priority mask bit from the Priority Mask Register.
|
|
197 |
\return Priority Mask value
|
|
198 |
*/
|
|
199 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PRIMASK(void)
|
|
200 |
{
|
|
201 |
uint32_t result;
|
|
202 |
|
|
203 |
__ASM volatile ("MRS %0, primask" : "=r" (result) );
|
|
204 |
return(result);
|
|
205 |
}
|
|
206 |
|
|
207 |
|
|
208 |
/**
|
|
209 |
\brief Set Priority Mask
|
|
210 |
\details Assigns the given value to the Priority Mask Register.
|
|
211 |
\param [in] priMask Priority Mask
|
|
212 |
*/
|
|
213 |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
|
|
214 |
{
|
|
215 |
__ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
|
|
216 |
}
|
|
217 |
|
|
218 |
|
|
219 |
#if (__CORTEX_M >= 0x03U)
|
|
220 |
|
|
221 |
/**
|
|
222 |
\brief Enable FIQ
|
|
223 |
\details Enables FIQ interrupts by clearing the F-bit in the CPSR.
|
|
224 |
Can only be executed in Privileged modes.
|
|
225 |
*/
|
|
226 |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_fault_irq(void)
|
|
227 |
{
|
|
228 |
__ASM volatile ("cpsie f" : : : "memory");
|
|
229 |
}
|
|
230 |
|
|
231 |
|
|
232 |
/**
|
|
233 |
\brief Disable FIQ
|
|
234 |
\details Disables FIQ interrupts by setting the F-bit in the CPSR.
|
|
235 |
Can only be executed in Privileged modes.
|
|
236 |
*/
|
|
237 |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_fault_irq(void)
|
|
238 |
{
|
|
239 |
__ASM volatile ("cpsid f" : : : "memory");
|
|
240 |
}
|
|
241 |
|
|
242 |
|
|
243 |
/**
|
|
244 |
\brief Get Base Priority
|
|
245 |
\details Returns the current value of the Base Priority register.
|
|
246 |
\return Base Priority register value
|
|
247 |
*/
|
|
248 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_BASEPRI(void)
|
|
249 |
{
|
|
250 |
uint32_t result;
|
|
251 |
|
|
252 |
__ASM volatile ("MRS %0, basepri" : "=r" (result) );
|
|
253 |
return(result);
|
|
254 |
}
|
|
255 |
|
|
256 |
|
|
257 |
/**
|
|
258 |
\brief Set Base Priority
|
|
259 |
\details Assigns the given value to the Base Priority register.
|
|
260 |
\param [in] basePri Base Priority value to set
|
|
261 |
*/
|
|
262 |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_BASEPRI(uint32_t value)
|
|
263 |
{
|
|
264 |
__ASM volatile ("MSR basepri, %0" : : "r" (value) : "memory");
|
|
265 |
}
|
|
266 |
|
|
267 |
|
|
268 |
/**
|
|
269 |
\brief Set Base Priority with condition
|
|
270 |
\details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled,
|
|
271 |
or the new value increases the BASEPRI priority level.
|
|
272 |
\param [in] basePri Base Priority value to set
|
|
273 |
*/
|
|
274 |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_BASEPRI_MAX(uint32_t value)
|
|
275 |
{
|
|
276 |
__ASM volatile ("MSR basepri_max, %0" : : "r" (value) : "memory");
|
|
277 |
}
|
|
278 |
|
|
279 |
|
|
280 |
/**
|
|
281 |
\brief Get Fault Mask
|
|
282 |
\details Returns the current value of the Fault Mask register.
|
|
283 |
\return Fault Mask register value
|
|
284 |
*/
|
|
285 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FAULTMASK(void)
|
|
286 |
{
|
|
287 |
uint32_t result;
|
|
288 |
|
|
289 |
__ASM volatile ("MRS %0, faultmask" : "=r" (result) );
|
|
290 |
return(result);
|
|
291 |
}
|
|
292 |
|
|
293 |
|
|
294 |
/**
|
|
295 |
\brief Set Fault Mask
|
|
296 |
\details Assigns the given value to the Fault Mask register.
|
|
297 |
\param [in] faultMask Fault Mask value to set
|
|
298 |
*/
|
|
299 |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
|
|
300 |
{
|
|
301 |
__ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
|
|
302 |
}
|
|
303 |
|
|
304 |
#endif /* (__CORTEX_M >= 0x03U) */
|
|
305 |
|
|
306 |
|
|
307 |
#if (__CORTEX_M == 0x04U) || (__CORTEX_M == 0x07U)
|
|
308 |
|
|
309 |
/**
|
|
310 |
\brief Get FPSCR
|
|
311 |
\details Returns the current value of the Floating Point Status/Control register.
|
|
312 |
\return Floating Point Status/Control register value
|
|
313 |
*/
|
|
314 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FPSCR(void)
|
|
315 |
{
|
|
316 |
#if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)
|
|
317 |
uint32_t result;
|
|
318 |
|
|
319 |
/* Empty asm statement works as a scheduling barrier */
|
|
320 |
__ASM volatile ("");
|
|
321 |
__ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
|
|
322 |
__ASM volatile ("");
|
|
323 |
return(result);
|
|
324 |
#else
|
|
325 |
return(0);
|
|
326 |
#endif
|
|
327 |
}
|
|
328 |
|
|
329 |
|
|
330 |
/**
|
|
331 |
\brief Set FPSCR
|
|
332 |
\details Assigns the given value to the Floating Point Status/Control register.
