提交 | 用户 | age
|
bfc108
|
1 |
/* ----------------------------------------------------------------------
|
Q |
2 |
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.
|
|
3 |
*
|
|
4 |
* $Date: 19. March 2015
|
|
5 |
* $Revision: V.1.4.5
|
|
6 |
*
|
|
7 |
* Project: CMSIS DSP Library
|
|
8 |
* Title: arm_mat_inverse_f64.c
|
|
9 |
*
|
|
10 |
* Description: Floating-point matrix inverse.
|
|
11 |
*
|
|
12 |
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
|
|
13 |
*
|
|
14 |
* Redistribution and use in source and binary forms, with or without
|
|
15 |
* modification, are permitted provided that the following conditions
|
|
16 |
* are met:
|
|
17 |
* - Redistributions of source code must retain the above copyright
|
|
18 |
* notice, this list of conditions and the following disclaimer.
|
|
19 |
* - Redistributions in binary form must reproduce the above copyright
|
|
20 |
* notice, this list of conditions and the following disclaimer in
|
|
21 |
* the documentation and/or other materials provided with the
|
|
22 |
* distribution.
|
|
23 |
* - Neither the name of ARM LIMITED nor the names of its contributors
|
|
24 |
* may be used to endorse or promote products derived from this
|
|
25 |
* software without specific prior written permission.
|
|
26 |
*
|
|
27 |
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
28 |
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
29 |
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
30 |
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
31 |
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
32 |
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
33 |
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
34 |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
35 |
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
36 |
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
37 |
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
38 |
* POSSIBILITY OF SUCH DAMAGE.
|
|
39 |
* -------------------------------------------------------------------- */
|
|
40 |
|
|
41 |
#include "arm_math.h"
|
|
42 |
|
|
43 |
/**
|
|
44 |
* @ingroup groupMatrix
|
|
45 |
*/
|
|
46 |
|
|
47 |
/**
|
|
48 |
* @defgroup MatrixInv Matrix Inverse
|
|
49 |
*
|
|
50 |
* Computes the inverse of a matrix.
|
|
51 |
*
|
|
52 |
* The inverse is defined only if the input matrix is square and non-singular (the determinant
|
|
53 |
* is non-zero). The function checks that the input and output matrices are square and of the
|
|
54 |
* same size.
|
|
55 |
*
|
|
56 |
* Matrix inversion is numerically sensitive and the CMSIS DSP library only supports matrix
|
|
57 |
* inversion of floating-point matrices.
|
|
58 |
*
|
|
59 |
* \par Algorithm
|
|
60 |
* The Gauss-Jordan method is used to find the inverse.
|
|
61 |
* The algorithm performs a sequence of elementary row-operations until it
|
|
62 |
* reduces the input matrix to an identity matrix. Applying the same sequence
|
|
63 |
* of elementary row-operations to an identity matrix yields the inverse matrix.
|
|
64 |
* If the input matrix is singular, then the algorithm terminates and returns error status
|
|
65 |
* <code>ARM_MATH_SINGULAR</code>.
|
|
66 |
* \image html MatrixInverse.gif "Matrix Inverse of a 3 x 3 matrix using Gauss-Jordan Method"
|
|
67 |
*/
|
|
68 |
|
|
69 |
/**
|
|
70 |
* @addtogroup MatrixInv
|
|
71 |
* @{
|
|
72 |
*/
|
|
73 |
|
|
74 |
/**
|
|
75 |
* @brief Floating-point matrix inverse.
|
|
76 |
* @param[in] *pSrc points to input matrix structure
|
|
77 |
* @param[out] *pDst points to output matrix structure
|
|
78 |
* @return The function returns
|
|
79 |
* <code>ARM_MATH_SIZE_MISMATCH</code> if the input matrix is not square or if the size
|
|
80 |
* of the output matrix does not match the size of the input matrix.
|
|
81 |
* If the input matrix is found to be singular (non-invertible), then the function returns
|
|
82 |
* <code>ARM_MATH_SINGULAR</code>. Otherwise, the function returns <code>ARM_MATH_SUCCESS</code>.
