提交 | 用户 | age
|
483170
|
1 |
/* ---------------------------------------------------------------------- |
Q |
2 |
* Copyright (C) 2010-2014 ARM Limited. All rights reserved. |
|
3 |
* |
|
4 |
* $Date: 19. March 2015 |
|
5 |
* $Revision: V.1.4.5 |
|
6 |
* |
|
7 |
* Project: CMSIS DSP Library |
|
8 |
* Title: arm_rfft_f32.c |
|
9 |
* |
|
10 |
* Description: RFFT & RIFFT Floating point process function |
|
11 |
* |
|
12 |
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
|
13 |
* |
|
14 |
* Redistribution and use in source and binary forms, with or without |
|
15 |
* modification, are permitted provided that the following conditions |
|
16 |
* are met: |
|
17 |
* - Redistributions of source code must retain the above copyright |
|
18 |
* notice, this list of conditions and the following disclaimer. |
|
19 |
* - Redistributions in binary form must reproduce the above copyright |
|
20 |
* notice, this list of conditions and the following disclaimer in |
|
21 |
* the documentation and/or other materials provided with the |
|
22 |
* distribution. |
|
23 |
* - Neither the name of ARM LIMITED nor the names of its contributors |
|
24 |
* may be used to endorse or promote products derived from this |
|
25 |
* software without specific prior written permission. |
|
26 |
* |
|
27 |
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
|
28 |
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
|
29 |
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
|
30 |
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
|
31 |
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
|
32 |
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, |
|
33 |
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
|
34 |
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER |
|
35 |
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
|
36 |
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN |
|
37 |
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
|
38 |
* POSSIBILITY OF SUCH DAMAGE. |
|
39 |
* -------------------------------------------------------------------- */ |
|
40 |
|
|
41 |
#include "arm_math.h" |
|
42 |
|
|
43 |
void stage_rfft_f32( |
|
44 |
arm_rfft_fast_instance_f32 * S, |
|
45 |
float32_t * p, float32_t * pOut) |
|
46 |
{ |
|
47 |
uint32_t k; /* Loop Counter */ |
|
48 |
float32_t twR, twI; /* RFFT Twiddle coefficients */ |
|
49 |
float32_t * pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */ |
|
50 |
float32_t *pA = p; /* increasing pointer */ |
|
51 |
float32_t *pB = p; /* decreasing pointer */ |
|
52 |
float32_t xAR, xAI, xBR, xBI; /* temporary variables */ |
|
53 |
float32_t t1a, t1b; /* temporary variables */ |
|
54 |
float32_t p0, p1, p2, p3; /* temporary variables */ |
|
55 |
|
|
56 |
|
|
57 |
k = (S->Sint).fftLen - 1; |
|
58 |
|
|
59 |
/* Pack first and last sample of the frequency domain together */ |
|
60 |
|
|
61 |
xBR = pB[0]; |
|
62 |
xBI = pB[1]; |
|
63 |
xAR = pA[0]; |
|
64 |
xAI = pA[1]; |
|
65 |
|
|
66 |
twR = *pCoeff++ ; |
|
67 |
twI = *pCoeff++ ; |
|
68 |
|
|
69 |
// U1 = XA(1) + XB(1); % It is real |
|
70 |
t1a = xBR + xAR ; |
|
71 |
|
|
72 |
// U2 = XB(1) - XA(1); % It is imaginary |
|
73 |
t1b = xBI + xAI ; |
|
74 |
|
|
75 |
// real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI); |
|
76 |
// imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI); |
|
77 |
*pOut++ = 0.5f * ( t1a + t1b ); |
|
78 |
*pOut++ = 0.5f * ( t1a - t1b ); |
|
79 |
|
|
80 |
// XA(1) = 1/2*( U1 - imag(U2) + i*( U1 +imag(U2) )); |
|
81 |
pB = p + 2*k; |
|
82 |
pA += 2; |
|
83 |
|
|
84 |
do |
|
85 |
{ |
|
86 |
/* |
|
87 |