|
|
333 |
\param [in] fpscr Floating Point Status/Control value to set
|
|
334 |
*/
|
|
335 |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
|
|
336 |
{
|
|
337 |
#if (__FPU_PRESENT == 1U) && (__FPU_USED == 1U)
|
|
338 |
/* Empty asm statement works as a scheduling barrier */
|
|
339 |
__ASM volatile ("");
|
|
340 |
__ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc");
|
|
341 |
__ASM volatile ("");
|
|
342 |
#endif
|
|
343 |
}
|
|
344 |
|
|
345 |
#endif /* (__CORTEX_M == 0x04U) || (__CORTEX_M == 0x07U) */
|
|
346 |
|
|
347 |
|
|
348 |
|
|
349 |
/*@} end of CMSIS_Core_RegAccFunctions */
|
|
350 |
|
|
351 |
|
|
352 |
/* ########################## Core Instruction Access ######################### */
|
|
353 |
/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
|
|
354 |
Access to dedicated instructions
|
|
355 |
@{
|
|
356 |
*/
|
|
357 |
|
|
358 |
/* Define macros for porting to both thumb1 and thumb2.
|
|
359 |
* For thumb1, use low register (r0-r7), specified by constraint "l"
|
|
360 |
* Otherwise, use general registers, specified by constraint "r" */
|
|
361 |
#if defined (__thumb__) && !defined (__thumb2__)
|
|
362 |
#define __CMSIS_GCC_OUT_REG(r) "=l" (r)
|
|
363 |
#define __CMSIS_GCC_USE_REG(r) "l" (r)
|
|
364 |
#else
|
|
365 |
#define __CMSIS_GCC_OUT_REG(r) "=r" (r)
|
|
366 |
#define __CMSIS_GCC_USE_REG(r) "r" (r)
|
|
367 |
#endif
|
|
368 |
|
|
369 |
/**
|
|
370 |
\brief No Operation
|
|
371 |
\details No Operation does nothing. This instruction can be used for code alignment purposes.
|
|
372 |
*/
|
|
373 |
__attribute__((always_inline)) __STATIC_INLINE void __NOP(void)
|
|
374 |
{
|
|
375 |
__ASM volatile ("nop");
|
|
376 |
}
|
|
377 |
|
|
378 |
|
|
379 |
/**
|
|
380 |
\brief Wait For Interrupt
|
|
381 |
\details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs.
|
|
382 |
*/
|
|
383 |
__attribute__((always_inline)) __STATIC_INLINE void __WFI(void)
|
|
384 |
{
|
|
385 |
__ASM volatile ("wfi");
|
|
386 |
}
|
|
387 |
|
|
388 |
|
|
389 |
/**
|
|
390 |
\brief Wait For Event
|
|
391 |
\details Wait For Event is a hint instruction that permits the processor to enter
|
|
392 |
a low-power state until one of a number of events occurs.
|
|
393 |
*/
|
|
394 |
__attribute__((always_inline)) __STATIC_INLINE void __WFE(void)
|
|
395 |
{
|
|
396 |
__ASM volatile ("wfe");
|
|
397 |
}
|
|
398 |
|
|
399 |
|
|
400 |
/**
|
|
401 |
\brief Send Event
|
|
402 |
\details Send Event is a hint instruction. It causes an event to be signaled to the CPU.
|
|
403 |
*/
|
|
404 |
__attribute__((always_inline)) __STATIC_INLINE void __SEV(void)
|
|
405 |
{
|
|
406 |
__ASM volatile ("sev");
|
|
407 |
}
|
|
408 |
|
|
409 |
|
|
410 |
/**
|
|
411 |
\brief Instruction Synchronization Barrier
|
|
412 |
\details Instruction Synchronization Barrier flushes the pipeline in the processor,
|
|
413 |
so that all instructions following the ISB are fetched from cache or memory,
|
|
414 |
after the instruction has been completed.
|
|
415 |
*/
|
|
416 |
__attribute__((always_inline)) __STATIC_INLINE void __ISB(void)
|
|
417 |
{
|
|
418 |
__ASM volatile ("isb 0xF":::"memory");
|
|
419 |
}
|
|
420 |
|
|
421 |
|
|
422 |
/**
|
|
423 |
\brief Data Synchronization Barrier
|
|
424 |
\details Acts as a special kind of Data Memory Barrier.
|
|
425 |
It completes when all explicit memory accesses before this instruction complete.
|
|
426 |
*/
|
|
427 |
__attribute__((always_inline)) __STATIC_INLINE void __DSB(void)
|
|
428 |
{
|
|
429 |
__ASM volatile ("dsb 0xF":::"memory");
|
|
430 |
}
|
|
431 |
|
|
432 |
|
|
433 |
/**
|
|
434 |
\brief Data Memory Barrier
|
|
435 |
\details Ensures the apparent order of the explicit memory operations before
|
|
436 |
and after the instruction, without ensuring their completion.
|
|
437 |
*/
|
|
438 |
__attribute__((always_inline)) __STATIC_INLINE void __DMB(void)
|
|
439 |
{
|
|
440 |
__ASM volatile ("dmb 0xF":::"memory");
|
|
441 |
}
|
|
442 |
|
|
443 |
|
|
444 |
/**
|
|
445 |
\brief Reverse byte order (32 bit)
|
|
446 |
\details Reverses the byte order in integer value.