|
|
83 |
*/
|
|
84 |
|
|
85 |
arm_status arm_mat_inverse_f64(
|
|
86 |
const arm_matrix_instance_f64 * pSrc,
|
|
87 |
arm_matrix_instance_f64 * pDst)
|
|
88 |
{
|
|
89 |
float64_t *pIn = pSrc->pData; /* input data matrix pointer */
|
|
90 |
float64_t *pOut = pDst->pData; /* output data matrix pointer */
|
|
91 |
float64_t *pInT1, *pInT2; /* Temporary input data matrix pointer */
|
|
92 |
float64_t *pOutT1, *pOutT2; /* Temporary output data matrix pointer */
|
|
93 |
float64_t *pPivotRowIn, *pPRT_in, *pPivotRowDst, *pPRT_pDst; /* Temporary input and output data matrix pointer */
|
|
94 |
uint32_t numRows = pSrc->numRows; /* Number of rows in the matrix */
|
|
95 |
uint32_t numCols = pSrc->numCols; /* Number of Cols in the matrix */
|
|
96 |
|
|
97 |
#ifndef ARM_MATH_CM0_FAMILY
|
|
98 |
float64_t maxC; /* maximum value in the column */
|
|
99 |
|
|
100 |
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
|
101 |
|
|
102 |
float64_t Xchg, in = 0.0f, in1; /* Temporary input values */
|
|
103 |
uint32_t i, rowCnt, flag = 0u, j, loopCnt, k, l; /* loop counters */
|
|
104 |
arm_status status; /* status of matrix inverse */
|
|
105 |
|
|
106 |
#ifdef ARM_MATH_MATRIX_CHECK
|
|
107 |
|
|
108 |
|
|
109 |
/* Check for matrix mismatch condition */
|
|
110 |
if((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols)
|
|
111 |
|| (pSrc->numRows != pDst->numRows))
|
|
112 |
{
|
|
113 |
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
|
114 |
status = ARM_MATH_SIZE_MISMATCH;
|
|
115 |
}
|
|
116 |
else
|
|
117 |
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
118 |
|
|
119 |
{
|
|
120 |
|
|
121 |
/*--------------------------------------------------------------------------------------------------------------
|
|
122 |
* Matrix Inverse can be solved using elementary row operations.
|
|
123 |
*
|
|
124 |
* Gauss-Jordan Method:
|
|
125 |
*
|
|
126 |
* 1. First combine the identity matrix and the input matrix separated by a bar to form an
|
|
127 |
* augmented matrix as follows:
|
|
128 |
* _ _ _ _
|
|
129 |
* | a11 a12 | 1 0 | | X11 X12 |
|
|
130 |
* | | | = | |
|
|
131 |
* |_ a21 a22 | 0 1 _| |_ X21 X21 _|
|
|
132 |
*
|
|
133 |
* 2. In our implementation, pDst Matrix is used as identity matrix.
|
|
134 |
*
|
|
135 |
* 3. Begin with the first row. Let i = 1.
|
|
136 |
*
|
|
137 |
* 4. Check to see if the pivot for column i is the greatest of the column.
|
|
138 |
* The pivot is the element of the main diagonal that is on the current row.
|
|
139 |
* For instance, if working with row i, then the pivot element is aii.
|
|
140 |
* If the pivot is not the most significant of the columns, exchange that row with a row
|
|
141 |
* below it that does contain the most significant value in column i. If the most
|
|
142 |
* significant value of the column is zero, then an inverse to that matrix does not exist.
|
|
143 |
* The most significant value of the column is the absolute maximum.
|
|
144 |
*
|
|
145 |
* 5. Divide every element of row i by the pivot.
|
|
146 |
*
|
|
147 |
* 6. For every row below and row i, replace that row with the sum of that row and
|
|
148 |
* a multiple of row i so that each new element in column i below row i is zero.
|
|
149 |
*
|
|
150 |
* 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
|
|
151 |
* for every element below and above the main diagonal.
|
|
152 |
*
|
|
153 |
* 8. Now an identical matrix is formed to the left of the bar(input matrix, pSrc).
|
|
154 |
* Therefore, the matrix to the right of the bar is our solution(pDst matrix, pDst).