function X = my_split_rfft(X, ifftFlag) |
|
88 |
% X is a series of real numbers |
|
89 |
L = length(X); |
|
90 |
XC = X(1:2:end) +i*X(2:2:end); |
|
91 |
XA = fft(XC); |
|
92 |
XB = conj(XA([1 end:-1:2])); |
|
93 |
TW = i*exp(-2*pi*i*[0:L/2-1]/L).'; |
|
94 |
for l = 2:L/2 |
|
95 |
XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l))); |
|
96 |
end |
|
97 |
XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1)))); |
|
98 |
X = XA; |
|
99 |
*/ |
|
100 |
|
|
101 |
xBI = pB[1]; |
|
102 |
xBR = pB[0]; |
|
103 |
xAR = pA[0]; |
|
104 |
xAI = pA[1]; |
|
105 |
|
|
106 |
twR = *pCoeff++; |
|
107 |
twI = *pCoeff++; |
|
108 |
|
|
109 |
t1a = xBR - xAR ; |
|
110 |
t1b = xBI + xAI ; |
|
111 |
|
|
112 |
// real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI); |
|
113 |
// imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI); |
|
114 |
p0 = twR * t1a; |
|
115 |
p1 = twI * t1a; |
|
116 |
p2 = twR * t1b; |
|
117 |
p3 = twI * t1b; |
|
118 |
|
|
119 |
*pOut++ = 0.5f * (xAR + xBR + p0 + p3 ); //xAR |
|
120 |
*pOut++ = 0.5f * (xAI - xBI + p1 - p2 ); //xAI |
|
121 |
|
|
122 |
pA += 2; |
|
123 |
pB -= 2; |
|
124 |
k--; |
|
125 |
} while(k > 0u); |
|
126 |
} |
|
127 |
|
|
128 |
/* Prepares data for inverse cfft */ |
|
129 |
void merge_rfft_f32( |
|
130 |
arm_rfft_fast_instance_f32 * S, |
|
131 |
float32_t * p, float32_t * pOut) |
|
132 |
{ |
|
133 |
uint32_t k; /* Loop Counter */ |
|
134 |
float32_t twR, twI; /* RFFT Twiddle coefficients */ |
|
135 |
float32_t *pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */ |
|
136 |
float32_t *pA = p; /* increasing pointer */ |
|
137 |
float32_t *pB = p; /* decreasing pointer */ |
|
138 |
float32_t xAR, xAI, xBR, xBI; /* temporary variables */ |
|
139 |
float32_t t1a, t1b, r, s, t, u; /* temporary variables */ |
|
140 |
|
|
141 |
k = (S->Sint).fftLen - 1; |
|
142 |
|
|
143 |
xAR = pA[0]; |
|
144 |
xAI = pA[1]; |
|
145 |
|
|
146 |
pCoeff += 2 ; |
|
147 |
|
|
148 |
*pOut++ = 0.5f * ( xAR + xAI ); |
|
149 |
*pOut++ = 0.5f * ( xAR - xAI ); |
|
150 |
|
|
151 |
pB = p + 2*k ; |
|
152 |
pA += 2 ; |
|
153 |
|
|
154 |
while(k > 0u) |
|
155 |
{ |
|
156 |
/* G is half of the frequency complex spectrum */ |
|
157 |
//for k = 2:N |
|
158 |
// Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2)))); |
|
159 |
xBI = pB[1] ; |
|
160 |
xBR = pB[0] ; |
|
161 |
xAR = pA[0]; |
|
162 |
xAI = pA[1]; |
|
163 |
|
|
164 |
twR = *pCoeff++; |
|
165 |
twI = *pCoeff++; |
|
166 |
|
|
167 |
t1a = xAR - xBR ; |
|
168 |
t1b = xAI + xBI ; |
|
169 |
|
|
170 |
r = twR * t1a; |
|
171 |
s = twI * t1b; |
|
172 |
t = twI * t1a; |
|
173 |
u = twR * t1b; |
|
174 |
|
|
175 |
// real(tw * (xA - xB)) = twR * (xAR - xBR) - twI * (xAI - xBI); |
|
176 |
// imag(tw * (xA - xB)) = twI * (xAR - xBR) + twR * (xAI - xBI); |
|
177 |
*pOut++ = 0.5f * (xAR + xBR - r - s ); //xAR |
|
178 |
*pOut++ = 0.5f * (xAI - xBI + t - u ); //xAI |
|
179 |
|
|
180 |
pA += 2; |
|
181 |
pB -= 2; |
|
182 |
k--; |
|
183 |
} |
|
184 |
|
|
185 |
} |
|
186 |
|
|
187 |
/** |
|
188 |
* @ingroup groupTransforms |
|
189 |
*/ |
|
190 |
|
|
191 |
/** |
|
192 |
* @defgroup Fast Real FFT Functions |
|
193 |
* |
|
194 |
* \par |
|
195 |
* The CMSIS DSP library includes specialized algorithms for computing the |
|
196 |
* FFT of real data sequences. The FFT is defined over complex data but |
|
197 |
* in many applications the input is real. Real FFT algorithms take advantage |
|
198 |
* of the symmetry properties of the FFT and have a speed advantage over complex |
|
199 |
* algorithms of the same length. |
|
200 |
* \par |
|
201 |
* The Fast RFFT algorith relays on the mixed radix CFFT that save processor usage. |