|
|
447 |
\param [in] value Value to reverse
|
|
448 |
\return Reversed value
|
|
449 |
*/
|
|
450 |
__attribute__((always_inline)) __STATIC_INLINE uint32_t __REV(uint32_t value)
|
|
451 |
{
|
|
452 |
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
|
|
453 |
return __builtin_bswap32(value);
|
|
454 |
#else
|
|
455 |
uint32_t result;
|
|
456 |
|
|
457 |
__ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
|
|
458 |
return(result);
|
|
459 |
#endif
|
|
460 |
}
|
|
461 |
|
|
462 |
|
|
463 |
/**
|
|
464 |
\brief Reverse byte order (16 bit)
|
|
465 |
\details Reverses the byte order in two unsigned short values.
|
|
466 |
\param [in] value Value to reverse
|
|
467 |
\return Reversed value
|
|
468 |
*/
|
|
469 |
__attribute__((always_inline)) __STATIC_INLINE uint32_t __REV16(uint32_t value)
|
|
470 |
{
|
|
471 |
uint32_t result;
|
|
472 |
|
|
473 |
__ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
|
|
474 |
return(result);
|
|
475 |
}
|
|
476 |
|
|
477 |
|
|
478 |
/**
|
|
479 |
\brief Reverse byte order in signed short value
|
|
480 |
\details Reverses the byte order in a signed short value with sign extension to integer.
|
|
481 |
\param [in] value Value to reverse
|
|
482 |
\return Reversed value
|
|
483 |
*/
|
|
484 |
__attribute__((always_inline)) __STATIC_INLINE int32_t __REVSH(int32_t value)
|
|
485 |
{
|
|
486 |
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
|
|
487 |
return (short)__builtin_bswap16(value);
|
|
488 |
#else
|
|
489 |
int32_t result;
|
|
490 |
|
|
491 |
__ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
|
|
492 |
return(result);
|
|
493 |
#endif
|
|
494 |
}
|
|
495 |
|
|
496 |
|
|
497 |
/**
|
|
498 |
\brief Rotate Right in unsigned value (32 bit)
|
|
499 |
\details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
|
|
500 |
\param [in] value Value to rotate
|
|
501 |
\param [in] value Number of Bits to rotate
|
|
502 |
\return Rotated value
|
|
503 |
*/
|
|
504 |
__attribute__((always_inline)) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
|
|
505 |
{
|
|
506 |
return (op1 >> op2) | (op1 << (32U - op2));
|
|
507 |
}
|
|
508 |
|
|
509 |
|
|
510 |
/**
|
|
511 |
\brief Breakpoint
|
|
512 |
\details Causes the processor to enter Debug state.
|
|
513 |
Debug tools can use this to investigate system state when the instruction at a particular address is reached.
|
|
514 |
\param [in] value is ignored by the processor.
|
|
515 |
If required, a debugger can use it to store additional information about the breakpoint.
|
|
516 |
*/
|
|
517 |
#define __BKPT(value) __ASM volatile ("bkpt "#value)
|
|
518 |
|
|
519 |
|
|
520 |
/**
|
|
521 |
\brief Reverse bit order of value
|
|
522 |
\details Reverses the bit order of the given value.
|
|
523 |
\param [in] value Value to reverse
|
|
524 |
\return Reversed value
|
|
525 |
*/
|
|
526 |
__attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
|
|
527 |
{
|
|
528 |
uint32_t result;
|
|
529 |
|
|
530 |
#if (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U)
|
|
531 |
__ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
|
|
532 |
#else
|
|
533 |
int32_t s = 4 /*sizeof(v)*/ * 8 - 1; /* extra shift needed at end */
|
|
534 |
|
|
535 |
result = value; /* r will be reversed bits of v; first get LSB of v */
|
|
536 |
for (value >>= 1U; value; value >>= 1U)
|
|
537 |
{
|
|
538 |
result <<= 1U;
|
|
539 |
result |= value & 1U;
|
|
540 |
s--;
|
|
541 |
}
|
|
542 |
result <<= s; /* shift when v's highest bits are zero */
|
|
543 |
#endif
|
|
544 |
return(result);
|
|
545 |
}
|
|
546 |
|
|
547 |
|
|
548 |
/**
|
|
549 |
\brief Count leading zeros
|
|
550 |
\details Counts the number of leading zeros of a data value.
|
|
551 |
\param [in] value Value to count the leading zeros
|
|
552 |
\return number of leading zeros in value
|
|
553 |
*/
|
|
554 |
#define __CLZ __builtin_clz
|
|
555 |
|
|
556 |
|
|
557 |
#if (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U)
|
|
558 |
|
|
559 |
/**
|
|
560 |
\brief LDR Exclusive (8 bit)
|
|
561 |
\details Executes a exclusive LDR instruction for 8 bit value.
|
|
562 |
\param [in] ptr Pointer to data
|
|
563 |
\return value of type uint8_t at (*ptr)
|
|
564 |
*/
|
|
565 |
__attribute__((always_inline)) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr)
|
|
566 |
{
|
|
567 |
uint32_t result;
|
|
568 |
|
|
569 |
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
|
|
570 |
__ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) );
|
|
571 |
#else
|
|
572 |
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
|
|
573 |
accepted by assembler. So has to use following less efficient pattern.