|
|
155 |
*----------------------------------------------------------------------------------------------------------------*/
|
|
156 |
|
|
157 |
/* Working pointer for destination matrix */
|
|
158 |
pOutT1 = pOut;
|
|
159 |
|
|
160 |
/* Loop over the number of rows */
|
|
161 |
rowCnt = numRows;
|
|
162 |
|
|
163 |
/* Making the destination matrix as identity matrix */
|
|
164 |
while(rowCnt > 0u)
|
|
165 |
{
|
|
166 |
/* Writing all zeroes in lower triangle of the destination matrix */
|
|
167 |
j = numRows - rowCnt;
|
|
168 |
while(j > 0u)
|
|
169 |
{
|
|
170 |
*pOutT1++ = 0.0f;
|
|
171 |
j--;
|
|
172 |
}
|
|
173 |
|
|
174 |
/* Writing all ones in the diagonal of the destination matrix */
|
|
175 |
*pOutT1++ = 1.0f;
|
|
176 |
|
|
177 |
/* Writing all zeroes in upper triangle of the destination matrix */
|
|
178 |
j = rowCnt - 1u;
|
|
179 |
while(j > 0u)
|
|
180 |
{
|
|
181 |
*pOutT1++ = 0.0f;
|
|
182 |
j--;
|
|
183 |
}
|
|
184 |
|
|
185 |
/* Decrement the loop counter */
|
|
186 |
rowCnt--;
|
|
187 |
}
|
|
188 |
|
|
189 |
/* Loop over the number of columns of the input matrix.
|
|
190 |
All the elements in each column are processed by the row operations */
|
|
191 |
loopCnt = numCols;
|
|
192 |
|
|
193 |
/* Index modifier to navigate through the columns */
|
|
194 |
l = 0u;
|
|
195 |
|
|
196 |
while(loopCnt > 0u)
|
|
197 |
{
|
|
198 |
/* Check if the pivot element is zero..
|
|
199 |
* If it is zero then interchange the row with non zero row below.
|
|
200 |
* If there is no non zero element to replace in the rows below,
|
|
201 |
* then the matrix is Singular. */
|
|
202 |
|
|
203 |
/* Working pointer for the input matrix that points
|
|
204 |
* to the pivot element of the particular row */
|
|
205 |
pInT1 = pIn + (l * numCols);
|
|
206 |
|
|
207 |
/* Working pointer for the destination matrix that points
|
|
208 |
* to the pivot element of the particular row */
|
|
209 |
pOutT1 = pOut + (l * numCols);
|
|
210 |
|
|
211 |
/* Temporary variable to hold the pivot value */
|
|
212 |
in = *pInT1;
|
|
213 |
|
|
214 |
/* Grab the most significant value from column l */
|
|
215 |
maxC = 0;
|
|
216 |
for (i = l; i < numRows; i++)
|
|
217 |
{
|
|
218 |
maxC = *pInT1 > 0 ? (*pInT1 > maxC ? *pInT1 : maxC) : (-*pInT1 > maxC ? -*pInT1 : maxC);
|
|
219 |
pInT1 += numCols;
|
|
220 |
}
|
|
221 |
|
|
222 |
/* Update the status if the matrix is singular */
|
|
223 |
if(maxC == 0.0f)
|
|
224 |
{
|
|
225 |
return ARM_MATH_SINGULAR;
|
|
226 |
}
|
|
227 |
|
|
228 |
/* Restore pInT1 */
|
|
229 |
pInT1 = pIn;
|
|
230 |
|
|
231 |
/* Destination pointer modifier */
|
|
232 |
k = 1u;
|
|
233 |
|
|
234 |
/* Check if the pivot element is the most significant of the column */
|
|
235 |
if( (in > 0.0f ? in : -in) != maxC)
|
|
236 |
{
|
|
237 |
/* Loop over the number rows present below */
|
|
238 |
i = numRows - (l + 1u);
|
|
239 |
|
|
240 |
while(i > 0u)
|
|
241 |
{
|
|
242 |
/* Update the input and destination pointers */
|
|
243 |
pInT2 = pInT1 + (numCols * l);
|
|
244 |
pOutT2 = pOutT1 + (numCols * k);
|
|
245 |
|
|
246 |