|
202 |
* \par |
|
203 |
* The real length N forward FFT of a sequence is computed using the steps shown below. |
|
204 |
* \par |
|
205 |
* \image html RFFT.gif "Real Fast Fourier Transform" |
|
206 |
* \par |
|
207 |
* The real sequence is initially treated as if it were complex to perform a CFFT. |
|
208 |
* Later, a processing stage reshapes the data to obtain half of the frequency spectrum |
|
209 |
* in complex format. Except the first complex number that contains the two real numbers |
|
210 |
* X[0] and X[N/2] all the data is complex. In other words, the first complex sample |
|
211 |
* contains two real values packed. |
|
212 |
* \par |
|
213 |
* The input for the inverse RFFT should keep the same format as the output of the |
|
214 |
* forward RFFT. A first processing stage pre-process the data to later perform an |
|
215 |
* inverse CFFT. |
|
216 |
* \par |
|
217 |
* \image html RIFFT.gif "Real Inverse Fast Fourier Transform" |
|
218 |
* \par |
|
219 |
* The algorithms for floating-point, Q15, and Q31 data are slightly different |
|
220 |
* and we describe each algorithm in turn. |
|
221 |
* \par Floating-point |
|
222 |
* The main functions are <code>arm_rfft_fast_f32()</code> |
|
223 |
* and <code>arm_rfft_fast_init_f32()</code>. The older functions |
|
224 |
* <code>arm_rfft_f32()</code> and <code>arm_rfft_init_f32()</code> have been |
|
225 |
* deprecated but are still documented. |
|
226 |
* \par |
|
227 |
* The FFT of a real N-point sequence has even symmetry in the frequency |
|
228 |
* domain. The second half of the data equals the conjugate of the first half |
|
229 |
* flipped in frequency: |
|
230 |
* <pre> |
|
231 |
*X[0] - real data |
|
232 |
*X[1] - complex data |
|
233 |
*X[2] - complex data |
|
234 |
*... |
|
235 |
*X[fftLen/2-1] - complex data |
|
236 |
*X[fftLen/2] - real data |
|
237 |
*X[fftLen/2+1] - conjugate of X[fftLen/2-1] |
|
238 |
*X[fftLen/2+2] - conjugate of X[fftLen/2-2] |
|
239 |
*... |
|
240 |
*X[fftLen-1] - conjugate of X[1] |
|
241 |
* </pre> |
|
242 |
* Looking at the data, we see that we can uniquely represent the FFT using only |
|
243 |
* <pre> |
|
244 |
*N/2+1 samples: |
|
245 |
*X[0] - real data |
|
246 |
*X[1] - complex data |
|
247 |
*X[2] - complex data |
|
248 |
*... |
|
249 |
*X[fftLen/2-1] - complex data |
|
250 |
*X[fftLen/2] - real data |
|
251 |
* </pre> |
|
252 |
* Looking more closely we see that the first and last samples are real valued. |
|
253 |
* They can be packed together and we can thus represent the FFT of an N-point |
|
254 |
* real sequence by N/2 complex values: |
|
255 |
* <pre> |
|
256 |
*X[0],X[N/2] - packed real data: X[0] + jX[N/2] |
|
257 |
*X[1] - complex data |
|
258 |
*X[2] - complex data |
|
259 |
*... |
|
260 |
*X[fftLen/2-1] - complex data |
|
261 |
* </pre> |
|
262 |
* The real FFT functions pack the frequency domain data in this fashion. The |
|
263 |
* forward transform outputs the data in this form and the inverse transform |
|
264 |
* expects input data in this form. The function always performs the needed |
|
265 |
* bitreversal so that the input and output data is always in normal order. The |
|
266 |
* functions support lengths of [32, 64, 128, ..., 4096] samples. |
|
267 |
* \par |
|
268 |
* The forward and inverse real FFT functions apply the standard FFT scaling; no |
|
269 |
* scaling on the forward transform and 1/fftLen scaling on the inverse |
|
270 |
* transform. |
|
271 |
* \par Q15 and Q31 |
|
272 |
* The real algorithms are defined in a similar manner and utilize N/2 complex |
|
273 |