|
|
574 |
*/
|
|
575 |
__ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
|
|
576 |
#endif
|
|
577 |
return ((uint8_t) result); /* Add explicit type cast here */
|
|
578 |
}
|
|
579 |
|
|
580 |
|
|
581 |
/**
|
|
582 |
\brief LDR Exclusive (16 bit)
|
|
583 |
\details Executes a exclusive LDR instruction for 16 bit values.
|
|
584 |
\param [in] ptr Pointer to data
|
|
585 |
\return value of type uint16_t at (*ptr)
|
|
586 |
*/
|
|
587 |
__attribute__((always_inline)) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr)
|
|
588 |
{
|
|
589 |
uint32_t result;
|
|
590 |
|
|
591 |
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
|
|
592 |
__ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) );
|
|
593 |
#else
|
|
594 |
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
|
|
595 |
accepted by assembler. So has to use following less efficient pattern.
|
|
596 |
*/
|
|
597 |
__ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
|
|
598 |
#endif
|
|
599 |
return ((uint16_t) result); /* Add explicit type cast here */
|
|
600 |
}
|
|
601 |
|
|
602 |
|
|
603 |
/**
|
|
604 |
\brief LDR Exclusive (32 bit)
|
|
605 |
\details Executes a exclusive LDR instruction for 32 bit values.
|
|
606 |
\param [in] ptr Pointer to data
|
|
607 |
\return value of type uint32_t at (*ptr)
|
|
608 |
*/
|
|
609 |
__attribute__((always_inline)) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr)
|
|
610 |
{
|
|
611 |
uint32_t result;
|
|
612 |
|
|
613 |
__ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) );
|
|
614 |
return(result);
|
|
615 |
}
|
|
616 |
|
|
617 |
|
|
618 |
/**
|
|
619 |
\brief STR Exclusive (8 bit)
|
|
620 |
\details Executes a exclusive STR instruction for 8 bit values.
|
|
621 |
\param [in] value Value to store
|
|
622 |
\param [in] ptr Pointer to location
|
|
623 |
\return 0 Function succeeded
|
|
624 |
\return 1 Function failed
|
|
625 |
*/
|
|
626 |
__attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
|
|
627 |
{
|
|
628 |
uint32_t result;
|
|
629 |
|
|
630 |
__ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
|
|
631 |
return(result);
|
|
632 |
}
|
|
633 |
|
|
634 |
|
|
635 |
/**
|
|
636 |
\brief STR Exclusive (16 bit)
|
|
637 |
\details Executes a exclusive STR instruction for 16 bit values.
|
|
638 |
\param [in] value Value to store
|
|
639 |
\param [in] ptr Pointer to location
|
|
640 |
\return 0 Function succeeded
|
|
641 |
\return 1 Function failed
|
|
642 |
*/
|
|
643 |
__attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
|
|
644 |
{
|
|
645 |
uint32_t result;
|
|
646 |
|
|
647 |
__ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) );
|
|
648 |
return(result);
|
|
649 |
}
|
|
650 |
|
|
651 |
|
|
652 |
/**
|
|
653 |
\brief STR Exclusive (32 bit)
|
|
654 |
\details Executes a exclusive STR instruction for 32 bit values.
|
|
655 |
\param [in] value Value to store
|
|
656 |
\param [in] ptr Pointer to location
|
|
657 |
\return 0 Function succeeded
|
|
658 |
\return 1 Function failed
|
|
659 |
*/
|
|
660 |
__attribute__((always_inline)) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
|
|
661 |
{
|
|
662 |
uint32_t result;
|
|
663 |
|
|
664 |
__ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
|
|
665 |
return(result);
|
|
666 |
}
|
|
667 |
|
|
668 |
|
|
669 |
/**
|
|
670 |
\brief Remove the exclusive lock
|
|
671 |
\details Removes the exclusive lock which is created by LDREX.
|
|
672 |
*/
|
|
673 |
__attribute__((always_inline)) __STATIC_INLINE void __CLREX(void)
|
|
674 |
{
|
|
675 |
__ASM volatile ("clrex" ::: "memory");
|
|
676 |
}
|
|
677 |
|
|
678 |
|
|
679 |
/**
|
|
680 |
\brief Signed Saturate
|
|
681 |
\details Saturates a signed value.
|
|
682 |
\param [in] value Value to be saturated
|
|
683 |
\param [in] sat Bit position to saturate to (1..32)
|
|
684 |
\return Saturated value
|
|
685 |
*/
|
|
686 |
#define __SSAT(ARG1,ARG2) \
|
|
687 |
({ \
|
|
688 |
uint32_t __RES, __ARG1 = (ARG1); \
|
|
689 |
__ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
|
|
690 |
__RES; \
|
|
691 |
})
|
|
692 |
|
|
693 |
|
|
694 |
/**
|
|
695 |
\brief Unsigned Saturate
|
|
696 |
\details Saturates an unsigned value.
|
|
697 |
\param [in] value Value to be saturated
|
|
698 |
\param [in] sat Bit position to saturate to (0..31)
|
|
699 |
\return Saturated value
|
|
700 |
*/
|
|
701 |
#define __USAT(ARG1,ARG2) \
|
|
702 |
({ \
|
|
703 |
uint32_t __RES, __ARG1 = (ARG1); \
|
|
704 |
__ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
|
|
705 |
__RES; \
|
|
706 |
})
|
|
707 |
|
|
708 |
|
|
709 |
/**
|
|
710 |
\brief Rotate Right with Extend (32 bit)
|
|
711 |
\details Moves each bit of a bitstring right by one bit.
|
|
712 |
The carry input is shifted in at the left end of the bitstring.