/* Look for the most significant element to
|
|
247 |
* replace in the rows below */
|
|
248 |
if((*pInT2 > 0.0f ? *pInT2: -*pInT2) == maxC)
|
|
249 |
{
|
|
250 |
/* Loop over number of columns
|
|
251 |
* to the right of the pilot element */
|
|
252 |
j = numCols - l;
|
|
253 |
|
|
254 |
while(j > 0u)
|
|
255 |
{
|
|
256 |
/* Exchange the row elements of the input matrix */
|
|
257 |
Xchg = *pInT2;
|
|
258 |
*pInT2++ = *pInT1;
|
|
259 |
*pInT1++ = Xchg;
|
|
260 |
|
|
261 |
/* Decrement the loop counter */
|
|
262 |
j--;
|
|
263 |
}
|
|
264 |
|
|
265 |
/* Loop over number of columns of the destination matrix */
|
|
266 |
j = numCols;
|
|
267 |
|
|
268 |
while(j > 0u)
|
|
269 |
{
|
|
270 |
/* Exchange the row elements of the destination matrix */
|
|
271 |
Xchg = *pOutT2;
|
|
272 |
*pOutT2++ = *pOutT1;
|
|
273 |
*pOutT1++ = Xchg;
|
|
274 |
|
|
275 |
/* Decrement the loop counter */
|
|
276 |
j--;
|
|
277 |
}
|
|
278 |
|
|
279 |
/* Flag to indicate whether exchange is done or not */
|
|
280 |
flag = 1u;
|
|
281 |
|
|
282 |
/* Break after exchange is done */
|
|
283 |
break;
|
|
284 |
}
|
|
285 |
|
|
286 |
/* Update the destination pointer modifier */
|
|
287 |
k++;
|
|
288 |
|
|
289 |
/* Decrement the loop counter */
|
|
290 |
i--;
|
|
291 |
}
|
|
292 |
}
|
|
293 |
|
|
294 |
/* Update the status if the matrix is singular */
|
|
295 |
if((flag != 1u) && (in == 0.0f))
|
|
296 |
{
|
|
297 |
return ARM_MATH_SINGULAR;
|
|
298 |
}
|
|
299 |
|
|
300 |
/* Points to the pivot row of input and destination matrices */
|
|
301 |
pPivotRowIn = pIn + (l * numCols);
|
|
302 |
pPivotRowDst = pOut + (l * numCols);
|
|
303 |
|
|
304 |
/* Temporary pointers to the pivot row pointers */
|
|
305 |
pInT1 = pPivotRowIn;
|
|
306 |
pInT2 = pPivotRowDst;
|
|
307 |
|
|
308 |
/* Pivot element of the row */
|
|
309 |
in = *pPivotRowIn;
|
|
310 |
|
|
311 |
/* Loop over number of columns
|
|
312 |
* to the right of the pilot element */
|
|
313 |
j = (numCols - l);
|
|
314 |
|
|
315 |
while(j > 0u)
|
|
316 |
{
|
|
317 |
/* Divide each element of the row of the input matrix
|
|
318 |
* by the pivot element */
|
|
319 |
in1 = *pInT1;
|
|
320 |
*pInT1++ = in1 / in;
|
|
321 |
|
|
322 |
/* Decrement the loop counter */
|
|
323 |
j--;
|
|
324 |
}
|
|
325 |
|
|
326 |
/* Loop over number of columns of the destination matrix */
|
|
327 |
j = numCols;
|
|
328 |
|
|
329 |
while(j > 0u)
|
|
330 |
{
|
|
331 |
/* Divide each element of the row of the destination matrix
|
|
332 |
* by the pivot element */
|
|
333 |
in1 = *pInT2;
|
|
334 |
*pInT2++ = in1 / in;
|
|
335 |
|
|
336 |
/* Decrement the loop counter */
|
|
337 |
j--;
|
|
338 |
}
|
|
339 |
|
|
340 |
/* Replace the rows with the sum of that row and a multiple of row i
|
|
341 |
* so that each new element in column i above row i is zero.*/
|
|
342 |
|
|
343 |
/* Temporary pointers for input and destination matrices */
|
|
344 |
pInT1 = pIn;
|
|
345 |
pInT2 = pOut;
|
|
346 |
|
|
347 |
/* index used to check for pivot element */
|
|
348 |
i = 0u;
|
|
349 |
|
|
350 |
/* Loop over number of rows */