* transforms behind the scenes. |
|
274 |
* \par |
|
275 |
* The complex transforms used internally include scaling to prevent fixed-point |
|
276 |
* overflows. The overall scaling equals 1/(fftLen/2). |
|
277 |
* \par |
|
278 |
* A separate instance structure must be defined for each transform used but |
|
279 |
* twiddle factor and bit reversal tables can be reused. |
|
280 |
* \par |
|
281 |
* There is also an associated initialization function for each data type. |
|
282 |
* The initialization function performs the following operations: |
|
283 |
* - Sets the values of the internal structure fields. |
|
284 |
* - Initializes twiddle factor table and bit reversal table pointers. |
|
285 |
* - Initializes the internal complex FFT data structure. |
|
286 |
* \par |
|
287 |
* Use of the initialization function is optional. |
|
288 |
* However, if the initialization function is used, then the instance structure |
|
289 |
* cannot be placed into a const data section. To place an instance structure |
|
290 |
* into a const data section, the instance structure should be manually |
|
291 |
* initialized as follows: |
|
292 |
* <pre> |
|
293 |
*arm_rfft_instance_q31 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft}; |
|
294 |
*arm_rfft_instance_q15 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft}; |
|
295 |
* </pre> |
|
296 |
* where <code>fftLenReal</code> is the length of the real transform; |
|
297 |
* <code>fftLenBy2</code> length of the internal complex transform. |
|
298 |
* <code>ifftFlagR</code> Selects forward (=0) or inverse (=1) transform. |
|
299 |
* <code>bitReverseFlagR</code> Selects bit reversed output (=0) or normal order |
|
300 |
* output (=1). |
|
301 |
* <code>twidCoefRModifier</code> stride modifier for the twiddle factor table. |
|
302 |
* The value is based on the FFT length; |
|
303 |
* <code>pTwiddleAReal</code>points to the A array of twiddle coefficients; |
|
304 |
* <code>pTwiddleBReal</code>points to the B array of twiddle coefficients; |
|
305 |
* <code>pCfft</code> points to the CFFT Instance structure. The CFFT structure |
|
306 |
* must also be initialized. Refer to arm_cfft_radix4_f32() for details regarding |
|
307 |
* static initialization of the complex FFT instance structure. |
|
308 |
*/ |
|
309 |
|
|
310 |
/** |
|
311 |
* @addtogroup RealFFT |
|
312 |
* @{ |
|
313 |
*/ |
|
314 |
|
|
315 |
/** |
|
316 |
* @brief Processing function for the floating-point real FFT. |
|
317 |
* @param[in] *S points to an arm_rfft_fast_instance_f32 structure. |
|
318 |
* @param[in] *p points to the input buffer. |
|
319 |
* @param[in] *pOut points to the output buffer. |
|
320 |
* @param[in] ifftFlag RFFT if flag is 0, RIFFT if flag is 1 |
|
321 |
* @return none. |
|
322 |
*/ |
|
323 |
|
|
324 |
void arm_rfft_fast_f32( |
|
325 |
arm_rfft_fast_instance_f32 * S, |
|
326 |
float32_t * p, float32_t * pOut, |
|
327 |
uint8_t ifftFlag) |
|
328 |
{ |
|
329 |
arm_cfft_instance_f32 * Sint = &(S->Sint); |
|
330 |
Sint->fftLen = S->fftLenRFFT / 2; |
|
331 |
|
|
332 |
/* Calculation of Real FFT */ |
|
333 |
if(ifftFlag) |
|
334 |
{ |
|
335 |
/* Real FFT compression */ |
|
336 |
merge_rfft_f32(S, p, pOut); |
|
337 |
|
|
338 |
/* Complex radix-4 IFFT process */ |
|
339 |
arm_cfft_f32( Sint, pOut, ifftFlag, 1); |
|
340 |
} |
|
341 |
else |
|
342 |
{ |
|
343 |
/* Calculation of RFFT of input */ |
|
344 |
arm_cfft_f32( Sint, p, ifftFlag, 1); |
|
345 |
|
|
346 |
/* Real FFT extraction */ |
|
347 |
stage_rfft_f32(S, p, pOut); |
|
348 |
} |
|
349 |
} |
|
350 |
|
|
351 |
/** |
|
352 |
* @} end of RealFFT group |
|
353 |
*/ |