|
|
713 |
\param [in] value Value to rotate
|
|
714 |
\return Rotated value
|
|
715 |
*/
|
|
716 |
__attribute__((always_inline)) __STATIC_INLINE uint32_t __RRX(uint32_t value)
|
|
717 |
{
|
|
718 |
uint32_t result;
|
|
719 |
|
|
720 |
__ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
|
|
721 |
return(result);
|
|
722 |
}
|
|
723 |
|
|
724 |
|
|
725 |
/**
|
|
726 |
\brief LDRT Unprivileged (8 bit)
|
|
727 |
\details Executes a Unprivileged LDRT instruction for 8 bit value.
|
|
728 |
\param [in] ptr Pointer to data
|
|
729 |
\return value of type uint8_t at (*ptr)
|
|
730 |
*/
|
|
731 |
__attribute__((always_inline)) __STATIC_INLINE uint8_t __LDRBT(volatile uint8_t *addr)
|
|
732 |
{
|
|
733 |
uint32_t result;
|
|
734 |
|
|
735 |
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
|
|
736 |
__ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*addr) );
|
|
737 |
#else
|
|
738 |
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
|
|
739 |
accepted by assembler. So has to use following less efficient pattern.
|
|
740 |
*/
|
|
741 |
__ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
|
|
742 |
#endif
|
|
743 |
return ((uint8_t) result); /* Add explicit type cast here */
|
|
744 |
}
|
|
745 |
|
|
746 |
|
|
747 |
/**
|
|
748 |
\brief LDRT Unprivileged (16 bit)
|
|
749 |
\details Executes a Unprivileged LDRT instruction for 16 bit values.
|
|
750 |
\param [in] ptr Pointer to data
|
|
751 |
\return value of type uint16_t at (*ptr)
|
|
752 |
*/
|
|
753 |
__attribute__((always_inline)) __STATIC_INLINE uint16_t __LDRHT(volatile uint16_t *addr)
|
|
754 |
{
|
|
755 |
uint32_t result;
|
|
756 |
|
|
757 |
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
|
|
758 |
__ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*addr) );
|
|
759 |
#else
|
|
760 |
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
|
|
761 |
accepted by assembler. So has to use following less efficient pattern.
|
|
762 |
*/
|
|
763 |
__ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
|
|
764 |
#endif
|
|
765 |
return ((uint16_t) result); /* Add explicit type cast here */
|
|
766 |
}
|
|
767 |
|
|
768 |
|
|
769 |
/**
|
|
770 |
\brief LDRT Unprivileged (32 bit)
|
|
771 |
\details Executes a Unprivileged LDRT instruction for 32 bit values.
|
|
772 |
\param [in] ptr Pointer to data
|
|
773 |
\return value of type uint32_t at (*ptr)
|
|
774 |
*/
|
|
775 |
__attribute__((always_inline)) __STATIC_INLINE uint32_t __LDRT(volatile uint32_t *addr)
|
|
776 |
{
|
|
777 |
uint32_t result;
|
|
778 |
|
|
779 |
__ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*addr) );
|
|
780 |
return(result);
|
|
781 |
}
|
|
782 |
|
|
783 |
|
|
784 |
/**
|
|
785 |
\brief STRT Unprivileged (8 bit)
|
|
786 |
\details Executes a Unprivileged STRT instruction for 8 bit values.
|
|
787 |
\param [in] value Value to store
|
|
788 |
\param [in] ptr Pointer to location
|
|
789 |
*/
|
|
790 |
__attribute__((always_inline)) __STATIC_INLINE void __STRBT(uint8_t value, volatile uint8_t *addr)
|
|
791 |
{
|
|
792 |
__ASM volatile ("strbt %1, %0" : "=Q" (*addr) : "r" ((uint32_t)value) );
|
|
793 |
}
|
|
794 |
|
|
795 |
|
|
796 |
/**
|
|
797 |
\brief STRT Unprivileged (16 bit)
|
|
798 |
\details Executes a Unprivileged STRT instruction for 16 bit values.
|
|
799 |
\param [in] value Value to store
|
|
800 |
\param [in] ptr Pointer to location
|
|
801 |
*/
|
|
802 |
__attribute__((always_inline)) __STATIC_INLINE void __STRHT(uint16_t value, volatile uint16_t *addr)
|
|
803 |
{
|
|
804 |
__ASM volatile ("strht %1, %0" : "=Q" (*addr) : "r" ((uint32_t)value) );
|
|
805 |
}
|
|
806 |
|
|
807 |
|
|
808 |
/**
|
|
809 |
\brief STRT Unprivileged (32 bit)
|
|
810 |
\details Executes a Unprivileged STRT instruction for 32 bit values.