|
|
351 |
/* to be replaced by the sum of that row and a multiple of row i */
|
|
352 |
k = numRows;
|
|
353 |
|
|
354 |
while(k > 0u)
|
|
355 |
{
|
|
356 |
/* Check for the pivot element */
|
|
357 |
if(i == l)
|
|
358 |
{
|
|
359 |
/* If the processing element is the pivot element,
|
|
360 |
only the columns to the right are to be processed */
|
|
361 |
pInT1 += numCols - l;
|
|
362 |
|
|
363 |
pInT2 += numCols;
|
|
364 |
}
|
|
365 |
else
|
|
366 |
{
|
|
367 |
/* Element of the reference row */
|
|
368 |
in = *pInT1;
|
|
369 |
|
|
370 |
/* Working pointers for input and destination pivot rows */
|
|
371 |
pPRT_in = pPivotRowIn;
|
|
372 |
pPRT_pDst = pPivotRowDst;
|
|
373 |
|
|
374 |
/* Loop over the number of columns to the right of the pivot element,
|
|
375 |
to replace the elements in the input matrix */
|
|
376 |
j = (numCols - l);
|
|
377 |
|
|
378 |
while(j > 0u)
|
|
379 |
{
|
|
380 |
/* Replace the element by the sum of that row
|
|
381 |
and a multiple of the reference row */
|
|
382 |
in1 = *pInT1;
|
|
383 |
*pInT1++ = in1 - (in * *pPRT_in++);
|
|
384 |
|
|
385 |
/* Decrement the loop counter */
|
|
386 |
j--;
|
|
387 |
}
|
|
388 |
|
|
389 |
/* Loop over the number of columns to
|
|
390 |
replace the elements in the destination matrix */
|
|
391 |
j = numCols;
|
|
392 |
|
|
393 |
while(j > 0u)
|
|
394 |
{
|
|
395 |
/* Replace the element by the sum of that row
|
|
396 |
and a multiple of the reference row */
|
|
397 |
in1 = *pInT2;
|
|
398 |
*pInT2++ = in1 - (in * *pPRT_pDst++);
|
|
399 |
|
|
400 |
/* Decrement the loop counter */
|
|
401 |
j--;
|
|
402 |
}
|
|
403 |
|
|
404 |
}
|
|
405 |
|
|
406 |
/* Increment the temporary input pointer */
|
|
407 |
pInT1 = pInT1 + l;
|
|
408 |
|
|
409 |
/* Decrement the loop counter */
|
|
410 |
k--;
|
|
411 |
|
|
412 |
/* Increment the pivot index */
|
|
413 |
i++;
|
|
414 |
}
|
|
415 |
|
|
416 |
/* Increment the input pointer */
|
|
417 |
pIn++;
|
|
418 |
|
|
419 |
/* Decrement the loop counter */
|
|
420 |
loopCnt--;
|
|
421 |
|
|
422 |
/* Increment the index modifier */
|
|
423 |
l++;
|
|
424 |
}
|
|
425 |
|
|
426 |
|
|
427 |
#else
|
|
428 |
|
|
429 |
/* Run the below code for Cortex-M0 */
|
|
430 |
|
|
431 |
float64_t Xchg, in = 0.0f; /* Temporary input values */
|
|
432 |
uint32_t i, rowCnt, flag = 0u, j, loopCnt, k, l; /* loop counters */
|
|
433 |
arm_status status; /* status of matrix inverse */
|
|
434 |
|
|
435 |
#ifdef ARM_MATH_MATRIX_CHECK
|
|
436 |
|
|
437 |
/* Check for matrix mismatch condition */
|
|
438 |
if((pSrc->numRows != pSrc->numCols) || (pDst->numRows != pDst->numCols)
|
|
439 |
|| (pSrc->numRows != pDst->numRows))
|
|
440 |
{
|
|
441 |
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
|
442 |
status = ARM_MATH_SIZE_MISMATCH;
|
|
443 |
}
|
|
444 |
else
|
|
445 |
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
446 |
{
|
|
447 |
|
|
448 |
/*--------------------------------------------------------------------------------------------------------------
|
|
449 |
* Matrix Inverse can be solved using elementary row operations.
|
|
450 |
*
|
|
451 |
* Gauss-Jordan Method:
|
|
452 |
*
|
|
453 |
* 1. First combine the identity matrix and the input matrix separated by a bar to form an
|
|
454 |
* augmented matrix as follows:
|
|
455 |
* _ _ _ _ _ _ _ _
|
|
456 |
* | | a11 a12 | | | 1 0 | | | X11 X12 |
|
|
457 |
* | | | | | | | = | |
|
|
458 |
* |_ |_ a21 a22 _| | |_0 1 _| _| |_ X21 X21 _|
|
|
459 |
*
|
|
460 |
* 2. In our implementation, pDst Matrix is used as identity matrix.
|
|
461 |
*
|
|
462 |
* 3. Begin with the first row. Let i = 1.
|
|
463 |
*
|
|
464 |
* 4. Check to see if the pivot for row i is zero.
|
|
465 |
* The pivot is the element of the main diagonal that is on the current row.
|
|
466 |
* For instance, if working with row i, then the pivot element is aii.
|
|
467 |
* If the pivot is zero, exchange that row with a row below it that does not
|
|
468 |
* contain a zero in column i. If this is not possible, then an inverse
|
|
469 |
* to that matrix does not exist.
|
|
470 |
*
|
|
471 |
* 5. Divide every element of row i by the pivot.
|
|
472 |
*
|
|
473 |
* 6. For every row below and row i, replace that row with the sum of that row and
|
|
474 |
* a multiple of row i so that each new element in column i below row i is zero.
|
|
475 |
*
|
|
476 |
* 7. Move to the next row and column and repeat steps 2 through 5 until you have zeros
|
|
477 |
* for every element below and above the main diagonal.
|
|
478 |
*
|
|
479 |
* 8. Now an identical matrix is formed to the left of the bar(input matrix, src).
|
|
480 |
* Therefore, the matrix to the right of the bar is our solution(dst matrix, dst).
|
|
481 |
*----------------------------------------------------------------------------------------------------------------*/
|
|
482 |
|
|
483 |
/* Working pointer for destination matrix */
|
|
484 |
pOutT1 = pOut;
|
|
485 |
|
|
486 |
/* Loop over the number of rows */
|
|
487 |
rowCnt = numRows;
|
|
488 |
|
|
489 |
/* Making the destination matrix as identity matrix */
|
|
490 |
while(rowCnt > 0u)
|
|
491 |
{
|
|
492 |
/* Writing all zeroes in lower triangle of the destination matrix */
|
|
493 |
j = numRows - rowCnt;
|
|
494 |
while(j > 0u)
|
|
495 |
{
|
|
496 |
*pOutT1++ = 0.0f;
|
|
497 |
j--;
|
|
498 |
}
|
|
499 |
|
|
500 |
/* Writing all ones in the diagonal of the destination matrix */
|
|
501 |
*pOutT1++ = 1.0f;
|
|
502 |
|
|
503 |
/* Writing all zeroes in upper triangle of the destination matrix */
|
|
504 |
j = rowCnt - 1u;
|
|
505 |
while(j > 0u)
|
|
506 |
{
|
|
507 |
*pOutT1++ = 0.0f;
|
|
508 |
j--;
|
|
509 |
}
|
|
510 |
|
|
511 |
/* Decrement the loop counter */
|
|
512 |
rowCnt--;
|
|
513 |
}
|
|
514 |
|
|
515 |
/* Loop over the number of columns of the input matrix.
|
|
516 |
All the elements in each column are processed by the row operations */
|
|
517 |
loopCnt = numCols;
|
|
518 |
|
|
519 |
/* Index modifier to navigate through the columns */
|
|
520 |
l = 0u;
|
|
521 |
//for(loopCnt = 0u; loopCnt < numCols; loopCnt++)
|
|
522 |
while(loopCnt > 0u)
|
|
523 |
{
|
|
524 |
/* Check if the pivot element is zero..