|
|
811 |
\param [in] value Value to store
|
|
812 |
\param [in] ptr Pointer to location
|
|
813 |
*/
|
|
814 |
__attribute__((always_inline)) __STATIC_INLINE void __STRT(uint32_t value, volatile uint32_t *addr)
|
|
815 |
{
|
|
816 |
__ASM volatile ("strt %1, %0" : "=Q" (*addr) : "r" (value) );
|
|
817 |
}
|
|
818 |
|
|
819 |
#endif /* (__CORTEX_M >= 0x03U) || (__CORTEX_SC >= 300U) */
|
|
820 |
|
|
821 |
/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
|
|
822 |
|
|
823 |
|
|
824 |
/* ################### Compiler specific Intrinsics ########################### */
|
|
825 |
/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
|
|
826 |
Access to dedicated SIMD instructions
|
|
827 |
@{
|
|
828 |
*/
|
|
829 |
|
|
830 |
#if (__CORTEX_M >= 0x04U) /* only for Cortex-M4 and above */
|
|
831 |
|
|
832 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
|
|
833 |
{
|
|
834 |
uint32_t result;
|
|
835 |
|
|
836 |
__ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
837 |
return(result);
|
|
838 |
}
|
|
839 |
|
|
840 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
|
|
841 |
{
|
|
842 |
uint32_t result;
|
|
843 |
|
|
844 |
__ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
845 |
return(result);
|
|
846 |
}
|
|
847 |
|
|
848 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
|
|
849 |
{
|
|
850 |
uint32_t result;
|
|
851 |
|
|
852 |
__ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
853 |
return(result);
|
|
854 |
}
|
|
855 |
|
|
856 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
|
|
857 |
{
|
|
858 |
uint32_t result;
|
|
859 |
|
|
860 |
__ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
861 |
return(result);
|
|
862 |
}
|
|
863 |
|
|
864 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
|
|
865 |
{
|
|
866 |
uint32_t result;
|
|
867 |
|
|
868 |
__ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
869 |
return(result);
|
|
870 |
}
|
|
871 |
|
|
872 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
|
|
873 |
{
|
|
874 |
uint32_t result;
|
|
875 |
|
|
876 |
__ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
877 |
return(result);
|
|
878 |
}
|
|
879 |
|
|
880 |
|
|
881 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
|
|
882 |
{
|
|
883 |
uint32_t result;
|
|
884 |
|
|
885 |
__ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
886 |
return(result);
|
|
887 |
}
|
|
888 |
|
|
889 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
|
|
890 |
{
|
|
891 |
uint32_t result;
|
|
892 |
|
|
893 |
__ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
894 |
return(result);
|
|
895 |
}
|
|
896 |
|
|
897 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
|
|
898 |
{
|
|
899 |
uint32_t result;
|
|
900 |
|
|
901 |
__ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
902 |
return(result);
|
|
903 |
}
|
|
904 |
|
|
905 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
|
|
906 |
{
|
|
907 |
uint32_t result;
|
|
908 |
|
|
909 |
__ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
910 |
return(result);
|
|
911 |
}
|
|
912 |
|
|
913 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
|
|
914 |
{
|
|
915 |
uint32_t result;
|
|
916 |
|
|
917 |
__ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
918 |
return(result);
|
|
919 |
}
|
|
920 |
|
|
921 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
|
|
922 |
{
|
|
923 |
uint32_t result;
|
|
924 |
|
|
925 |
__ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
926 |
return(result);
|
|
927 |
}
|
|
928 |
|
|
929 |
|
|
930 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
|
|
931 |
{
|
|
932 |
uint32_t result;
|
|
933 |
|
|
934 |
__ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
935 |
return(result);
|
|
936 |
}
|
|
937 |
|
|
938 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
|
|
939 |
{
|
|
940 |
uint32_t result;
|
|
941 |
|
|
942 |
__ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
943 |
return(result);
|
|
944 |
}
|
|
945 |
|
|
946 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
|
|
947 |
{
|
|
948 |
uint32_t result;
|
|
949 |
|
|
950 |
__ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
951 |
return(result);
|
|
952 |
}
|
|
953 |
|
|
954 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
|
|
955 |
{
|
|
956 |
uint32_t result;
|
|
957 |
|
|
958 |
__ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
959 |
return(result);
|
|
960 |
}
|
|
961 |
|
|
962 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
|
|
963 |
{
|
|
964 |
uint32_t result;
|
|
965 |
|
|
966 |
__ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
967 |
return(result);
|
|
968 |
}
|
|
969 |
|
|
970 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
|
|
971 |
{
|
|
972 |
uint32_t result;
|
|
973 |
|
|
974 |
__ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
975 |
return(result);
|
|
976 |
}
|
|
977 |
|
|
978 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
|
|
979 |
{
|
|
980 |
uint32_t result;
|
|
981 |
|
|
982 |
__ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
983 |
return(result);
|
|
984 |
}
|
|
985 |
|
|
986 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
|
|
987 |
{
|
|
988 |
uint32_t result;
|
|
989 |
|
|
990 |
__ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
991 |
return(result);
|
|
992 |
}
|
|
993 |
|
|
994 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
|
|
995 |
{
|
|
996 |
uint32_t result;
|
|
997 |
|
|
998 |
__ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
999 |
return(result);
|
|
1000 |
}
|
|
1001 |
|
|