|
|
525 |
* If it is zero then interchange the row with non zero row below.
|
|
526 |
* If there is no non zero element to replace in the rows below,
|
|
527 |
* then the matrix is Singular. */
|
|
528 |
|
|
529 |
/* Working pointer for the input matrix that points
|
|
530 |
* to the pivot element of the particular row */
|
|
531 |
pInT1 = pIn + (l * numCols);
|
|
532 |
|
|
533 |
/* Working pointer for the destination matrix that points
|
|
534 |
* to the pivot element of the particular row */
|
|
535 |
pOutT1 = pOut + (l * numCols);
|
|
536 |
|
|
537 |
/* Temporary variable to hold the pivot value */
|
|
538 |
in = *pInT1;
|
|
539 |
|
|
540 |
/* Destination pointer modifier */
|
|
541 |
k = 1u;
|
|
542 |
|
|
543 |
/* Check if the pivot element is zero */
|
|
544 |
if(*pInT1 == 0.0f)
|
|
545 |
{
|
|
546 |
/* Loop over the number rows present below */
|
|
547 |
for (i = (l + 1u); i < numRows; i++)
|
|
548 |
{
|
|
549 |
/* Update the input and destination pointers */
|
|
550 |
pInT2 = pInT1 + (numCols * l);
|
|
551 |
pOutT2 = pOutT1 + (numCols * k);
|
|
552 |
|
|
553 |
/* Check if there is a non zero pivot element to
|
|
554 |
* replace in the rows below */
|
|
555 |
if(*pInT2 != 0.0f)
|
|
556 |
{
|
|
557 |
/* Loop over number of columns
|
|
558 |
* to the right of the pilot element */
|
|
559 |
for (j = 0u; j < (numCols - l); j++)
|
|
560 |
{
|
|
561 |
/* Exchange the row elements of the input matrix */
|
|
562 |
Xchg = *pInT2;
|
|
563 |
*pInT2++ = *pInT1;
|
|
564 |
*pInT1++ = Xchg;
|
|
565 |
}
|
|
566 |
|
|
567 |
for (j = 0u; j < numCols; j++)
|
|
568 |
{
|
|
569 |
Xchg = *pOutT2;
|
|
570 |
*pOutT2++ = *pOutT1;
|
|
571 |
*pOutT1++ = Xchg;
|
|
572 |
}
|
|
573 |
|
|
574 |
/* Flag to indicate whether exchange is done or not */
|
|
575 |
flag = 1u;
|
|
576 |
|
|
577 |
/* Break after exchange is done */
|
|
578 |
break;
|
|
579 |
}
|
|
580 |
|
|
581 |
/* Update the destination pointer modifier */
|
|
582 |
k++;
|
|
583 |
}
|
|
584 |
}
|
|
585 |
|
|
586 |
/* Update the status if the matrix is singular */
|
|
587 |
if((flag != 1u) && (in == 0.0f))
|
|
588 |
{
|
|
589 |
return ARM_MATH_SINGULAR;
|
|
590 |
}
|
|
591 |
|
|
592 |
/* Points to the pivot row of input and destination matrices */
|
|
593 |
pPivotRowIn = pIn + (l * numCols);
|
|
594 |
pPivotRowDst = pOut + (l * numCols);
|
|
595 |
|
|
596 |
/* Temporary pointers to the pivot row pointers */
|
|
597 |
pInT1 = pPivotRowIn;
|
|
598 |
pOutT1 = pPivotRowDst;
|
|
599 |
|
|
600 |
/* Pivot element of the row */
|
|
601 |
in = *(pIn + (l * numCols));
|
|
602 |
|
|
603 |
/* Loop over number of columns
|
|
604 |
* to the right of the pilot element */
|
|
605 |
for (j = 0u; j < (numCols - l); j++)
|
|
606 |
{
|
|
607 |
/* Divide each element of the row of the input matrix
|
|
608 |
* by the pivot element */
|
|
609 |
*pInT1 = *pInT1 / in;
|
|
610 |
pInT1++;
|
|
611 |
}
|
|
612 |
for (j = 0u; j < numCols; j++)
|
|
613 |
{
|
|
614 |
/* Divide each element of the row of the destination matrix
|
|
615 |
* by the pivot element */
|
|
616 |
*pOutT1 = *pOutT1 / in;
|
|
617 |
pOutT1++;
|
|
618 |
}
|
|
619 |
|
|
620 |
/* Replace the rows with the sum of that row and a multiple of row i
|
|
621 |
* so that each new element in column i above row i is zero.*/
|
|
622 |
|
|
623 |
/* Temporary pointers for input and destination matrices */
|
|
624 |
pInT1 = pIn;
|
|
625 |
pOutT1 = pOut;
|
|
626 |
|
|
627 |
for (i = 0u; i < numRows; i++)
|
|
628 |
{
|
|
629 |
/* Check for the pivot element */
|
|
630 |
if(i == l)
|
|
631 |
{
|
|
632 |
/* If the processing element is the pivot element,
|
|
633 |
only the columns to the right are to be processed */
|
|
634 |
pInT1 += numCols - l;
|
|
635 |
pOutT1 += numCols;
|
|
636 |
}
|
|
637 |
else
|
|
638 |
{
|
|
639 |
/* Element of the reference row */
|
|
640 |
in = *pInT1;
|
|
641 |
|
|
642 |
/* Working pointers for input and destination pivot rows */
|
|
643 |
pPRT_in = pPivotRowIn;
|
|
644 |
pPRT_pDst = pPivotRowDst;
|
|
645 |
|
|
646 |
/* Loop over the number of columns to the right of the pivot element,
|
|
647 |
to replace the elements in the input matrix */
|
|
648 |
for (j = 0u; j < (numCols - l); j++)
|
|
649 |
{
|
|
650 |
/* Replace the element by the sum of that row
|
|
651 |
and a multiple of the reference row */
|
|
652 |
*pInT1 = *pInT1 - (in * *pPRT_in++);
|
|
653 |
pInT1++;
|
|
654 |
}
|
|
655 |
/* Loop over the number of columns to
|
|
656 |
replace the elements in the destination matrix */
|
|
657 |
for (j = 0u; j < numCols; j++)
|
|
658 |
{
|
|
659 |
/* Replace the element by the sum of that row
|
|
660 |
and a multiple of the reference row */
|
|
661 |
*pOutT1 = *pOutT1 - (in * *pPRT_pDst++);
|
|
662 |
pOutT1++;
|
|
663 |
}
|
|
664 |
|
|
665 |
}
|
|
666 |
/* Increment the temporary input pointer */
|
|
667 |
pInT1 = pInT1 + l;
|
|
668 |
}
|
|
669 |
/* Increment the input pointer */
|
|
670 |
pIn++;
|
|
671 |
|
|
672 |
/* Decrement the loop counter */
|
|
673 |
loopCnt--;
|
|
674 |
/* Increment the index modifier */
|
|
675 |
l++;
|
|
676 |
}
|
|
677 |
|
|
678 |
|
|
679 |
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
|
|
680 |
|
|
681 |
/* Set status as ARM_MATH_SUCCESS */
|
|
682 |
status = ARM_MATH_SUCCESS;
|
|
683 |
|
|
684 |
if((flag != 1u) && (in == 0.0f))
|
|
685 |
{
|
|
686 |
pIn = pSrc->pData;
|
|
687 |
for (i = 0; i < numRows * numCols; i++)
|
|
688 |
{
|
|
689 |
if (pIn[i] != 0.0f)
|
|
690 |
break;
|
|
691 |
}
|
|
692 |
|
|
693 |
if (i == numRows * numCols)
|
|
694 |
status = ARM_MATH_SINGULAR;
|
|
695 |
}
|
|
696 |
}
|
|
697 |
/* Return to application */
|
|
698 |
return (status);
|
|
699 |
}
|
|
700 |
|
|
701 |
/**
|
|
702 |
* @} end of MatrixInv group
|
|
703 |
*/
|