1002 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
|
|
1003 |
{
|
|
1004 |
uint32_t result;
|
|
1005 |
|
|
1006 |
__ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1007 |
return(result);
|
|
1008 |
}
|
|
1009 |
|
|
1010 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
|
|
1011 |
{
|
|
1012 |
uint32_t result;
|
|
1013 |
|
|
1014 |
__ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1015 |
return(result);
|
|
1016 |
}
|
|
1017 |
|
|
1018 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
|
|
1019 |
{
|
|
1020 |
uint32_t result;
|
|
1021 |
|
|
1022 |
__ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1023 |
return(result);
|
|
1024 |
}
|
|
1025 |
|
|
1026 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
|
|
1027 |
{
|
|
1028 |
uint32_t result;
|
|
1029 |
|
|
1030 |
__ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1031 |
return(result);
|
|
1032 |
}
|
|
1033 |
|
|
1034 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
|
|
1035 |
{
|
|
1036 |
uint32_t result;
|
|
1037 |
|
|
1038 |
__ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1039 |
return(result);
|
|
1040 |
}
|
|
1041 |
|
|
1042 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
|
|
1043 |
{
|
|
1044 |
uint32_t result;
|
|
1045 |
|
|
1046 |
__ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1047 |
return(result);
|
|
1048 |
}
|
|
1049 |
|
|
1050 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
|
|
1051 |
{
|
|
1052 |
uint32_t result;
|
|
1053 |
|
|
1054 |
__ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1055 |
return(result);
|
|
1056 |
}
|
|
1057 |
|
|
1058 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
|
|
1059 |
{
|
|
1060 |
uint32_t result;
|
|
1061 |
|
|
1062 |
__ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1063 |
return(result);
|
|
1064 |
}
|
|
1065 |
|
|
1066 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
|
|
1067 |
{
|
|
1068 |
uint32_t result;
|
|
1069 |
|
|
1070 |
__ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1071 |
return(result);
|
|
1072 |
}
|
|
1073 |
|
|
1074 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
|
|
1075 |
{
|
|
1076 |
uint32_t result;
|
|
1077 |
|
|
1078 |
__ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1079 |
return(result);
|
|
1080 |
}
|
|
1081 |
|
|
1082 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
|
|
1083 |
{
|
|
1084 |
uint32_t result;
|
|
1085 |
|
|
1086 |
__ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1087 |
return(result);
|
|
1088 |
}
|
|
1089 |
|
|
1090 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
|
|
1091 |
{
|
|
1092 |
uint32_t result;
|
|
1093 |
|
|
1094 |
__ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1095 |
return(result);
|
|
1096 |
}
|
|
1097 |
|
|
1098 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
|
|
1099 |
{
|
|
1100 |
uint32_t result;
|
|
1101 |
|
|
1102 |
__ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1103 |
return(result);
|
|
1104 |
}
|
|
1105 |
|
|
1106 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
|
|
1107 |
{
|
|
1108 |
uint32_t result;
|
|
1109 |
|
|
1110 |
__ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1111 |
return(result);
|
|
1112 |
}
|
|
1113 |
|
|
1114 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
|
|
1115 |
{
|
|
1116 |
uint32_t result;
|
|
1117 |
|
|
1118 |
__ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1119 |
return(result);
|
|
1120 |
}
|
|
1121 |
|
|
1122 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
|
|
1123 |
{
|
|
1124 |
uint32_t result;
|
|
1125 |
|
|
1126 |
__ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1127 |
return(result);
|
|
1128 |
}
|
|
1129 |
|
|
1130 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
|
|
1131 |
{
|
|
1132 |
uint32_t result;
|
|
1133 |
|
|
1134 |
__ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
|
|
1135 |
return(result);
|
|
1136 |
}
|
|
1137 |
|
|
1138 |
#define __SSAT16(ARG1,ARG2) \
|
|
1139 |
({ \
|
|
1140 |
int32_t __RES, __ARG1 = (ARG1); \
|
|
1141 |
__ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
|
|
1142 |
__RES; \
|
|
1143 |
})
|
|
1144 |
|
|
1145 |
#define __USAT16(ARG1,ARG2) \
|
|
1146 |
({ \
|
|
1147 |
uint32_t __RES, __ARG1 = (ARG1); \
|
|
1148 |
__ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
|
|
1149 |
__RES; \
|
|
1150 |
})
|
|
1151 |
|
|
1152 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTB16(uint32_t op1)
|
|
1153 |
{
|
|
1154 |
uint32_t result;
|
|
1155 |
|
|
1156 |
__ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
|
|
1157 |
return(result);
|
|
1158 |
}
|
|
1159 |
|
|
1160 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
|
|
1161 |
{
|
|
1162 |
uint32_t result;
|
|
1163 |
|
|
1164 |
__ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1165 |
return(result);
|
|
1166 |
}
|
|
1167 |
|
|
1168 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTB16(uint32_t op1)
|
|
1169 |
{
|
|
1170 |
uint32_t result;
|
|
1171 |
|
|
1172 |
__ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
|
|
1173 |
return(result);
|
|
1174 |
}
|
|
1175 |
|
|
1176 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
|
|
1177 |
{
|
|
1178 |
uint32_t result;
|
|
1179 |
|
|
1180 |
__ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1181 |
return(result);
|
|
1182 |
}
|
|
1183 |
|
|
1184 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2)
|
|
1185 |
{
|
|
1186 |
uint32_t result;
|
|
1187 |
|
|
1188 |
__ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1189 |
return(result);
|
|
1190 |
}
|
|
1191 |
|
|
1192 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
|
|
1193 |
{
|
|
1194 |
uint32_t result;
|
|
1195 |
|
|
1196 |
__ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1197 |
return(result);
|
|
1198 |
}
|
|
1199 |
|
|
1200 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
|
|
1201 |
{
|
|
1202 |
uint32_t result;
|
|
1203 |
|
|
1204 |
__ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
|
|
1205 |
return(result);
|
|
1206 |
}
|
|
1207 |
|
|
1208 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
|
|
1209 |
{
|
|
1210 |
uint32_t result;
|
|
1211 |
|
|
1212 |
__ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
|
|
1213 |
return(result);
|
|
1214 |
}
|
|
1215 |
|
|
1216 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
|
|
1217 |
{
|
|
1218 |
union llreg_u{
|
|
1219 |
uint32_t w32[2];
|
|
1220 |
uint64_t w64;
|
|
1221 |
} llr;
|
|
1222 |
llr.w64 = acc;
|
|
1223 |
|
|
1224 |
#ifndef __ARMEB__ /* Little endian */
|
|
1225 |
__ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
|
|
1226 |
#else /* Big endian */
|
|
1227 |
__ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
|
|
1228 |
#endif
|
|
1229 |
|
|
1230 |
return(llr.w64);
|
|
1231 |
}
|
|
1232 |
|
|
1233 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
|
|
1234 |
{
|
|
1235 |
union llreg_u{
|
|
1236 |
uint32_t w32[2];
|
|
1237 |
uint64_t w64;
|
|
1238 |
} llr;
|
|
1239 |
llr.w64 = acc;
|
|
1240 |
|
|
1241 |
#ifndef __ARMEB__ /* Little endian */
|
|
1242 |
__ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
|
|
1243 |
#else /* Big endian */
|
|
1244 |
__ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
|
|
1245 |
#endif
|
|
1246 |
|
|
1247 |
return(llr.w64);
|
|
1248 |
}
|
|
1249 |
|
|
1250 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2)
|
|
1251 |
{
|
|
1252 |
uint32_t result;
|
|
1253 |
|
|
1254 |
__ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1255 |
return(result);
|
|
1256 |
}
|
|
1257 |
|
|
1258 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
|
|
1259 |
{
|
|
1260 |
uint32_t result;
|
|
1261 |
|
|
1262 |
__ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1263 |
return(result);
|
|
1264 |
}
|
|
1265 |
|
|
1266 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
|
|
1267 |
{
|
|
1268 |
uint32_t result;
|
|
1269 |
|
|
1270 |
__ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
|
|
1271 |
return(result);
|
|
1272 |
}
|
|
1273 |
|
|
1274 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
|
|
1275 |
{
|
|
1276 |
uint32_t result;
|
|
1277 |
|
|
1278 |
__ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
|
|
1279 |
return(result);
|
|
1280 |
}
|
|
1281 |
|
|
1282 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
|
|
1283 |
{
|
|
1284 |
union llreg_u{
|
|
1285 |
uint32_t w32[2];
|
|
1286 |
uint64_t w64;
|
|
1287 |
} llr;
|
|
1288 |
llr.w64 = acc;
|
|
1289 |
|
|
1290 |
#ifndef __ARMEB__ /* Little endian */
|
|
1291 |
__ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
|
|
1292 |
#else /* Big endian */
|
|
1293 |
__ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
|
|
1294 |
#endif
|
|
1295 |
|
|
1296 |
return(llr.w64);
|
|
1297 |
}
|
|
1298 |
|
|
1299 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
|
|
1300 |
{
|
|
1301 |
union llreg_u{
|
|
1302 |
uint32_t w32[2];
|
|
1303 |
uint64_t w64;
|
|
1304 |
} llr;
|
|
1305 |
llr.w64 = acc;
|
|
1306 |
|
|
1307 |
#ifndef __ARMEB__ /* Little endian */
|
|
1308 |
__ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
|
|
1309 |
#else /* Big endian */
|
|
1310 |
__ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
|
|
1311 |
#endif
|
|
1312 |
|
|
1313 |
return(llr.w64);
|
|
1314 |
}
|
|
1315 |
|
|
1316 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SEL (uint32_t op1, uint32_t op2)
|
|
1317 |
{
|
|
1318 |
uint32_t result;
|
|
1319 |
|
|
1320 |
__ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1321 |
return(result);
|
|
1322 |
}
|
|
1323 |
|
|
1324 |
__attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __QADD( int32_t op1, int32_t op2)
|
|
1325 |
{
|
|
1326 |
int32_t result;
|
|
1327 |
|
|
1328 |
__ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1329 |
return(result);
|
|
1330 |
}
|
|
1331 |
|
|
1332 |
__attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __QSUB( int32_t op1, int32_t op2)
|
|
1333 |
{
|
|
1334 |
int32_t result;
|
|
1335 |
|
|
1336 |
__ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
|
|
1337 |
return(result);
|
|
1338 |
}
|
|
1339 |
|
|
1340 |
#define __PKHBT(ARG1,ARG2,ARG3) \
|
|
1341 |
({ \
|
|
1342 |
uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
|
|
1343 |
__ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
|
|
1344 |
__RES; \
|
|
1345 |
})
|
|
1346 |
|
|
1347 |
#define __PKHTB(ARG1,ARG2,ARG3) \
|
|
1348 |
({ \
|
|
1349 |
uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
|
|
1350 |
if (ARG3 == 0) \
|
|
1351 |
__ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \
|
|
1352 |
else \
|
|
1353 |
__ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
|
|
1354 |
__RES; \
|
|
1355 |
})
|
|
1356 |
|
|
1357 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
|
|
1358 |
{
|
|
1359 |
int32_t result;
|
|
1360 |
|
|
1361 |
__ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );
|
|
1362 |
return(result);
|
|
1363 |
}
|
|
1364 |
|
|
1365 |
#endif /* (__CORTEX_M >= 0x04) */
|
|
1366 |
/*@} end of group CMSIS_SIMD_intrinsics */
|
|
1367 |
|
|
1368 |
|
|
1369 |
#if defined ( __GNUC__ )
|
|
1370 |
#pragma GCC diagnostic pop
|
|
1371 |
#endif
|
|
1372 |
|
|
1373 |
#endif /* __CMSIS_GCC_H */
|